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I. INTRODUCTION

Quantum and stochastic properties of light fields can, in most cases, be
described in terms of coherent states that are quantum field states being
as close as possible to classical fields with well-defined amplitude and
phase [1-3]. The well-defined diagonal Glauber-Sudarshan quasidistribu-
tion P(a) allows for calculations of all relevant mean values of fields that
as we say “have classical counterparts.” However, there are optical fields
that “have no classical counterparts,” that is, fields for which the quasi-
distribution P(a) does not exist as a well-defined, positive definite dis-
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tribution function. Such fields have quantum properties that cannot be
explained in the language of classical stochastic quantities. They require
fully quantum description, and generation and detection of such field
states have been the subject of numerous, both theoretical and experimen-
tal, efforts since the mid 1970s. To this day, many nonlinear processes have
been analyzed as candidates for producing nonclassical states of light,
which include parametric down conversion [4-19], resonance fluorescence
[20-27], four-wave mixing [28—35], harmonics generation [36—48], anhar-
monic oscillator [49-70], light propagation in Kerr media from the point of
view of photon statistics [71-73] and squeezing [74-91], and multiphoton
absorption and other multiphoton processes [92—189]. The nonclassical
properties of light are already the subject of review articles [190-197] and
books [198-200], in which the basic information and extensive literature
can be found.

Nonclassical effects, such as photon antibunching, sub-Poissonian pho-
ton statistics, and squeezing, are a result of nonlinear interaction of
quantum light with a nonlinear medium; thus, the nonlinear interaction of
light with matter is a crucial element in generation fields with nonclassical
properties. The earliest observations of photon antibunching are due to
Kimble et al. [23] in resonance fluorescence, confirming the theoretical
predictions of Carmichael and Walls [20] and Kimble and Mandel [21].
Sub-Poissonian photon distribution was measured by Short and Mandel
[123], and the first observation of squeezing was due to Slusher et al. [33].
Later on a number of successful experiments were performed producing
light with nonclassical properties, [10, 11, 27, 32, 33, 169].

Unlike photon antibunching, squeezing is an effect that is sensitive to
the phase of the field, the fluctuations of which can essentially reduce its
value and even destroy it altogether. The detection of squeezing requires
rather sophisticated techniques, such as balanced homodyne detection
[201, 202], allowing for the elimination of the local oscillator noise.
Despite the differences between photon anticorrelation and squeezing,
both processes have one important common feature: Their nature is
purely quantum and fields exhibiting such properties have no analogs in
classical optics. The two effects can coexist in the same nonlinear process,
their areas of existence can be separated, or only one of them can appear
in a given process. Especially interesting, in our opinion, is the process of
propagation of strong light in a nonlinear Kerr-like medium. Some time
ago Tana$ and Kielich [74, 75] showed that almost perfect squeezing can
be obtained in such a process, while at the same time photon statistics
remain untouched. This process was referred to as self-squeezing, because
the squeezing of the quantum field fluctuations is caused by the self-inter-
action of light via the nonlinear medium. The one-mode version of the
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process, which is applicable for circularly polarized light propagating in an
isotropic Kerr medium, was considered by Tana$ [49] in terms of an
anharmonic oscillator model. The model, which allows for exact solutions,
became very popular later, and many properties of the field states gener-
ated in the model have been revealed and studied [50-70].

Classically, a strong laser field with elliptical polarization is known to
rotate its polarization ellipse when propagating through a Kerr medium,
an effect observed by Maker et al. [203]. To explain this effect there is no
need for field quantization (see, for example, [198]). Here, however, we are
interested in effects that are quantum in nature and cannot be explained
with the field being classical.

To describe properly the effects associated with the propagation of
elliptically polarized light in a Kerr medium, the two-mode description of
the field is needed. Such a description was used in the early studies
[71-75] of the quantum field effects that appear during propagation. In
those studies, the Heisenberg equations of motion for the field operators
were solved and their solutions used to calculate appropriate quantities
revealing sub-Poissonian photon statistics or squeezing. Recently, Agarwal
and Puri [82] reexamined the problem of propagation of elliptically polar-
ized light through a Kerr medium. They discussed not only the Heisenberg
equations of motion for the field operators, but also the evolution of the
field states themselves. The polarization state of the field propagating in a
Kerr medium can be described by the Stokes parameters, which are the
expectation values of the corresponding Stokes operators when the quan-
tum description of the field is used. Quantum fluctuations of the Stokes
parameters of light propagating in a Kerr medium have recently been
discussed by Tana$ and Kielich [204].

In this chapter, we consider propagation of strong light through a
macroscopically isotropic, nonlinear medium, taking into account not
only electric-dipole contributions to the interaction Hamiltonian, but aiso
contributions from the electric-magnetic dipole and electric—dipole-
quadrupole linear and nonlinear susceptibilities of the medium. We intro-
duce general expressions for the effective Hamiltonians of the second and
fourth order in the field strength using the circular polarization basis for
the field. Such effective Hamiltonians lead to the Heisenberg equations of
motion for the field operators that have exact solutions in the form of the
translation operator. This means that the field propagating in the nonlin-
ear medium undergoes a nonlinear change in phase (or self-phase modula-
tion), which for quantum fields means essential changes of the quantum
state of the field leading to self-squeezing of light. These additional
contributions that we take into account mean that our results are valid for
media with nonlinear optical activity. It is our aim to calculate the field
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expectation values describing photon antibunching and squeezing of the
field propagating in such a medium.

II. THE EFFECTIVE INTERACTION HAMILTONIAN

We consider N microsystems (atoms, molecules, or elementary cells in a
crystal) confined in a volume V' and subjected to the electromagnetic field
of a light beam with the electric field vector E(r, ¢t) and the magnetic field
vector B(r, ¢) in the point r at time ¢. The total Hamiltonian of such a
system has the form

H=Hy+ Hg+ H, (1)

where Hy is the Hamiltonian of the system of N microsystems, and Hp is
the Hamiltonian of the free field.

We are interested in the explicit form of the Hamiltonian H, describing
the interaction of the system with the electromagnetic field. This interac-
tion is in general nonlinear and contains all multipolar transitions both
electric and magnetic [205-207]. In nonlinear optics we use, for simplicity
and convenience, effective interaction Hamiltonians {208], in which it is
sufficient to include terms up to the fourth order with respect to the
electric and magnetic field strengths [206, 207, 209, 210].

In this chapter we take into account only contributions to the interac-
tion Hamiltonian with even powers of the field strengths

H=H®+H®+ - = ) H™ (2)
n=1

Restricting our considerations to the case of weak spatial dispersion
(which means that we neglect higher multipoles [209, 210]), we can write
for N uncorrelated molecules [211]

N
2) _ 1
HP = - E'{aijEiEj + 3 [ MG ENCE; + M (Ve Ei) Ej 3)
+p,;E;B; + A,;B,E; + h.c.}

where, according to the Einstein summation convention, the summation
over the repeated indices is understood in (3).

In Eq. (3) the second-rank tensor a;; describes the linear electric—elec-
tric polarizability of the molecule coming from the electric-dipole—
electric-dipole transitions. Similarly, the second-rank pseudotensors p;



SELF-SQUEEZING OF ELLIPTICALLY POLARIZED LIGHT 545

and A;; denote the polarizabilities: electric-magnetic resulting from the
quantum transitions electric dipole-magnetic dipole, and magnetic—elec-
tric resulting from the transitions magnetic dipole—electric dipole, respec-
tively. The third-rank tensor m; ., denotes the linear electric-electric
polarizability resulting from the transitions electric dipole—electric
quadrupole [209, 210], while the tensor m;, comes from the same
transitions in reversed order.

In the same multipolar approximation the fourth-order Hamiltonian
has the form [206, 207, 209, 210]

[C)] N
H” = _ﬁ{‘YijklEiEjEkEl

+ %[nijk(lm)EiEjEkaEl + Wijmp EiE/ (Vo Er) E
4
A Mijmyt Ei(Von ) E By + n(im)jkl(VmEi)EjEkEl] )
+ K B EE By + pij B E;BLE,

+0;4EB,EE; + Aijy BE;EE, + hc)

where the fourth-rank tensor vy, denotes the nonlinear polarizability
resulting from the four electric-dipole transitions, the fourth-rank pseu-
dotensors k., p; ;> and o, denote the nonlinear polarizabilities: elec-
tric-magnetic resulting from the transitions electric dipole-magnetic
dipole and two electric dipoles, while A;;, the magnetic—electric polariz-
ability associated with the transitions magnetic dipole—electric dipole and
two electric dipoles. The fifth-rank tensor 7y, defines the electric
quadrupole polarizability associated with the transitions electric
quadrupole—electric dipole and two electric dipoles [207, 210]. The re-
maining tensors 1, ks Mijkmy> ANA M jxqmy differ from the first by the
permutation of the position of the electric—quadrupole transition, which is
labeled by the indices in parentheses.

For classical fields the electric field vector can be split into two complex
conjugate parts [1]:

E(r,t) = E(r,t) + EC(r, 1) (5)

where the components E(*(r, t) and E(7(r, ¢) are related to the time
dependences exp(—iwt) (positive frequency part) and exp(+iwt?) (nega-
tive frequency part), respectively. The transversal electric field can be
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expressed as a superposition of plane waves:

E(r,t) = Y {E(K)exp[i(k - r — w,1)]
k (6)
+EC)(K)exp[ —i(k - r — w,1)]}

The same decomposition can be performed for the magnetic field vector
B(r, t), where we have the relation (in ST units)

1
B = ;EijkkjEl(c+) (7)

where ¢, is the Levi-Civita antisymmetric tensor.

As usual, we assume that the light wave is propagating along the z axis
of the Cartesian coordinate system {x, y, z}. It will be convenient later on
to use the circular basis associated with the unit vectors of the form (the
angular momentum convention is used here)

1
e,= —?(xiiy) (8)

where e, describes right and e_ left polarization of the field. The vectors
x and y are the unit vectors along the x and y of the Cartesian reference
frame, and i is the imaginary unit (i = V=1).

Assuming the microsystems to be freely oriented, the Hamiltonians (3)
and (4) have to be averaged over all possible orientations. As a result of
such averaging only the rotational invariants of the polarizability tensors
appearing in these Hamiltonians will remain [198], which have the form

(a;)a = ad;;
<77i(jm)>0 = <77(,-m),->n =0 (9)
<P,‘j>ﬂ = P6ij </\,~,~>n = ASU

where a = @,,/3, p = poo/3, and A = A, /3 are the mean polarizabili-
ties of the molecules.
In the nonlinear case we have [198]

Vira = Y1800 + ¥2018; + 7388 (10)
where
Y1 = 5 [4Vaaps ~ Yapap ~ Vappal
Y2 = 516[_Yaa;3/3 + 4Yaﬁa;3 - Yaﬂﬁa] (11)
Y3 = 5|~ Yaapp ~ Yapap + 4Yappal

and similar relations hold for the pseudotensors «;;.;, P,k Tijkr> A0 A
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For the nonlinear dipole—quadrupole polarizability we have [198]

Mijeamy?2 = M8ij€im + M28ik€jim + N30uEjem + NeOpeum (12)
+ 56,18 ikm T N6OkiEijm

where ¢, is the Levi-Civita antisymmetric tensor, while the constants

N1, M2»- - > Mg are defined by the following matrix equation:
m 3 -1 1 -1 1 0} (0ap€y80
, -1 3 -1 -1 0 1] | 8ay®ss0
M| _ Mapyon 1 -1 3 0 -1 11 18.588,4 (13)
un 30 -1 -1 0 3 -1 —1||08g/8as0
s 1 0 -1 -1 3 =1 |0s8aye
M 0 1 1 -1 -1 3] 19,5840

The Hamiltonian (6) describing the interaction of N microsystems with
the electromagnetic field propagating in a definite direction can be simpli-
fied because the summation in (6) is restricted to definite k£ only. Having
this restriction in mind and applying the circular polarization basis (8), we
can write the Hamiltonian (6), up to the fourth order in the field strength,
in the following form (see Appendix A):

H® = —\XE|EJE{+ ECET+ E{E;+ EYET]
—ix4[E7Ef—-EE*+ E{E - EZET] (14)
H® = = x ¥ [(ED(ED)' + (ED)(ED) + (EET)
+(E"E*)’ + E5(EX)’E;+ EC(EY)’E-
+ terms with reversed superscripts]
~kNY[AEJECETE*+ EJEJECE*+ EJETETEZ
+EE*EJE*+ EJ;EYE_ET+ ECETEJET (15)
+EE*E*E_+ ECE'EIE .+ E_EIETE"
+ terms with reversed superscripts]

i N2 2 _\2 2 _ 2

= ax Y [(ED)(ED) - (ED)(ET) + (ELED)
—(E-E*) + E;(E*) E;- EC(E*)’E-

+ terms with reversed superscripts]
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where we have introduced the following linear and nonlinear molecular
parameters (we neglect local field corrections):

N
xi = FRe (16)
L iNk,
Xi=— 3, M Pa (17)
w
v _ N
Xr = ERC[—YOMBB + 3‘yaﬁaﬁl (18)
v _ N
KR~ = TS“Re[ZB'meB + YHBaB] (19)
o Nk (1 1
Xat = =5 o1 Tueps ~ 30upas] — FREMaaypstars) (20)

The real and imaginary parts of the linear and nonlinear polarizabilities
are given in the case when the ground state of the molecule is nondegen-
erate by (A.38); in the case of even degeneracy by (A.42), (A.44), and
(A.48); and in the case of odd degeneracy by (A.46), (A.47), and (A.49).
The nonzero and independent components of the nonlinear polarizability
tensors Re y,4,5, Im 04,5, and Re m,5,154 Symmetrical with respect to
the time reversal are collected in Tables I-III for 102 magnetic point
groups of symmetry, whereas in Table IV the linear y%, x4 and nonlinear
xR, kN, x¥E molecular parameters are collected for 102 magnetic point
symmetry groups (Appendix B).

III. THE SOLUTION OF THE EQUATIONS OF MOTION
FOR THE FIELD OPERATORS

In quantum electrodynamics the field vectors (6) and (7) become operators
in the Hilbert space, and we have

EC(k) = i} c(wy)eV(K)dy, (21)

where c(w,) is the normalization factor, which, depending on the unit
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system, has the form

2mho in CGS
%
) ={ e @)
e in SI

where V is the quantization volume.

In Eq. (21) 4,, is the annihilation operator of a photon with the
momentum #k and the polarization A defined by the unit vector (k).
The photon annihilation and creation operators @,, and 4y, satisfy the
boson commutation rules

[ﬁk/\’ ‘ilf).] = Opedrn

. A (23)
[ak)\’ak/\] = [al_:)nak/\] =0

The unit vectors describing the polarization state of the field are, in

general, complex quantities and satisfy the orthonormality conditions

A A A —
egcu?* e;m' - 8076A)\' e;co)kcr =0 (24)

For a quasimonochromatic wave of frequency w propagating along the z
axis of the laboratory reference frame one can discard the summation over
k in Eq. (6) and, in view of (21), write

E(z,1) = ic(w)exp[ —i(wt — kz)] X eMa, (25)
A=1,2

where k = w/c is the value of the wave vector k.

The field (25) represents, in fact, a two-mode field, when it is a coherent
superposition of two modes with orthogonal polarizations. Usually, such
two modes can be replaced by a one mode of the field with elliptical
polarization

e,d =eVa, + e, (26)

where ef,‘) and e denote o components of the orthogonal unit polariza-
tion vectors e and e® associated with the modes @, and d,, and similarly
e, denotes o component of the polarization vector of the mode 4.

The transformation (26) can be interpreted as a decomposition of the
initially elliptically polarized light into two orthogonal modes. Taking into
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account the normalization conditions (24), we get from (26)

A s 4
d =efa, + eia, (27)

were
ef = kel o =t (28)

Assuming the two modes as linearly polarized along x and y we have
from (27)

(29)
where [212]

€y

cos m cos § — isin 7 sin @
, . (30)
e, = cossin @ + isinn cos 6
with # and n denoting the azimuth and ellipticity of the polarization
ellipse of the incoming light.

Analogously to the circular representation (8) of the polarization vector
we can introduce, according to (26) and (29), the circular basis for the field
operators:

1

a,=a,= —(a,-ia,)
2 (3
4y == = (a,+id,)

Both representations can be used to describe the interaction of the
elliptically polarized light with the medium. However, as has been shown
previously [73-75] the circular representation has a clear advantage over
the Cartesian representation because it allows for the simple operator
solution of the equations of motion in the propagator form.

The time evolution of the field operators is described by the Heisenberg
equations of motion:

JE)(r, 1)

i[E<i>(r 1), H] (32)
at ih T

For the free field the Hamiltonian H is the free Hamiltonian H, and the
solution to Eq. (32) is given by Eq. (6) describing the free (fast) evolution
of the field. When the interaction of the field with the medium comes into
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play, the Hamiltonian H in (32) contains, beside the free part Hp, also
the interaction part H,. In this case the solution to (32) is no longer the
free field (6), but an additional (slow) time dependence appears. This
additional time dependence, which is due to the interaction H,, reveals
itself in the fact that the amplitudes E *(k) given by Eq. (21) become time
dependent.

Usually, one considers the time evolution of a field that is confined in a
cavity of volume V. In our case, we deal instead with a field propagating in
a medium of a certain length z. So, instead of the time dependence, we
consider the length dependence of the propagating field. However, for
plane waves the transition from the cavity problem to the propagation
problem can be performed by replacing the time ¢ by z/c, where c is the
speed of light [208]. Recently, Blow et al. [213] have shown that the correct
treatment of the propagation processes requires the continuous-mode
description, instead of the discrete-mode description used here. Blow
et al. [214] have also shown that the exact solution of the quantum
self-phase modulation problem can be obtained within the continuous-
mode formalism. This new formalism allows us to avoid an anomalous
dependence on the size of the cavity that appears when the discrete-mode
formalism is applied to describe propagation effects. However, the essen-
tial features of the quantum propagation problem, such as the emergence
of photon antibunching and squeezing, can be revealed with the discrete-
mode formalism, and we keep using it here.

After the replacement ¢ — z/c, the Heisenberg equations of motion
(32) become equations describing the dependence of the operators for the
kth mode on z:

OE®)(k; z)

B (ks 2), H] (33)
iz ifc T

The next essential step is to write down the quantum form of the effective
interaction Hamiltonian, which for classical fields is given by Egs. (14) and
(15). We obtain the effective interaction Hamiltonian by inserting the
quantum form (25) of the field into (14) and (15) and taking the normal
order of the field operators in all terms. This leads us to the following
expressions for the interaction Hamiltonian:

H® = - gh(ata,+ara ) - igh(ata.—ata ) (39)
H® = - jep(a12%+ a0 ) - &tatata a,
: (35)

1
——Z—XQVL(&:%&— a*2a? )
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where we have introduced the notation

ik =c(o)’xk  xi=c(0)’x} (36)

~ 4 ~ 4
W= c(o) it RN = c(w) k)t

(37)

~ 4
Xat=c(o)'xi"

According to (33)—(35) we get the equation of motion for the field
annihilation operators (free evolution has been eliminated):

d i
—_h —_ -L+'-L+ 'NL+'~NL A4 A
dzai(z) hc{XR T X4 [XR T 1X4 ]ai(z)at(z) (38)

+iNtaL(2)d5(2) ) L (2)

Since djd, and d*d_ are constants of motion, Eq. (38) has an exact
solution in the form of the translation operator

a (z)= eXp{i[¢i(Z) +e,(2)a5(0)a . (0)

. A . (39
+5(z)a¢(0)a¢(0)]}ai(0)
where the notation is the following:
2 (el 4oL
¢.(z) = %(XR t 1XA)
z
L(2) = o (R £ 5407) )
z
8(z) %E,’,YL

Taking into account the fact that the component of the dipole polariza-
tion is by definition given by [211]

pro 22 41
© 9E” (41)

and that in the circular basis
(nzi— 1)E;= 411-P“; (42)

we get, in view of (34) and (35), for the refractive indices of the right and
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left circularly polarized waves

4qr
ni—-1= (@)’ {x,% +ixy + [X/}Q”“ + 1i§L]a;ai+ Kﬁ’La;a;} (43)
w

This gives us for the circular optical birefringence in the presence of
strong light the formula

4
n:—nt= oy {2@;5 + [xa" - &yt (ata,—ata.) )

Formula (44) is the quantum counterpart of the earlier obtained [215]
classical formula in which the first term denotes the natural optical activity
of the medium, the second term denotes the rotation of the polarization
ellipse induced by the strong field [203], and the third term denotes the
nonlinear change in optical activity caused by the strong field [198, 212,
216]. Taking into account (43) and (44), we rewrite the field (39) in the
form known from ellipsometry:

@, (z) = exp(ia £ i$)d .(0) (45)

where we have by definition

1w

a = 5:(n++ n_)z=a0+5a (46)
lw

d)=§:(n+— n_)=d¢,+ 8¢ (47)

where ¢ is the angle of rotation of the polarization ellipse after the field
passed the path z in the medium. In the absence of a strong ficld we have

ag = XK (48)

z
= —yt 49
b hCXA ( )
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while the changes due to the strong field are given by

Sa = %{[f’;}e\”‘ + EQL](ﬁIﬁﬁ dtﬁ_) + i);j’L(&:ﬁ; dfﬁ_)
0 = < {[qht - At (a2a.- a% ) 4 ig(atar a%a.)

If in particular the light wave is linearly polarized, we have (a,=a_

a/V2)

z

ba =[xk + kytla*a (52)
iz ~NLA+ A

6¢=2hCXAaa (53)

and we see that 8¢ appears only for media with nonlinear optical activity.

A word of caution should be added here. Since the quantum counter-
parts to the classical formulas describing nonlinear changes of the refrac-
tive index of the medium are extracted from the operator solution for the
field operators, and since the mean value of the product of two operators
is not the product of their mean values, these formulas cannot be treated
too seriously as the quantum expressions for the nonlinear refractive
index. They simply allow for the identification of particular contributions,
as in classical description, but in fact the complete solutions for the field
operators enter the experimentally measurable quantities, such as light
intensity, photon correlation functions, and field variances. This will be-
come clear in the next sections.

IV. PHOTON STATISTICS

Since in the isotropic medium described by the Hamiltonian given in (34)
and (35) the photon number operators 414, and d*d_ are constants of
motion (they commute with the Hamiltonian), any function of these
operators is also a constant of motion and, as a result, photon statistics of
the circular components of the field do not change in the course of
propagation. If the component before entering the nonlinear medium is,
say, in a coherent state with the Poissonian photon distribution, the
photon distribution of the beam outgoing from the medium will remain
Poissonian despite the fact that, as we show in the next section, the state
of the field is no longer the coherent state. So, if there are no sub-Poisso-
nian photon statistics of the incoming beam, there will be no sub-Poisso-
nian photon statistics in either circular component of the outgoing beam.
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However, one can easily check [74, 75] that the linear polarization is not
preserved during the propagation of quantum light through the nonlinear
isotropic medium and this leads to the sub-Poissonian photon statistics,
which is our subject in this section.

Let us take, for example, the component of the linear polarization
along the x axis. The photon number operator 4;d, of this component
does not commute with the interaction Hamiltonian, which means that the
photon statistics of this component can change due to the interaction with
the medium. Knowing the solutions (39) for the field operators d,(z) and
é_(2), for the circular components, we can use relation (31) to write down
corresponding solutions for the operators d,(z) and 4 (z). These solu-
tions allow us to find any characteristic for the polarization component x
or y outgoing from the medium if we know the state of the field at the
input. To choose one we can place a polarizer after the medium. Thus,
assuming that the incoming field is in the coherent state with elliptical
polarization defined by the azimuth 6 and the ellipticity 7, we get, for the
mean number of photons with the polarization x after the path z passed
by the light in the medium, the following expression:

(a7 (2)i(2)) = K[41(2) + aX(Dd(2) +d ()]
- %(|a+|2 + |a_|2) + Re{ata_ CXD[*i(<P+_ ¢-) (54)
+(eTIED _ Pla, P+ (77D — 1)Ia_l2]}
where
= _a_ + si -ig
a,= 7 (cosm +sinm)e
. | (55)
a = TE_(COS n — sinn) €'

and « is the eigenvalue of the annihilation operator of the incoming light
that we assume as being in the coherent state:

a(0) la) =a lay (56)
Thus, la|? = lae, |2+ |a_ |* is the mean number of photons of the
incoming field. The quantities ¢ .= ¢ ,(2), & ,= € ,(z), and 8 = 8(z) are
given by Eq. (40). To shorten the notation we shall omit the argument z.
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In view of (55), expression (54) can be rewritten in a slightly different
form:
. lal?
(df (2)d(2)) = T[l + cos 2m exp B cos(26 + C)] (57)

where
|| _
B =——(1 + sin2n)[cos(e,— 8) — 1]
2
al? (58)
+T(1 — sin2m)[cos(e_— 8) — 1]
|’ , :

C=—-(p,—9_) - ——2—(1 + sin27)sin(e,— 8)

|l | )

a
+ —2—(1 — sin2n)sin(e_— 8)

Formula (57) has been obtained with the effective use of the commutation
relations (23); that is, to obtain it we have taken into account the quantum
properties of the field. Just for reference, it is worth remembering that the
corresponding formula for classical fields reads

<é;(z)dx(z)>class
1
= 5(|a+|2 + Ia_lz) + Re{a’ia_ exp[—i(<p+— ®_)

—i(e,— 8)la, I” + i(e_— 8)la_I’]}
lal?
=N 1+ cos2ncos|20 — (¢,.—¢_)

al’ lal”
— -|—-2-|—-(1 + sin27n)(e,.— 8) + T(l —sin2n)(e_— 8)‘}

|
=N 1+ cos2mcos|20 — (¢,— @)

lal® lal?
—Tsm2n(s++ e_—28) — ——2—(e+— £_) (60)

In formula (60), as in formula (44) one can identify particular effects
related to the propagation of light in the nonlinear medium. Namely,
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@ ,— ¢_ describes the natural optical activity, & .+ &_— 28 describes the
rotation of the polarization ellipse induced by the strong light (because of
the sin 27 factor appearing in this term, the elliptical polarization of the
field is necessary to observe this effect), and &,— &_ describes the
nonlinear change in optical activity.

To make the difference between the quantum formula (57) and its
classical counterpart (60) more explicit, let us assume that the medium is
composed of optically inactive molecules; then, we have ¢ . — ¢_= 0 and
&, = &£_= &. Moreover, assume that the incoming field is linearly polarized
(n = 0) with the azimuth 6 = 7 /2, that is, perpendicularly to the ob-
served polarization component. In this case the classical formula (60) gives
zero, whereas the quantum formula (57) is different from zero because of
the exponential function appearing in it. This means that for quantum
fields during the propagation in the nonlinear isotropic medium, photons
with the polarization orthogonal to the polarization of the incoming field
will appear. In other words, in the nonlinear medium the linear polariza-
tion of the field is not preserved, an effect already discussed by Ritze [73].
The quantum effects in the polarization of light propagating in a Kerr
medium have been recently discussed in more detail by Tana$ and Gantsog
[217].

Now, we come back to the main topic of this section, that is, the
problem of sub-Poissonian photon statistics. To convince ourselves whether
the field outgoing from the nonlinear medium exhibits sub-Poissonian
photon statistics, we have to calculate the second-order correlation func-
tion (@} *(2)a%(z)). Applying the solutions (39), and assuming that the
incoming beam is in the coherent state |a), we arrive at

(a3%(2)a%(2)) = K [a1(2) +ax()][a.(2) +d_(2)])
= 3(lay 1 + a1 + 4o, Pla_1?)
+%Re<aiza2_ exp[ —2i(p.— ¢_) —i(e,—2_)

+(e72+ =D — 1) |a, | + (e3C-79 — D)]a_|*]

+2la, IPata_exp|—i(p,— ¢_) — i(s,— 8)

£ — Dla, * + (@7 = Dia_I]

+2la_*a*a, exp[+i(<p+— o ) —i(e_—8)

(€D = Dlay | + €7~ Dla_I*])
(61)

where a, and a_ are given by (55).
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Light is said to exhibit sub-Poissonian photon statistics if

(a}%(2)a(2)) {4} (2)a,(2))* <0 (62)

Expression (61) is quite complicated and it is not easy to say without
numerical analysis whether condition (62) can be satisfied. Usually, the
normalized second-order correlation function is considered; it is defined
by the relation

) ~2
g(Z)(z) — <‘ix (Z)Aax(z»z (63)
(a7 (2)d(z))
and condition (62) can then be written as
g@(z)-1<0 (64)

Another measure of the sub-Poissonian photon statistics is the g
parameter introduced by Mandel [41] and defined as

)
q= M - 1=[g(2) - 1[(ara,) (65)
(A)
Negative values of the parameter g denote sub-Poissonian photon statis-
tics, and the limit ¢ = —1 is reached for number states without photon
number fluctuations.

In Fig. 1 we plot both g@(z) — 1 and ¢(z) against (¢ — 8)|al|* for a
medium containing optically inactive molecules, and for the elliptical
polarization of the incoming light with n = 7/8 and 8 = —= /4. Both
functions show oscillatory behavior with both negative and positive values.
Negative values of these functions mean the sub-Poissonian photon statis-
tics of the x component of the outgoing field. For optically nonactive
molecules they depend only on the molecular parameter 7 (w),

2Nz

&(2) = 8(2) = = 2 —7(w) (66)

which in Fig. 1 we have assumed as equal to 1 X 1076, according to the
estimation made by Ritze and Bandilla [71]. To get values of (¢ — &)lal?
of the order of unity, a field is needed with the mean number of photons
la)? = 10°. From Fig. 1 it is seen that the values of g@(z) — 1 obtained in
this process are rather small—of the order ¢ — 6. However, the g param-
eter reaches the value —0.63, which means considerable narrowing of the
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Figure 1. Plots of g@(2) — 1 (scaled in units 1 X 107°) and g(z) against the scaled
intensity of light {e(z) - 5(2))|«|?, assuming that e(z) — 8(z) = 1 X 10~ 6 9= —a/4, and
n=m/8.

photon number distribution for strong fields. If the value ¢ = —1 means
100% reduction of the photon number fluctuations, a 63% reduction can
be obtained in the propagation process considered here. The possibility to
get sub-Poissonian photon statistics in this process was predicted by Tana$
and Kielich [72] with the perturbative method, and confirmed by Ritze
[73], who obtained exact solutions to the problem.

For optically active molecules, ¢ ,— ¢ ,# 0 and e, —&_+# 0, the gen-
eral form of the solutions given by (57) and (61) must be used. If, however,
#,(w) = 0, then the solutions simplify considerably, because

Nz
e,—8=—(e_—9) =i—h—c—[o"2(w) +d(w)] =0 (67)

We obtain, in this case,

2

(8} (2)d (2)) = {1 + cos2n exp[la! (coso — 1)] (68)

Xcos[20 —(p,— @) — la|? sin 0']}

|arf® 1 1
(a7%(z)a%(2)) = e { + Ecos2 2n + Ecos2 2nexp D cos E
(69)

+2cos2nexp F cos G}
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where

\D = |a|2(00820 - 1)
E=40 -2(¢,—¢_) — 20 — lal*sin2c

(e:—9-) (70)
F = Ialz(coso -1)

G=20-(¢,—¢.)—0o— la)’sinc
Expressions (68)-(70) depend upon two molecular parameters:

iNz _ q iNz (6 . ]
—Qp_=— an o= —|o(w) + oz(w
P @ he p he (@) 3(@)
describing the natural and nonlinear optical activity.

All the expressions derived here are valid for arbitrary polarization of
the incoming beam defined by the parameters 6 and 7. It is interesting to
note that for the circular polarization of entering light ( = +m7/4) we
have

I 2

la
(a7 (2)a (2)) = —-
. (71)
(a%(2)d}(2) = '—";L

which means g%(z) — 1 = 0. This result is not surprising in view of our
earlier discussion concerning the photon statistics of circular components
of light propagating in a Kerr medium. In fact, it confirms our statement
that the photon statistics of such light do not change during the propaga-
tion. The polarizer choosing the component x only reduces the intensity
of the beam to one-half of the incoming intensity, but its statistics remain
unchanged. Any deviation from the circular polarization of the incoming
light will cause, as is easy to check, changes in the photon statistics of light
propagating in the medium.

V. SQUEEZING

The fact that the photon statistics of elliptically polarized light do not
change when the light propagates through the isotropic nonlinear medium
does not mean that the state of the field does not change during such
interaction. It turns out that the field can become squeezed as a result of
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such interaction; that is, it can be in a squeezed state, which has no
classical analog and requires quantum mterpretatlon To show this, we
introduce two Hermitian field operators Q and P defined as [41, 193]

Q,=a,+ar P = —i(a,—a}) (72)

where o denotes +(=) in the circular basis or x(y) in the Cartesian basis.
The operators Q, and P, satisfy the commutation rules

0,,P | =2is,, (73)
[0, %, ]

A squeezed state of the electromagnetlc ﬁeld is defined [195] as a state
of the field in which the variance of Q or P is smaller than unity

(a0,))<1 or {(AB))<1 (74)

where AQU =0, - (QU). On introducing the normal order of the cre-
ation and annihilation operators, definition (74) can be rewritten in the
form [41]

(:(a0,):)<0 or (:(AB):)<0 (75)

To calculate the quantities occurring in definition (75) for the process of
light propagation in the nonlinear medium considered here, it suffices to
insert into (75) the operator solutions (39) and next calculate the expecta-
tion value in the initial state of the field, which we assume to be the
coherent state |a) defined by (56). If one of the normally ordered
variances appears to be negative, then the corresponding component of
the field is in a squeezed state, which has no classical analog. Our
calculations give for the normally ordered variances of the resulting field
the following expressions:

([80.(2)]%)
= (ilau(2) + aL()])) ~(a.(2) +aL(2)’
— 2Re{a? exp2ip, + &+ (M e Dla, I* + (€3 = Dlagl’
—a? exp[2ig ,+ 2(c* s~ D)la, > + 2(e® — Dlaz 1]}

+ 2|ai|2{1 - exp[2(cossi— Dla, > + 2(cos & — 1)Ia¢|2]}
(76)
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where a, are given by (55), while P.= ¢ ,(2), e = &(2), and 6 = 8(2)
are given by (40). For the operators P, we get

([aPu(a)]5)= <2Re( ) 420,y ()

where the expressions in the braces are the same as in (76).
Especially interesting is the case of circularly polarized incoming field,
“because photon statistics of such a field do not change. Let us assume that
the incoming beam is circularly polarized with n = 7 /4 and 6 = 0. Then
le . 12 = |a|? la_ |*> = 0, and formula (76) takes the much simpler form

<:[AQ+(2)]2:> = 2|a|2{exp[|a|2(00528+— 1)]cos(<p++ £+ |a|28in2s+)
—exp[2|a|2(cos £,= 1)]cos(q>++ 2]al? sin g+)}

+ ZIaIZ{l - exp[ZIalZ(cos £, 1)]} (78)

Similarly (77) goes over into

([aB)))= —2lal’ o) + 20l (1)

with the contents of the braces the same as in (78).

Assuming the initial phase ¢, so that ¢ .+ ¢, = 0, and assuming the
value £,(z) =1 X 1075, similarly as for the photon statistics case, we
have plotted in Fig. 2 expressions (78) and (79) as functions of ¢, la|? Tt
is seen that the normally ordered variances (78) and (79) exhibit oscillatory
behavior on €, la|?, taking both positive and negative values. Whenever
one of the varAiances takes negative values, the corresponding component
of the field Q,(z) or P,(z) is said to be squeezed. This means that
despite the Poissonian photon statistics, the field can be in a squeezed
state. It is also worth noting that the values of squeezing possible in the
pAropagatiqn process are quite large. With our definition of the operators
Q. and P, the value allowed by quantum mechanics for (78) or (79) is
minus unity, which means no quantum fluctuations in the corresponding
component of the field. It is seen from Fig. 2 that the first minimum of
CIAQ, (2)F%:) has a value of —0.66, while the second minimum already
has a value of —0.97, which means 97% of the value allowed by quantum
mechanics. This result can even be improved by tuning the initial phase ¢,
[75]; this means a reduction of the quantum fluctuations in the field by two
orders of magnitude with respect to the fluctuations in the vacuum (or a
coherent state). The first minimum of (:[AP +(2)I%) has a value of —0.92,
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which also means a considerable reduction of quantum fluctuations. Ex-
pressions (78) and (79) after corresponding changes of the variables
become identical to the results obtained for the anharmonic oscillator [49].

For the x component of the polarization of the incoming beam, we get
for the normally ordered variances the following formulas:

([a0u=)]*:)
= (a2) + a1 (2)]%) —(a.(2) +ax(2)°
= H{{:lau(2) +a_(2) +ai(z) +az(2)]*)
~(a,(2) +ad_(2) +al(2) +a(2)")

Rc{c«z+ exp[2icp++ ie, +(e¥— Dla, |” + (e¥® = 1)]a_ l2]

i

—a? exp[2i¢>++ 2(e*+— 1)l |* + 2(e - l)la_IZ]
+a? exp[2i<p_+ ie_+(e¥-— ]a_|* + (e¥° - 1)Ia+|2]
—a? exp[2igo_+ 2(e'-— )la_|* + 2(e® - 1)|a+|2]
+2a,a_ exp[i(qo++ o_+8) + (el — 1)|a+|2
+(e-" — Dla_I?] (80
—2a,a_epli(e,+ @) + (€0t e = 2la, |’
+ (el -+ el — 2)|a_|2]}
+{Ia+|2 - |a+lzexp[2(cos £,— 1)|a+|2 + 2(cos & — 1)|a_|2]
tla_|* - Ia_lzexp[Z(cos e_— Dla_|*+ 2(cos 6 — 1)|a+|2]
+2Re[aﬁa_ exp[—i(go+— @_) + (e — Dla,|?
+(eit-—0) — 1)|a_|2]
—ata_ exp[—i(<p+— o )+ (e r+ el — la,?
+(el*-+ e — 2)|a_|2”}

and for the other component we have

([aP(2)])" )= ~Re{---) +{ ) (81)

with the contents of the braces the same as in (80).
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Figure 2. Plots of the normally ordered field variances <:[AQ+(Z)]2:> and (:[Aﬁ+(z)]2:)
against the scaled intensity of light e+(z)|a|2, assuming that £,(z) =1x 1075 =0,
¢+ @y=0,and n =w/4

Expressions (80) and (81) are exact. They are, however, very compli-
cated and only numerical analysis allows us to give a definite answer to
whether the field is squeezed or not. They can be considerably simplified
under certain assumptions concerning the polarization of the field and the
character of the medium.

For optically inactive molecules detailed analysis of (80) and (81) has
been carried out [74, 75], showing that the components Qx(z) and st(z)
can also become squeezed after passing through the nonlinear medium.
The EnaximumA values of squeezing for these components are the same as
for O, and P_, although the minima can appear for different values of
the field intensity. It is also interesting that for linear polarization of the
incoming field perpendicular to the measured polarization (8 = 7 /2), the
outgoing field, which is completely quantum in nature, can also show
squeezing.

For optically active molecules, expressions (80) and (81) in their ex-
tended form must be used. However, as a rule the tensors describing the
nonlinear optical activity have orders of magnitude smaller values than the
tensors y;;,(w), and in practice £,~ ¢_. Thus, in most cases one can
neglect contributions from the nonlinear optical activity, which would be
essential only if the result were a function of the difference €, — ¢ _.

The mechanism of producing squeezed states described in this chapter
is universal in the sense that it takes place for any molecules or atoms
including those with spherical symmetry.
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VI. CONCLUSIONS

The subject of this chapter was the problem of producing quantum fields
that have no classical analogs in the process of propagation of strong light
in a nonlinear Kerr-like medium. The possibility of appearance of two
nonclassical effects such as sub-Poissonian photon statistics and squeezing
was discussed in detail. We showed that both effects can be produced in
corresponding components of the field. Thus, the process of propagation
of light in isotropic media can be a source of nonclassical fields. Despite
the small values of &(z) — 8(z) for real physical situations, the value of
the g parameter measuring the sub-Poissonian character of the photon
number distribution can be reduced to —0.63 for strong fields which is
63% of the limit allowed by quantum mechanics.

The process discussed turns out to be even more effective in producing
squeezed states of the field. In this way one can get more than 97% of
squeezing. The effect of squeezing also occurs for circularly polarized
light, for which there is no change in photon statistics. This means that the
squeezed states can exist with Poissonian photon statistics, which is
characteristic for coherent states of the field. Our considerations show
explicitly the difference between sub-Poissonian photon statistics and
squeezing. The form of solutions (39) for the field operators, which is as a
matter of fact nonlinear phase modulation, lead to squeezing of the field
states, while the number of photons @*d ,(4*a_), which does not depend
on the phase, does not change. To get sub-Poissonian photon statistics, a
nonlinear change in the number of photons is needed. It can be achieved
for the x and y components of the field for which the number of photons
dfaa;a,) does change due to the interaction.

We would like to emphasize the fact that our solutions are exact
analytical solutions, which is rather exceptional for this type of problems,
and this fact is worthy of attention on its own right. We have referred to
the process of squeezing that occurs during the propagation of light in a
nonlinear medium as self-squeezing [74, 75]. This is the field itself that
causes squeezing of its own quantum fluctuations. The effect of self-
squeezing accompanies to a certain degree all other nonlinear processes.
In recent years experimental and theoretical studies of nonlinear optical
activity have been developed [76, 162, 215, 218].

Squeezing is an effect that depends on the phase of the field, and it is
interesting to study the quantum phase properties of the field. Quite
recently, since Pegg and Barnett [219] introduced the Hermitian phase
formalism, considerable progress has been achieved in studies of phase
properties of optical fields. For fields propagating in a Kerr medium such
results have been reported by Gantsog and Tana$ [220, 221]. It turned out
also that the problem of propagation has exact analytical solutions even
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when the linear dissipation is included [222]; thus, the quantum phase
properties of light propagating in a Kerr medium with dissipation have
also been studied [223, 224]. The quantum phase properties of optical
fields, however, are beyond the scope of this work, and require separate
treatment.

APPENDIX A

Restricting our considerations to weak spatial dispersion and omitting in
(6) summation over k, the linear H®/N and nonlinear H{* /N interac-
tion Hamiltonians of the microsystem (atom, molecule) with the electro-
magnetic field can be written as (in SI units)

H®/N = —[H(-w; 0) + H(w;— )] (A1)
H®/N=—[H(-0; ~0,0,0) + H{(-0;0,— 0, »)
+H(-w;0,0,~0) + Ho;0,—0,— w) (A2)
+H(w;~ 0, 0,—w) + Hw;— v,— w,w)]
where
H(-w;w) = %{aij(—w;w)E,-_E;’
+%[77i(jk)(_w;w)Ei_VkEj+ + Niryi (— @ w)(VkEi_)Ei+]
+p;;(—w; W) E7B + A(—w;0)B7Ef} + he.  (A3)
H(-w;— 0,0,0) = %{yﬁkl( —w - 0,0, w)Ei_Ej_E,:”E,+
+%[nijk(,m)( —w;—w,0,0)E ETESV, E
+ijemy( — @3~ @, 0, 0) EFET (V, EF ) E
N mui( — 03— 0,0, 0)E7(V,E7)ESE]
gyt — 03— @, 0, ©) (Y, ET)ETEFE}
+piju(—0;— 0,0, w)ETE E/B;
+Ku(—w;— 0,0, 0)E E7BE]
+0o(~w;— 0,0, 0)E Bl EJE]
A —w;— w,w,w)B,-“Ej_E,jEfr} + h.c.
(A4)
with
Ef=E*(r,t) B*=B*(r,t) (AS5)
and
E*(r,t) = E¥(k)exp[ti(k - r — wt)] (A.6)
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The last relation is the result of restricting the summations over k in (6) to
one term with definite k; that is, we consider a one-mode field.

A characteristic feature of the linear and nonlinear response of the
medium to a force oscillating with the frequency o is its dependence on w,
which is referred to as time dispersion. Accordingly, in the case of an
optical force the Hamiltonians (3) and (4) should depend on the time
dispersion. This dependence enters the Hamiltonians via the coupling
constants, i.e., the linear and nonlinear and electric and magnetic polariz-
abilities of the molecules. The linear and nonlinear and electric and
magnetic polarizabilities for an individual molecule obtained according to
quantum mechanical formulas can be found in Refs. 206, 207, and 225 and
are given by the formulas

(TpIMP|Of )} OfIMP | ¥p)

Pyvy ~
AxXP(-wiw) = —= L

B ofewp 0+ 0y
N (UpIMP|Df D FIMP|¥p)
—w + Wy

s{(M@, MP], MO, ME])pyy (A7)

(a) (b,c,d) —
A XBCD () 314
X ) (Up|Fopnimal ¥p?
Of,Al, Tu#¥p
M@ D £ D FIMPIADAIME | Tu){Tu|M
F<I>fAITu =

(0 + 0gy) (20 + wpg )@ + 01y)
M(A“’I<I>f)<<Df|M(CC)|Al)<Al|M(,§’)|’I‘u)(TuIM(g)
(@0 + 0gy)ory(@ + ©ry)

MP|®f M DFIMEO|AD(AIME | Tu){ Tu|M§
(0 + wgy)0py(—@ + Org)
MDD f WD FIMP|ALAIMEP | Tu){ Tu|ME

(—w + opy)opg(® + ory)

(A.8)
MO|D £ (D FIMP A AIME | Tu){ Tu|M§

(—o + ogpg)op(—0 + ory)
MO B FH(DFIMPIADAIMEP | Tu ) TulME

(—0 + 0py)(—20 + 0yg)(—0 + 0ry)
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where S{IM{P, M), MO, M@]} is the operator denoting summation
over the permutations of the elements contained in the square brackets,
and we have for the linear polarizabilities

1
a;(~o; w) =(€)Xe(zli)j( —w;0)

1
pij(—w; w) =(e)X£rR‘j( —w; )

Ai(—w;0) =¥ (-0 0) (A.9)

1
Nigio( —@; ©) =@ x2 0 (—w; 0)

. _@ .
n(ik)j( —w;w) =% Xgl()ik)j( —w; )

and for the nonlinear polarizabilities

e _M ALy
Yi(— 03— 0, 0,0) = x i —0;— 0, 0,0)

. =D a1y ¢
pifkl(—w’_w’w’w) _exeemijkl( w, w,a),w)

(1,1,1)

(_ . )=(1) e a))
Kijpi\ —0;— 0, 0, 0 e Xemeijki\ 0, W, @,

. _M_a,1,1 .
‘E‘jkl("":_ w,0,0) =" Xr(neeijl)cl(—w’_ w,0,)

M, 1,1,1)

Aijkl(—w;—w’w’w) mXeeeijkt(_“’§"wawa“’) (A.10)

o _M 1,1, o
Tlijk(lm)( w, w’w’w)—ext(zeeijk(lm)( W~ 0,0, )

oy — ~ 1,2, e —
nij(km)l( @; w’w’w)_exgeeij(km)l( w, w,waw)

. M _e1,1 e
ni(jm)kl(_w> w7w’(‘))_e/\/¢(zeei(jr)n)kl( 0~ ®,0,0)

. —@_a,1,1 e —
Namyt{ =03 = @, 0, ©) = X oo Gt — 03— 0, 0, 0)

Expressions (A.7) and (A.8) are the quantum mechanical formulas for the
linear and nonlinear polarizabilities of the microsystem being in one of the
stationary states of the f-fold degenerate energy level with the energy
hwy. This state, |[¥f ), is defined by the quantum numbers ¥ labeling the
energy levels of the microsystem and the quantum numbers f labeling the
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states belonging to the level ¥. Moreover, pyy denotes the expectation
value of the unperturbed density matrix in the state |¥) (the probability
that the microsystem is in the stationary state |¥)), w,y = 04 — Wy is
the transition frequency between the levels ¢ and ¥, and M{® is the
operator of the multipolar electric (A = e) or magnetic (4 = m) moment
of the order a.

From definitions (A.7) and (A.8) one can easily show that

@) _(b) . % _(a) _(b) .
X (—w;0)* =" xp(0;— )
(A.11)
—(a)

(a) b,c,d .
Axsep (w0, — 0,— w) ,

b,c,dy _ . .__ *
XG5 N —wi— w0, 0,0)

It is also easy to check that the polarizabilities are invariant with respect to
the following permutations:

(a)x(b c, d)( 0, — ©,, w) (a)x(c b, d)( w,— w,w, w)

=@ (d,c b .
=4X5e"(~ 05 0, 0,~ ©)

—ONBLO(—— v, 0, 0) (A.12)

_®)(a, <, d)

XU ~wi— v, 0,0)

_ () ,d, .
= BX(,?DCC)( —0;— w,w,w)

which allows us to replace the polarizabilities (% x%:5™(—w; 0, ~ w, ®)

occurring in H(—w, w,— w, ), and the polarizabilities ﬁ‘j}x‘b 2N —w; o,

® — w) occurring in H(—w; 0, @, — ) with x5 - w; — 0, », ©) and
“AaXc

X5~ w0~ @, 0, w), respectively. This means the same frequency
dependence that is, (—w;— w, w, w), as in H{—w;— 0, ©, ). Similarly,
the polarizabilities occurring in H(w;— o, 0,— ) and H(w;— w,— 0, )
can be replaced with those occurring in H(w; ©,— 0,— o).

The symmetry properties (A.12) allow for the reduction of the number
of the coupling constants occurring in (A.2) from six to two types, and
(A.11) allows us to replace the coupling constants of the type
X w; 0, — w,— @) with x%3(~w;~ 0, ®, ), which reduces

the problem to one type of the coupling only.
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Generally, the linear and nonlinear polarizabilities are complex quanti-
ties and can be written in the form

OO —@; 0) =P (—w; 0) +iDXP"(~w;0) (A13)

GG ~w;— 0, 0,0) =NEG(~0;- 0, 0,0) (A.14)
(0 0,0,0)
where
OXP(~w; ®) = Re “UxP(-w; w) (A.15)
DD —w; ) = Im QX (—w; w) (A.16)

and similarly for (x5 (—w;— @, @, ) and XL (0~ 0, 0, 0).

Applying (A.7) and (A.8) we can obtain quantum mechanical expres-
sions for the real and imaginary parts of the linear and nonlinear polariz-
abilities, which allows us to check the following additional permutation
relations [226-228]:

b
ﬁ:a)/\’%bi);~ ,,,( w;0) ()Xﬁf,)'] j,,il-“i,,(—w;w) (A-17)

b
iia)Xfabi)l"---iaj,---j,,(_wa) = ()X,(:Z,” jbi,<--ia(“‘";w) (A.18)

(@ _(b,c,d)r e
AXBCDi1~--iaj1--~jbkl---kcl,~~~ld( w;—w,0,0)

(A.19)
() . (d,a,b) —y)t —
- CX(DA%kl)"'kcll s lgiy e dgiy o G T @ w,w,®)
(@) (b,c,d)! — e —
A XE;CE,-I)‘.’. igdy o dpky o kdy e ld( W, W,w, w)
(A.20)
_ () L(d.a,b o
= CX(DA%kl)""'kcll"'ldil"'iafl A W, (1),(0,(1))
Above, the indices i, - - i, label the components of the operator M of

the electric (A4 = e) or magnetic (A = m) multipole moment of order a,
which is a tensor of rank a having the following form in the Cartesian
frame (z, y, z):

M{P =e, ---eMP ., (A21)
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where the indices i, can take the values x, y, and z for p=1,...,a,
whereas e, represents the unit vector along the i, axis of the frame

(z,y,2). If A=e then M{® is a polar tensor, which is symmetric with
respect to the a! permutations of the indices i...i,; if A = m then M \”
is an axial tensor symmetric with respect to the (¢ — 1)! permutations of
the indices i,...i,. The indices with respect to which the tensor is
invariant are separated in (A.3) and (A.4) by the parentheses.

Acting with the time reversal operator R on the quantum mechanical
expressions defining the real and imaginary parts of the linear as well as
nonlinear polarizability, it is easy to check that

Re a;;(—w; w) Im p;;(—w; w)
Im A (—w; 0)
Re 1) —w; @) Re 7 (—w; )
Re y,(—w;— 0,0, 0)
(A.22)
Re 0jpim( —@;— @, 0, ®) Re 0jjgpmu( — 03— @, 0, w)
Re ni(jm)kl(_w;_w’w’w) Re n(im)jkz(—w;—w,w,w)
Imp, ;) (—0;— 0, 0,0) Imk;jp(—w;— 0,0, )
Im g, (—0;— 0, 0,0) Im A (—0;— 0, 0,0)

are invariant with respect to the time reversal [229], and the remaining
expressions change their sign under time reversal.

One of the postulates of quantum mechanics is the invariance of
the Schrddinger equation with respect to the time-reversal operation
R [229]. This postulate implies that if the function ¥ is a solution of the
Schrédinger equation, then the function ¥’ = R is also a solution of this
equation with the same energy Ey = Epy. A physical quantity O is
invariant with respect to the time reversal if its value is the same in ¥ and
RV, and it is antisymmetrical if the two values differ in sign. Of course,
the relation R¥ = ¥ rules out the quantities antisymmetrical with respect
to the time reversal. ’

Assuming that the microsystems are freely oriented, we can average
(A.1) and (A.2) over all orientations of the microsystems. Performing such
averaging according to (9)-(12) and applying (7) as well as the permutation
relations (A.11)-(A.12), the linear H® /N and nonlinear H{¥/N interac-
tion Hamiltonians describing the interaction of the microsystem with the
electromagnetic field take, in the circular polarization basis (8), the follow-
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ing forms:

(H®/N)o = —3xk|ETEt+ ECE*+ EIE*+ E*ET]
(A.23)

——XA[E Et— EE*+ EYE;— E*EZ]
(HO/N)o = = Sx ¥ (BT (ED)? + (ED)X(EL:
+(EYTEY) + (EZE*®)®
+terms with reversed superscripts]

— SN E7(ED) Es+ EZ(E*)E7]

~ SN [ET(ETY ET+ EX(ET)EY|
—skNE|EJEZETET+ (EJETEYE*+ ECEYELEY
+EJE'ETEI+ ETEJETEY) (A24)
+terms with reversed superscripts]
—%KkR-|EJE{E*E_+ ECETEIE7
+EJEXEJE_+ ECEJE'EZ]
— kN *[EIEJE_E*+ E*EEJEZ
+E{E_E{E*+ EYEEZEY]
~ xR (BT (ED)® - (ED)X(E®)®
+(EZE*)* - (EZE*)?
+EZ(EY) E;— EZ(E*)’E-

+terms with reversed superscripts]
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where
Xk =3Re gy (—w; @) (A25)
LT A26
X4 = 3w mpaa( w’w) ( ) )
XRE = TRe[ = Yoapp( — 03— 0,0, 0) + 3opep( — 05— @, 0, 0)]

(A27)

Xgl‘ = %[_‘Yaaﬂﬂ(_w" w, w, w) + 3’)’0,5“,3(—(1);'— w,w, w)] (A.28)

B = AR 01— 0,0, @) + Vagua( —03— @, 0,0)] (A29)
KRE = 15 [3Vaapp(— 03— @, 0, 0) + YVopp(—0i— 0, 0, ©)] (A.30)
idk, (1
XA' =3 {Zlm[%aﬁﬂ(—w;— ©,0,0) = 30pep(—0;= 0,0, 0)]
- %Re na(ﬂy)ﬁﬁ( -0 0, w0, w)eayﬁ } (A31)
and
E = E(k) (A.32)

The total interaction Hamiltonian describing the interaction of the optical
field with an ensemble of N microsystems confined in the unit volume is,
according to (1) and (2), equal to

H=H®+H®+ - = Y HEm (A.33)
n=1
where
N
HED = T (HEO/N) (A34)
p=1

and the summation runs over all microsystems.

Let us assume that the microsystems are identical. In this case the
summation over p simplifies considerably, and it becomes trivial if the
ground state of the microsystem is nondegenerate. For the nondegenerate
case, we have

RY =¥ (A.35)
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which implies vanishing of the polarizabilities antisymmetrical with respect
to the time reversal, and we have

XRE = xR = xr" (A.36)
RR" = RR" = k" (A.37)

where the summation over p reduces to the multiplication of the parame-
ters (A.25)—(A.31) over N, which leads to (14)—(20) with the molecular
constants:

Ree,, = Rea, (—w;w0)

Imp,, =Imp,(~-o;)
Re Y,5y5 = Re Yapyo( 05— @, 0, @) (A.38)
Imo,g,; =Imo,,(-—0;— 0, 0,)

Re no(gy)ps = RE Ny(pyyps( — 05~ 0, 0, 0)

If the ground state ¥ of the microsystem is 2u-fold degenerate and the
states are labeled by the indices f = 1,2,..., u associated with the partic-
ular wave functions in such a way that

RYf = ¥(2f) (A.39)

then, according to quantum mechanics, the probability of finding a mi-
crosystem in any state of the s-fold degenerate level ¥ is the same for all
states and equal to pgy. This means that for a large number N of
identical microsystems in the unit volume, in each state of the s-fold
degenerate level ¥ will be the same number of microsystems, equal to
(N/s)pyy- In our case this number will be equal to N/2u because we
have already incorporated py.y into (A.7 and (A.8) defining the linear and
nonlinear polarizabilities. As a result, the summation over p can be
replaced by the summation over the states of the 2u-fold degenerate
level ¥

N
Z Yaﬁyﬁ( W W, 0, w)

p=1

N u
= u Z [‘Yaﬂya(_w;_ w{w’ w)\l’f + yaﬁya(_w;_ w, wyw)‘I’(Zf)]
F=1

(A.40)
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where the first term is the nonlinear polarizability in the state ¥f, and the
second term is in the state W(2f); the polarizabilities are complex quanti-
ties. Keeping in mind the fact that the polarizabilities symmetrical with
respect to the time reversal are the same in the states ¥f and v(2f) =

RYf, while antisymmetrical differ in sign, in view of (A.40), (A.10), (A.14),
and (A.22), we have

N

Y Yapys(—@;— @, 0, @) = N Re v,p, (A41)
r=1

where the mean polarizability is given by
1 u
Re ¥upys = u Z Re 'Yaﬁya( —W;— ©,0,0)yf (A42)
f=1
Similarly, we get
N
Z Uaﬂyﬁ(—w;— w, w, (0) =iNIm UaB‘y& (A.43)
p=1
where
1 «
Imo,g,s = — Y Im Uaﬁya(—w;—w,w,w)\yf (A.44)
u
f=1

In the case of odd, 2Qu + 1)-fold, degeneracy of the level ¥, we assume
additionally that for at least one state, say, W0, the following relation is
satisfied:

RY0 =70 (A45)

and for the remaining states (A.39) holds. As a result of (A.45) the
polarizability antisymmetrical with respect to the time reversal vanishes in
the state ¥. In a similar way as before, in place of (A.42) and (A.44),
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we get
Re Yapys = n+1 [Re yaﬂys(—w;— W, 0, 0)yg
; (A.46)
+2 ) Re Yaﬂya( -w;—w,w, w)\yf]
f=1
Im UaByB = 2u + 1 Im Uaﬁyﬁ(_w;— w’w7w)‘1’0
(A47)

u
+2 Z Im Uaﬁyb‘( —w;— 0, o, gu)q,f}
f=1

Using (A.41)-(A.47), we can perform the summation over p in (A.34). For
both even and odd degeneracies, H{® and H® are still described by (14)
and (15) with the molecular parameters (16)—(20), which for even degen-
eracies are given by

1 u
Rea,, = — Z Re a, (—w;w)ws
U
1 u
Imp,, =~ Y Impy(~w; 00) vy (A.48)

\
Il
-

S| =
M=

Re nopy05 = Re 1,8y)85( —@0;— 0, 0, 0) vy

\
Il
—_

whereas Re v,,4, and Re v,,,,4 are defined by (A.42), and Im Opapp and
Im o,,,4 are defined by (A.44). For odd degeneracies the parameters are
given by

1

R =
€% = T

Re aaa(_w; w)‘l’O

+2 Z Re a,,(—w; w)ys
=1

u
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1
2u + 1

Im Poa ™ Im paa(—w;w)‘l'()

(A.49)

+2 ) Imp,,(—w; w)w]
f=1

Re Nagyps = 5,77 | RC Nagpyyps — @3~ ©, 0, ®) o

173
+2 Z Re na(By)BS( —w;— 0,0, (!))\pf]
f=1

while Re v,,55 and Re y,4,4 are defined by (A.46), and Im o,,g, and
Im g5, are define by (A.47).

Taking into account (A.38), (A.42), (A.44), and (A.46)—(A.49) defining
the nonlinear molecular polarizabilities for both the nondegenerate and
degenerate electronic states and (A.10) and (A.14)—(A.16), one can check

that Re y,g,5 Im 0,45 and Re n,;,)50 have the same permutation

D_,1, . b1 .
slymmetry as Px, By~ 0 — 0, 0, ), D xLt apys—@;— @, 0, 0), and
M XEAD so(—w;— 0, w, ®), respectively. This symmetry can be found

from (A.12), (A.19), and (A.20).

APPENDIX B

In Appendix A we showed that the tensor Re vy, is invariant with
respect to the permutations of the indices « and B as well as y and &, and
also with respect to the permutations of the pairs of indices @B and vyé.
The tensor Im o,,,; defining the nonlinear molecular parameter x4E is
invariant under the permutation y and 8, and the tensor Re 7,54 18
symmetric with respect to the permutations & and ¢ as well as 8 and y (B
and vy are associated with the electric quadrupole operator).

To find the molecular parameters x%, x5, x¥%, «¥F, and x4* for the
molecules with a definite molecular symmetry one has to know the explicit
form of the polarizability tensors Re v,4,5 Im 0,55 and Re 1,.y)s54-
Applying the group theory methods [230, 228] the components of the
tensors have been found for 102 magnetic point groups, and the results are
presented in Tables I-1II. The molecular parameters x5, x5, XR > K& >
and x4 for all these symmetry groups are collected in Table IV.
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TABLE I

Fourth-Rank Polar i-tensor Re y,g,5 for 102 Magnetic Point Groups

Magnetic Point Group N I Form of the i-tensor Re v,4,,; hd
I,T,z 81 21 a, = 1111, 2222, 3333,
1122 = 2211, 1133 = 3311, 2233 = 3322,
1212 = 1221 = 2121 = 2112,1313 = 1331 = 3131 = 31158,
2323 = 2332 = 3232 = 3223
by = 1112 = 1121 = 1211 = 2111, 2221 = 2212 = 2122 = 1222,
1233 = 2133 = 3312 = 3321,
1323 = 1332 = 3123 = 3132 = 2313 = 2331 = 3213 = 3231
¢y = 1113 = 1131 = 1311 = 3111, 3331 = 3313 = 3133 = 1333,
1322 = 3122 = 2213 = 2231,
1232 = 1223 = 2132 = 2123 = 3212 = 2312 = 3221 = 2321,
2223 = 2232 = 2322 = 3222,3332 = 3323 = 3233 = 2333,
2311 = 3211 = 1123 = 1132,
2131 = 2113 = 1231 = 1213 = 3121 = 1321 = 3112 = 1312
2,2, m,m, 2/m,g/m, 41 13 ag, by
2/m;2/m
222, 82, mm?2, @2, 21 9 a;
2mm, mmm, mmm,
mmm, mmm
4,&,2,%,4/m,i/m, 29 7 dy =1111 = 2222,3333,1122 = 2211,
4/m,4/m 1133 = 3311 = 2233 = 3322, 1212 = 1221 = 2112 = 2121,
2323 = 2332 = 3223 = 3232 = 1313 = 1331 = 3113 = 3131
ey = 1112 = -2221 = 1121 = -2212 =
1211 = —2122 = 2111 = —1222
422,422,422, 4mm, 21 6 4,

4mm, 4mm, 42m, 42m,
ng, Zgrﬁ, 4/mmm,
E/mmm, 4/mmm,
4/mmm, 4 /mmm,

4/mmm



SELF-SQUEEZING OF ELLIPTICALLY POLARIZED LIGHT 579

TABLE I (Continued)
Magnetic Point Group N I Form of the i - tensor Re ¢,5.5
L

53 7 hy=1111=2222= 1122 + 2(1212), 3333, 1122 = 2211,
1212 = 1221 = 2112 = 2121, 1133 = 3311 = 2233 = 3322,
1313 = 1331 = 3113 = 3131 = 2323 = 2332 = 3223 = 3232
jp= 1113 = ~1232 = —1223 = -2132 =
1131 = =2123 = =3221 = 2312 =
1311 = —3212 = 2321 = —1322 =
3111 = -3122 = 2213 = —233],
k,=2223=-2131 = -2113 = —-123]1 =
2232=—1213= -3112= —132] =
2322 = —3121 = —1312= -2311 =
3222 =-3211=—-1123= —-1132

32,32, 3m, 3m, 3m, 37 6 hy,j

1ol

33

3m, 3m, 3m

6,6,666/m6/m 21 5 h
6/m6/m 622,622

6%, 6mm, gmﬂ, 6’1, N

BmZ, §m€, EZrﬁ, l—Sm___Z,

6 / mmm, 9 / mmm,

6/ mmm, 6/ mmm,

6 / mmm, 6 / mmm,

w0 / m, om,® / m,

com, © / mm, © / mm,

© / mm

23,m3,m3,432,432, 21 3 m,=I111=2222 =333,

3m, 43m, m3m, 1122 = 2233 = 3311 = 2211 = 3322 = 1133,

m3m, m3m, m3m, 1212 = 2323 = 3131 = 122] = 2332 = 3113 =

B T 2121 = 3232 = 1313 = 1331 = 2112 = 3223 = 1331
Y, Y, KK, 21 2 myand 1111 = 2222 = 3333 = 1122 + 2(1212)

Note. The components of the nonlinear polarizability tensor Re y,g4,5 are denoted by the subscripts
aBy$8, taking values 1,2,3 in the molecular reference frame. N and I denote the number of nonzero
and independent components, respectively. Sets of components recurring in various point groups are
denoted by lowercase letters.
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TABLE 11
Fourth-Rank Axial i-tensor Im 4,5 for 102 Magnetic Point Groups

Magnetic Point Group N | Form of the i-tensor Im a,5,5 2
1 81 54 a, = 1111, 2222, 3333,
1122, 2211, 1133, 3311, 2233, 3322,
1212 = 1221, 1313 = 1331, 2323 = 2332, .
2121 = 2112, 3131 = 3113, 3232 = 3223
b, = 1112 = 1121, 1211, 2111, 2221 = 2212, 1222, 2122,
1233, 2133, 3312 = 3321, 1323 = 1332,
3123 = 3132, 2313 = 2331, 3213 = 3231
¢, = 1113 = 1131, 1311, 3111, 3331 = 3313, 1333, 3133,
1322, 3122, 2213 = 2231, 1232 = 1223,
2132 = 2123, 3212 = 3221, 2312 = 2321,
2223 = 2232, 2322, 3222, 3332 = 3323, 2333, 3233,
2311, 3211, 1123 = 1132, 2131 = 2113,
1231 = 1213, 3121 = 3112, 1321 = 1312
2,2 41 28 a,, b,
m,m 40 26 cy
222,222 21 15 a,
mm2,mm2,2mm 20 13 b,
4,4 39 14 d, = 1111 = 2222, 3333,
1122 = 2211, 1212 = 1221 = 2121 = 2112,
1133 = 2233, 1313 = 1331 = 2323 = 2332,
3311 = 3322, 3131 = 3113 = 3232 = 3223
e, = 1112 = —2221 = 1121 = -2212,1211 = -2122,
2111 = —1222,
1233 = —2133,1323 = —2313 = 1332 = -2331,
3123 = —-3213 = 3132 = —3231
4,4 40 14 f,= 1111 = —2222,
1122 = —-2211, 1212 = 1221 = —2121 = —2112,
1133 = —2233,1313 = 1331 = —2323 = —2332,
3311 = —3322,3131 = 3113 = —3232 = —3223
g, = 1112 = 2221 = 1121 = 2212, 1211 = 2122,
2111 = 1222,
1233 = 2133, 1323 = 2313 = 1332 = 2331,
3312 = 3321, 3123 = 3213 = 3132 = 3231
422,422,422 21 d,
4mm, dmm, 4mm 18 e,
2m,42m,4m2,82m 20 7 £
3 71 18 hy = 1111 = 2222 = 1122 + 2(1212), 3333,

1212 = 1221 = 2112 = 2121, 1122 = 2211,

1313 = 1331 = 2323 = 2332, 1133 = 2233,

3131 = 3113 = 3232 = 3223, 3311 = 3322 *
1112 = —2221 = 1121 = —2212 = — 3(1211 + 2111),
2111 = —1222, 1211 = -2122,

1233 = —2133,1323 = —2313 = 1332 = —2331,,
3123 = —3213 = 3132 = —3231
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TABLE I (Continued)
Magnetic Point Group N I Form of the i - tensor Re g4 5

jp= 1113 = —-1223 = —1232 = -2123 =
1131 = —2132 = -2213 = 2231,
1311 = —1322 = —2312 = —-2321,
3111 = -3122 = ~-3212 = —3221

k,=2223=-2113 = -2131 = —-1213 =
2232 = —1231 = —1123 = - 1132,
2322 = —2311 = —1321 = —1312,
3222 = -3211 = —-3121 = —3112

32,32 3710 hy

3m,3ﬂ 34 8 i, ko

6,6, 39 12 hyi,

6,6 32 6 ks,

622, §2g, 6% 21 7 hy

6mm, 6mm, 6mm,om, 18 5 is

oom T

6m2,6m2,62m,6m2 16 3k

23 21 5 I = 1111 = 2222 = 3333.

1122 = 2233 = 3311, 2211 = 1133 = 3322,
1212 = 2323 = 3131 = 1221 = 2332 = 3113,
2121 = 3232 = 1313 = 2112 = 3223 = 1331
432,432 21 3 my,=1111 = 2222 = 3333,
1122 = 2233 = 3311 = 2211 = 1133 = 3322,
1212 = 2323 = 3131 = 1221 = 2332 = 3113
2121 = 3232 = 1313 = 2112 = 3223 = 1331
43m, 43m 18 2 0, = 1122 = 2233 = 3311 = —2211 = —1133 = —3322,
1212 = 2323 = 3131 = —2121 = —3232 = - 1313 =
1221 = 2332 = 3113 = —2112 = —3223 = —1331
Y, K 21 2 m,and 1111 = 2222 = 3333 = 1122 + 2(1212)
In the remaining groups:

T, I, 2/m, g/m, 2/&, 3/1"_’ mmm, mmm, mmm, mmm, 4/m, f/m, 4/&, i/m, 4/mmm,

i/mmm, 4/mrﬂ, 4/r_n_rrﬂ, 4/rﬁmm, i/["ﬂm’ §, E, §m, gﬂ, §_n_1_, §m, 6/m, §/m, 6/&, 9/@
6/mmm, Q/gmrﬁ, 6/m@, G/M’ 6/Cn_mm, §/m_rgm, ®/m, w/tﬁ, w/mm, ®©/mm, w/mﬂ,
m3, ES’ m3m, ﬁ3m, m3ﬂ, rﬁ3rﬁ, Y, and K, -

all components vanish

Note. The components of the nonlinear polarizability tensor Im o,z are denoted by the subscripts
aBy$8, taking values 1,2,3 in the molecular reference frame. N and I denote the number of nonzero
and independent components, respectively. Sets of components recurring in various point groups are
denoted by lowercase letters.
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TABLE III
Fifth-Rank Polar i-tensor Re 7,g,54 for 102 Magnetic Point Groups

Magnetic Point Group N

I

Form of the i-tensor Re 1,¢5,y56 ?

1

4m2,

243

108

a; = 11123 = 11132, 11312 = 11321 = 13112 = 13121,

31112 = 31121, 11213 = 11231 = 12113 = 12131,
12311 = 13211, 31211 = 32111, 21113 = 21131, ,
21311 = 23111,

22213 = 22231, 22321 = 22312 = 23221 = 23212,
32221 = 32212, 22123 = 22132 = 21223 = 21232,
21322 = 23122, 32122 = 31222, 12223 = 12232,
12322 = 13222,

33312 = 33321, 33123 = 33132 = 31332 = 31323,
31233 = 32133, 32331 = 32313 = 33231 = 33213,
13332 = 13323, 13233 = 12333, 23331 = 23313,
23133 = 21333

33333,

11113 = 11131, 11311 = 13111, 31111,

22223 = 22232, 22322 = 23222, 32222,

11223 = 11232 = 12123 = 12132, 11322 = 13122,
31122, 32211, 22113 = 22131 = 21213 = 21231,
22311 = 23211, 12312 = 12321 = 13212 = 13221,
12213 = 12231, 31212 = 31221 = 32112 = 32121,
21123 = 21132, 23121 = 23112 = 21321 = 21312,
11333 = 13133, 13313 = 13331, 33311, 31133,
31313 = 31331 = 33113 = 33131,

22333 = 23233, 23323 = 23332, 33322, 32233,
32323 = 32332 = 33223 = 33232

11111, 22222,

11112 = 11121, 11211 = 12111, 21111,

22221 = 22212, 22122 = 21222, 12222,

33331 = 33313, 33133 = 31333, 13333,

33332 = 33323, 33233 = 32333, 23333,

11332 = 11323 = 13132 = 13123, 11233 = 12133,
13213 = 13231 = 12313 = 12331, 32311 = 33211,
21313 = 21331 = 23113 = 23131, 21133, 23311,
31312 = 31321 = 33112 = 33121, 31132 = 31123,
31231 = 31213 = 32131 = 32113, 13312 = 13321,
22331 = 22313 = 23231 = 23213, 22133 = 21233,
23123 = 23132 = 21323 = 21332, 31322 = 33122,
12323 = 12332 = 13223 = 13232, 12233, 13322,
32321 = 32312 = 33221 = 33212, 32231 = 32213,
32132 = 32123 = 31232 = 31223, 23321 = 23312,
11222 = 12122, 12212 = 12221, 21122,

21221 = 21212 = 22121 = 22112, 22211,

22111 = 21211, 21121 = 21112, 12211,

12112 = 12121 = 11212 = 11221, 11122, e
33111 = 31311, 31131 = 31113, 13311,

13113 = 13131 = 11313 = 11331, 11133,

33222 = 32322, 32232 = 32223, 23322,

23223 = 23232 = 22323 = 22332, 22233 *



SELF-SQUEEZING OF ELLIPTICALLY POLARIZED LIGHT 583

TABLE 111 (Continued)

Magnetic Point Group N I Form of the i-tensor Re 7,.,)s4
2,2 121 52 az by
m,m 122 56 c3
222,222 60 24 as
mm?2,mm2,2mm 61 28 by
4,4 117 26 d; = 11123 = 11132 = —22213 = —22231,
31112 = 31121 = —32221 = —32212,
11312 = 11321 = —22321 = —22312 =
13112 = 13121 = —23221 = —23212,
11213 = 11231 = —-22123 = 22132 =
12113 = 12131 = —21223 = —21232,
12311 = 13211 = —21322 = —-23122,
31211 = 32111 = —32122 = —31222,
21113 = 21131 = —12223 = — 12232,
21311 = 23111 = —12322 = —13222,
12333 = 13233 = —21333 = —23133,
13323 = 13332 = —23313 = —23331,
31323 = 31332 = —32313 = 32331 =
33123 = 33132 = —33213 = -33231
ey = 33333, 11113 = 11131 = 22223 = 22232,
11311 = 13111 = 22322 = 23222, 31111 = 32222,
11322 = 13122 = 22311 = 23211,
12123 = 12132 = 11223 = 11232 = 21213 = 21231 =
22113 = 22131, 12312 = 12321 = 13212 = 13221 =
21321 = 21312 = 23121 = 23112,
31212 = 31221 = 32112 = 32121,
12213 = 12231 = 21123 = 21132, 31122 = 32211,
11333 = 13133 = 22333 = 23233, 31133 = 32233,
13313 = 13331 = 23323 = 23332, 33311 = 33322,
31313 = 31331 = 33113 = 33131 =
32323 = 32332 = 33223 = 33232
4.4 116 26 fy = 11123 = 11132 = 22213 = 22231,

31112 = 31121 = 32221 = 32212,

11312 = 11321 = 22321 = 22312 =

13112 = 13121 = 23221 = 23212,

11213 = 11231 = 22123 = 22132 =

12113 = 12131 = 21223 = 21232,

12311 = 13211 = 21322 = 23122,

31211 = 32111 = 32122 = 31222,

21113 = 21131 = 12223 = 12232,

21311 = 23111 = 12322 = 13222,

12333 = 13233 = 21333 = 23133,

13323 = 13332 = 23313 = 23331, 31233 = 32133,

31323 = 31332 = 32313 = 32331 =

33123 = 33132 = 33213 = 33231, 33312 = 33321
gy = 11113 = 11131 = —22223 = —22232,

11311 = 13111 = —22322 = —23222, 31111 = —32222,
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TABLE 111 (Continued)

Magnetic Point Group N 1 Form of the i-tensor Re 15,154

11322 = 13122 = —22311 = —-23211,

12123 = 12132 = -21213 = -21231 =

11223 = 11232 = —22113 = —22131,

12312 = 12321 = —-21321 = -21312 =

13212 = 13221 = —23121 = 23112,

12213 = 12231 = —-21123 = —21132, 31122 = —32211,
11333 = 13133 = —22333 = —23233, 31133 = —32233,
13313 = 13331 = -23323 = —23332, 33311 = —33322,
31313 = 31331 = —32323 = —32332 =

33113 = 33131 = —33223 = —33232

422,422,422, 56 11 dy
4mm,§mﬂ, 4@ 61 15 e,

42m, 42m, 4m2,82m 60 13 fy

3 229 36 hy=11123 = 11132 = —22213 = —22231 =

—2(11213) — 21113,

31112 = 31121 = —32221 = —32212 =

32122 = 31222 = —31211 = —32111,

11312 = 11321 = —-22321 = -22312 =

13112 = 13121 = -23221 = -23212 =
~(1/2)[12311 + 21311]),

11213 = 11231 = —22123 = —-22132 =

12113 = 12131 = -21223 = —21232,

12311 = 13211 = —21322 = —23122,

21113 = 21131 = —12223 = —12232,

21311 = 23111 = —12322 = — 13222,

12333 = 13233 = —21333 = —23133,

13323 = 13332 = -23313 = -23331,

31323 = 31332 = -32313 = —32331 =

33123 = 33132 = —33213 = —33231

11133 = —12233 = —21233 = —22133,

13311 = —13322 = —23312 = —23321,

11313 = 12323 = —-21323 = —-22313 =
11331 = —12332 = —21332 = —22331 =
13113 = -13223 = —-23123 = —23213 =
13131 = —13232 = —23123 = —23231,

31131 = —31232 = 32132 = —32231 =
31113 = -=32123 = —32213 = —31223,

31311 = —31322 = -32312 = —32321 =
33111 = —33122 = —33212 = —33221,

11111 = —(2/3)[22221 + 22122 + (1/2)12222],
11122 = (2/3)[2(22221) — 22122 — (1/2)12222),
11212 = 11221 = 12112 = 12121 =
(1/3)(22221 + 22122 — 12222],

12211 = (1/3) - 2(22221) + 4(22122) — 12222],
21112 = 21121 = (2/3)(1/2)22221 — 22122 + 12222),
21211 = 22111 = (2/3)[ - 22221 + (1/2)22122 + 12223),
12222, 22221 = 22212, 22122 = 21222

il
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TABLE 111 (Continued)

Magnetic Point Group N I Form of the i-tensor Re 5,50
J3 = 33333,
- 11333 = 13133 = 22333 = 23233, 31133 = 32233,
13313 = 13331 = 23323 = 23332, 33311 = 33322,
31313 = 31331 = 33113 = 33131 =
32323 = 32332 = 33223 = 33232,
11113 = 11131 = 22223 = 22232 = 2(11223) + 12213,
11311 = 13111 = 22322 = 23222 = 11322 + 2(12312),
31111 = 32222 = 31122 + 2(31212),
11223 = 11232 = 12123 = 12132 =
22113 = 22131 = 21213 = 21231,
12213 = 12231 = 21123 = 21132,
11322 = 13122 = 22311 = 23211,
12312 = 12321 = 13212 = 13221 =
21321 = 21312 = 23121 = 23112,
31212 = 31221 = 32112 = 32121, 31122 = 32211
ky=122233 = -21133 = -12133 = —11233,
23322 = —23311 = —13321 = —13312,
22332 = —21331 = —12331 = —11332 =
22323 = —21313 = -12313 = —11323 =
23232 = —23131 = —13231 = —-13132 =
23223 = —23113 = —13213 = —13123,
32232 = —32131 = —31231 = -31132 =
32223 = —32113 = —31213 = —31123,
33222 = —33121 = —33112 = —32311 =
32322 = —31321 = -31312 = —33211,
22222 = —(2/3)[11112 + 11211 + (1/2)21111],
22211 = (1/3)04(11112) — 2(11211) — 21111],
22121 = 22112 = 21221 = 21212 =
1/3)011112 + 11211 - 21111],
21122 = 2/3)[ - 11112 + 2(11211) — (1/2)21111},
12221 = 12212 = (1/3)[11112 — 2(11211) — 2(21111)},
12122 = 11222 = (2/3)[ - 11112 + (1/2)11211 + 21111],
11112 = 11121, 11211 = 12111, 21111
32,32 112 16 R, iy
3m,3m 117 20 Ja k3
6,0, 6 117 20 hs, J3
6,6 112 16 is ks
622,622,622 56 8 hsy
6mm, 6mm, 6mm, 61 12 I3
oom, om
6m2, 62m, 6m2, 6m?2 56 iy
23 60 8 1y = 11123 = 11132 = 22231 = 33312 = 22213 = 33321

11312 = 22123 = 33231 = 11321 = 22132 = 33213 =
13112 = 21223 = 32331 = 13121 = 21232 = 32313,
11213 = 22321 = 33132 = 11231 = 22312 = 33123 =
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TABLE 111 (Continued)
Magnetic Point Group N I Form of the i-tensor Re n,gy)50

12113 = 23221 = 31332 = 12131 = 23212 = 31323,
21113 = 32221 = 13332 = 21131 = 32212 = 13323,
21311 = 32122 = 13233 = 23111 = 31222 = 12333,
31112 = 12223 = 23331 = 31121 = 12232 = 23313,
31211 = 12322 = 23133 = 32111 = 13222 = 21333,
13211 = 21322 = 32133 = 12311 = 23122 = 31233
11312 = 22123 = 33231 = 11321 = 22132 = 33213 =
13112 = 21223 = 32331 = 13121 = 21232 = 32313 =
—11213 = —22321 = 33132 = —11231 = —22312 =
-33123 = — 12113 = —23221 = -31332 = — 12131 =
~23212 = —31323,
21113 = 32221 = 13332 = 21131 = 32212 = 13323 =
—31112 = —12223 = —23331 = —31121 = —12232 =
-23313,
21311 = 32122 = 13233 = 23111 = 31222 = 12333 =
—31211 = —12322 = —23133 = =32111 = —13222 =
~21333
43m, 3m 60 5 0,=11123 = 22231 = 33312 = 11132 = 22213 = 33321,
13211 = 21322 = 32133 = 12311 = 23122 = 31233,
11312 = 22123 = 33231 = 11321 = 22132 = 33213 =
13112 = 21223 = 32331 = 13121 = 21232 = 32313 =
11213 = 22321 = 33132 = 11231 = 22312 = 33123 =
12113 = 23221 = 31332 = 12131 = 23212 = 31323,
21113 = 32221 = 13332 = 21131 = 32212 = 13323 =
31112 = 12223 = 23331 = 31121 = 12232 = 23313,
21311 = 32122 = 13233 = 23111 = 31222 = 12333 =
31211 = 12322 = 23133 = 13222 = 21333 = 32111
Y, K 48 1 11213 = 22321 = 33132 = 11231 = 22312 = 33123 =
12113 = 23221 = 31332 = 12131 = 23212 = 31323 =
—11312 = —22123 = —33231 = —11321 = -22132 =
—33213 = ~13112 = —21223 = —32331 = — 13121 =
—21232 = —32313 = (17221311,
21311 = 32122 = 13233 = 23111 = 31222 = 12333 =
31112 = 12223 = 23331 = 31121 = 12232 = 23313 =
—31211 = —12322 = —23133 = —32111 = - 13222 =
—21333 = —21113 = —32221 = —13332 = —21131 =
-32212 = —13323

o

432,432 48 3 ms

|

In the remaining magnetic point groups:

1, 1, 2/m,2/m,2/m,2/m, mmm, mmm, mmm, mmmn, 4/m,4/m,4/m,4/m,4/mmm,
i/mmﬂ, 4/m@, 4/mmm, 4/rﬁmm, i/mmm, 3,3, 3m, 3m, §_m, 3m, 6/m, Q/m, 6/m, §/r£,
6/mmm, g/ﬂmrﬁ, 6/mmm, 6/mmm, 6/mmm, 6/mmm, ©/m, ®/m, ®/mm, o /mm, ©/mm,

m3, T3’ m3m, r_rl3m, m3r£, ﬁ35n_, Y,, and K, all components vanish

Note. The components of the nonlinear polarizability tensor Re n,.g,)s54 ar¢ denoted by the subscripts
afydo, taking values 1,2, 3 in the molecular reference frame. N and I denote the number of nonzero 4
and independent components, respectively. Sets of components recurring in various point groups are
denoted by lowercase letters.



SELF-SQUEEZING OF ELLIPTICALLY POLARIZED LIGHT

TABLE IV
NL  NL

Linear x%, x5 and Nonlinear x %, k§*, x & Molecular Parameters

for 102 Magnetic Point Groups
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Hamiltonian H;

HP H®
Magnetic Point Group xE x& oaft «RE XAt
1,2,2,222,222 X,’; Xﬁ )(,Q’L K,1¥L X,’;”“
T,T, m,m, 2/m,g/m,2/rﬁ,z/m, mm2, mm2, X1'i 0 X,’;’L K;{L 0
2mm, mmm, mmm, mmm, mmm
4,4,422,422, 422 ay b < d, e,
Z,§,4/m,4/rﬁ,i/ﬂ, 4mm, 4mm, 4 /mm, 4_12m,§2m, a; O < d; 0
gmz, 4g_rﬁ, 4/mmm,f/mmr£, 4/mmm,4/mmm,4/ﬂmm,
4/mmm
3,32,32,6,6,, 622,622,622 a; b cy d, e,
3, ?, 3m,3m,§m,§m,§m,§m,(_3, E, 6/m,6/m,6/m,§/ﬂ, a; 0 cy d, 0
oo/m,w/m,6mm,§mr£, 6/@, oom, wom, 3m2, EZrﬁ,
Emz, 5m_2, 6/mmm,_6_/ﬂmﬂ, §/mﬁrr_l, 6/mmm,6/mmm,
g/mmm,oo/mm,oo/mm,oo/mm
23 a, by, ¢ dy ey
432,432 a by, ¢ dsy e,
m3,m3,33m,23ﬂ, m3m,m3m, m3ﬂ, rﬁ3m a, 0 Cy d, 0
Y, K a, by, ¢4 dy es
Y,, K, a, 0 cy dy 0
Note. where we used the notation
. N iNk,
XR = “3'R°(0‘11 tapntay)  xi= - —3w—Im(P11 +pp t+p33)
N iNk,
a; = —Re(2ay; +ay) by = — ——Im(2py + p33)
3 3w
iNk,
a, =N Reay, by, = — Impyy
w
. 2N
XR = ERC{Ynn + Yoo F Y3333 T Yz T Vi3 T Y2233
+3[Yi212 + Y33 + Yaas 1}
2N
= ‘ERC{ZYun + y333 — Yoz — 271 + 30y + 26}
2N
€= FRC{73333 +yy2 — 2vns + Toe 076}
2N
c3 = 'S_RC{le = Y12 + 31212} €4 =2NRe vy
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TABLE 1V (Continued)
v 2N ?
KR = FR"'{Z(Yuu + ¥+ Ya333) + 3(Yize + Yuuas + v2233)
Y12 T Yz + Y2}
"

2N
dy = ‘B‘Re{z(zﬁm +v333) + 3z + 2vum) + Y2z + 271313}

2N

d, = “I?Re{zhsss + MY + 6¥1133 T 9¥1212 + 2¥1313)

2N
dy = TRe{zyllll + 37122 + Y212} da = 2N Re{ypimn + Y1212}

NL 4Nk, (1
L T ;Im[— 2(11 + 02+ 03333) + Oy + oy
+05 + Onn + Oan + T3 — 30
+o1303 + T3 + Tz + T35 + 033)]
1
- ERC["h(zs)ss = M@z T Mann — M2azps T Mazz ~ Menn
+ 733023 ~ 22023 + Ma3t ~ M3@E2)31 + M2 — TMazez
—Mazzz + Mepzs ~ Tani T Tenn — Meya t "73(11)12]}
i8Nk, (1
T ;Im[‘zalm — 0333t O t O3z + O3
=3(o1212 + 01313 + T3131)]
- gRe[m(zsm + Noapit T Mane + Men2s
TNazen T Mz T ez T Masp t 713(11)12]}
i8Nk, (1
©2= "5 ;Im[—-03333 = + Oz + O~ 100 — 3o + o]
1
- ERC[”’h(zms + Mani T 2M3a222 ¥ M3¢123
+ a3t T Mz T Mgz t ”’12(33)31]}
4Nk, (1
€= " 5 ;Im["z"'ml + 010 + 0 — 30122 + T2121)]
1 s
- gRe[Tll(zsm — M@E222 T M3ens — Mens ~ Miganz Mi2223)
i8Nk, (1 1
€4 = — 5 ;Im[—allll t oy~ 3‘71212] - gRe["h(zs)sa — Mgy + "71(22)23]
. 1 1
es = i8Nk, ;Im ot gRe 12333
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13.
14.
15.
16.
17.
18.
19.
20.
21,
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
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