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I. INTRODUCTION

Squeezed states in optical fields are at present a very attractive problem
for theorists and experimenters (extensive accounts of the literature can be
found in review articles [1-4] and in special issues of journals [5, 6)).

This work was supported by Polish Government Grant KBN 201 509 101.

Modern Nonlinear Optics, Part 1, Edited by Myron Evans and Stanistaw Kielich. Advances in
Chemical Physics Serics, Vol. LXXXV.
ISBN 0-471-57546-1 © 1993 John Wiley & Sons, Inc.

Mote: Correct ISBN is 0471576486 7



498 S. KIELICH AND K. PIATEK

Possibilities of their generation have been found in many nonlinear
processes, such as resonance fluorescence [7-11], parametric amplification
[12-19], four-wave mixing [20-31], multiphoton absorption [32, 33], the
Jaynes-Cummings model [34-37], parametric down-conversion, [38-40],
nonlinear propagation of light, and the harmonics generation considered
in this paper.

In Section II we give a short review of the research related to light
propagation and second- and third-harmonic generation in a nonlinear
medium, especially from the point of view of quantum effects. Section III
contains fundamental information about the squeezed states of light (also
referred to in this paper as “ordinary” squeezed states). Two models of
light propagation in a nonlinear medium are discussed in Sections III and
IV: an anharmonic oscillator model and a model based on the effective
Hamiltonian of the system. We study the squeezing effect in both ap-
proaches, analyzing the exact solutions for the quadrature variances.
These results are also compared with ordinary squeezing, and the classical
description of light propagation is recalled.

In Section V second-harmonic generation is studied. The first part of
this section contains the classical treatment of the phenomenon. In the
second part squeezing is discussed on the basis of the approximate
analytical results holding in the quantum description. Section I'V presents
the quantum description of third-harmonic generation. Using the approxi-
mate solutions for the variances of the quadrature operators we analyze
the squeezing effect.

II. HISTORY AND PERSPECTIVES

The first observation of the second harmonic of a laser beam by Franken
et al. [41] has become a landmark in nonlinear optics. The classical
description of the effect is due to Armstrong et al. [42]. In the next few
years scientists concentrated on finding nonclassical properties of light in
nonlinear media. In 1970 Walls {43] showed that the intensity of the
second-harmonic beam exhibits periodic behavior in the quantum treat-
ment, unlike the classical approach. Two years later Crosignani et al. [44]
proved the impossibility of complete vanishing of the fundamental field in
second-harmonic generation. Next, the second harmonic [45], higher order
harmonics [46] and subharmonic [47] were studied for their quantum
statistical properties. Stolarov [48], Kozierowski and Tana$ [49], and Kielich
et al. [50] have shown that if the incoming beam is in a coherent state the
antibunching effect (see, for example, Refs. 51-53) occurs in harmonics
generation. This effect was also studied in Refs. 54 and 55.



SQUEEZED STATES OF LIGHT IN SECOND AND THIRD HARMONIC 499

For experiments the possibility of obtaining steady states is essential.
Hence, theorists have searched for the quantum effect in an optical cavity.
McNeil et al. [56] forecasted the “self-pulsing” effect in the intensities of
the second-harmonic and fundamental beam in a cavity. The antibunching
effect and bistability in the subharmonic and second-harmonic generation
in a Fabry-Pérot cavity system were analyzed by Drummond et al. [57-59].

The search for squeezing in harmonics generation began in 1982. The
first results were due to Mandel [60]. Kozierowski and Kielich [61] and
Kielich et al. [62, 63] proposed a more general description. Lugiato et al.
{64] predicted this nonclassical effect in the fundamental and second-
harmonic beam, generated in a nonlinear crystal in a cavity. Friberg and
Mandel [65] found the possibility of generation of squeezed states via a
combination of parametric down-conversion and second-harmonic genera-
tion.

At the same time Tana$ [66] proposed the anharmonic oscillator model
to describe laser light propagating in a nonlinear medium, which gives a
squeezing effect different from ordinary squeezing. Tana$ and Kielich
[67, 68] proposed the name self-squeezing when analyzing the effective
Hamiltonian of the system. Moreover, Kielich et al. [69] applied an
external magnetic field along the direction of propagation to achieve
control of the self-squeezing of light. The evolution of the field in a
nonlinear medium was described by Milburn [70, 71], who used the
quasiprobability function Q(a, a*, t). He succeeded in revealing its peri-
odic behavior and the role of dissipation in the effect and predicted
squeezing in this treatment. Yurke and Stoler [72] proved that the state
produced in the anharmonic oscillator model can be a superposition of a
finite number of coherent states.

In 1985 Hong and Mandel {73] introduced the definition of higher-order
squeezing and, in particular, studied second-harmonic generation.
Kozierowski [74] searched for this effect in nth-harmonic generation. The
squeezing of the square of the amplitude in second-harmonic generation
was analyzed by Hillery [75], who predicted this kind of squeezing in the
fundamental beam. He also found correlation between ordinary squeezing
in the harmonic beam and amplitude-squared squeezing in the fundamen-
tal. Amplitude-squared squeezing was observed by Sizman et al. [76], who
measured a 40% reduction of noise.

Correlation between the fundamental field and the harmonic beam was
searched for in Luk§ et al. [77]. The possibility of producing squeezed
states in the fundamental stimulated by multiple higher-harmonic genera-
tion was proposed in Chmela et al. [78]. Kielich et al. analyzed the second
harmonic [79] and third harmonic [80] generated by self-squeezed light.
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Ekert and Rzazewski [81] found that the intensity of the second harmonic
depends on the kind of fundamental beam. The state of the fundamental
field in second-harmonic generation has been studied from the point of
view of the initial phase [82]. In 1988 Pereira et al. [83] observed squeezing
in the fundamental beam in second-harmonic generation. His result has
been compared with the theoretical description [84].

The anharmonic oscillator model has been studied extensively at the
same time. Luk$ et. al. [85] defined “principal squeezing” related to the
geometrical representation of the quadrature components as an ellipse.
Loudon [86] proposed a different representation by Booth’s elliptical
lemniscate. Both representations were compared by Tana$ et al. [87]. They
also proved that “crescent” squeezing, introduced by Kitagawa and Ya-
mamoto [88] and Yamamoto et al. [89] (see also [4]), is the same as
self-squeezing. Using the quasiprobability function Miranowicz et al. [90]
proved the generation of superpositions of coherent states in the anhar-
monic oscillator model.

Recently light propagation in a nonlinear medium has been studied
from the point of view of second- and fourth-order squeezing [91], the
saturation effect [92], and the effect of dispersion [93]. It has been found
that squeezing decreases with increasing saturation parameter and can be
produced only within a limited frequency interval, determined by disper-
sion in the medium. Tana$ and Kielich [94] considered the role played by
higher-order nonlinearity in the self-squeezing of light.

The theoretical basis for experiments has been prepared in recent
years. The possibility of producing squeezed states in nth-harmonic gener-
ation in a laser resonator was proposed by Gorbaczev and Polzik [95].
Schack et al. [96] described a method of a doubly resonant cavity contain-
ing a laser medium as well as a y2 nonlinearity. They have predicted more
than 60% squeezing in the up-converted mode. The “input-output”
theory has been used by Collett and Levien [97] to generate the second
harmonic. They obtained 50% squeezing. An analysis of the resonator
parameters was given in Ref. 98. In 1991 You-bang Zhan [99, 100] studied
in detail amplitude-cubed squeezing in second- and third-harmonic gener-
ation and amplitude-squared squeezing in nth-harmonic generation.

Quantum fluctuations in the Stokes operators of elliptically polarized
light propagating in a Kerr medium were discussed by Tana$ and Kielich
[101], who treated the medium as optically transparent, and by Tana$§ and
Gantsog [102] for a medium with dissipation. For the two-mode case, the
influence of losses and noise was discussed by Horak and Pefina [103]. The
influence of dissipation on the dynamics of the anharmonic oscillator, i.e.,
the one-mode propagation problem, was considered by Milburn and
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Holmes [71], and recently the exact solutions of the master equation for
the system have been discussed [104-107].

On the basis of the Pegg-Barnett formalism [108~110] the theorists have
attempted to search for quantum phase properties in nonlinear processes.
Tana$ et al. [111] analyzed the superposition of coherent states in the
anharmonic oscillator model, using the quasiprobability function as well as
the probability phase distribution P(#). Quantum phase fluctuations in
nonlinear processes are discussed in Refs. {112-114].

III. SQUEEZED STATES OF LIGHT

A. Minimum Uncertainty States and Coherent States

The Heisenberg uncertainty principle limits the possibility of measuring
two observables in the same state. The variances of two observables 4, B
satisfy the following relation:

((adY){(aB))= 2|([4. 8] (1

If the sign of equality holds in (1), the state is referred to as the “minimum
uncertainty state.”

It is well known that a single mode of an electromagnetic field in a
cavity can be treated as a simple harmonic oscillator, described by the
“position” and “momentum” operators. These are related to the electric
and magnetic components of light. In the simplest case of a one-dimen-
sional cavity with z axis, on the assumption of linear polarization, we can
write

202\
E(z,t)=(—) G4(t)sin kz

gV
(2)
2172
N 2¢,4c
H(z,t)=( % ) p(t)cos kz

where E(z,t) is the electric field operator, H(z,t) is the magnetic
operator, §(¢) is the position operator, p(¢) is the momentum operator, w
is the frequency of the mode under consideration, and k is the wave
vector. The commutation relation for 4 and p is defined as

[B(t),4(1)] = —in (3)
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Let us consider the photon number states space. When describing the
electric field in the states it is helpful to introduce the annihilation 4 and
creation 4% operators, which obey the following relations:

a = (2he)”"*(w4d + ip)
= (2hw)”*(wd — ip) (4)
[6,a*)=1
According to Eqgs. (4) the electric field can be written as
E(z,t) = Cla(t) + 4% (1)] (5)

where C = (hw/g,V)'/? sin kz, 4(t) = d(0)exp(—iwt). The annihilation
and creation operators act on the photon number state as follows:

dlnd = n"?%n - 1)

atln) = (n+ 1Dn + 1)

(6)

Hence, the number state |n) can be created from the vacuum state |0):

Iny = (n!)2(a*)"10) (7

According to Egs. (6), the average values of the position and momentum
equal zero:

(@ =<p>=0 (8)

2 o h
<(Aq) > =—((@+a*)(a+a*))=—(1+2n)
2w 2w (9)
2 hw
((a9)°) = — (1 +2n)
So, using expression (3), we write the uncertainty relation (1) for p and ¢
as follows:

2

h
(BayXpy) > (n>0) (10)
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and
2

h
Ay 2 AN
(M) X(ap)) =5 (n=0) (11)
These equations mean that only the vacuum state is the minimum uncer-
tainty state among the photon number states.

In 1963 Glauber introduced coherent states, which are the eigenstates
for the annihilation operator [115]:

dla) = ala)

{ald® = {ala*

(12)

where a = |a|exp(i¢). The coherent state can be constructed from the
number states:

In) (13)

These states are characterized by the Poisson photon-number distribution:
2n
2 3¢
[{nla)|* = exp(— lal )7 (14)

The average value of the photon number takes the form

A 2
(alfla) = lal

and its variance
{al(AA)’)a) = lal? 15)
((aR)") = (A

Hence, the variance is equal to the average value of the photon number in
this case. Taking into account Egs. (4) and (12), the expectation values of
the position and momentum operators are given as follows:

h 1,2
(a|é|a>= (E;) (a+a*)

(16)
ho \V?
Calpla) = ~i{ ) (a = a)
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and for their squares we have

(ald*la) = (i)[az + (oz”‘)2 + 2lal® + 1]
2w

. (17)
w
(alp®la) = (7)[—a2 — (a*)* + 2lal” + 1]
Thus, we have the following variances:
h
((Ag)’) = EYN
(18)
((Ap)) = ho
2
It is easy to check that the left side of the uncertainty relation (1)
2 2 n’
((aay)(apy’) = -
is equal to the right side,
1 (2 h?
ZKlB.aD = (19)
This proves that all coherent states are minimum uncertainty states.
The coherent state can be generated from the vacuum [115]
= D(a)|0
la) ()10} (20)

D(a) = exp(ad*— a*d)
where D(a) is the unitary displacement operator. The above operator
transforms 4 and 4% as follows:

A

D*(a)iD(a) =d +a

D*(a)d* D(a) = 8%+ a*

(21)

A more detailed discussion of coherent states is to be found in the review
papers (for example, [116]).



SQUEEZED STATES OF LIGHT IN SECOND AND THIRD HARMONIC 505

B. Quadrature Operators

The annihilation and creation operators are non-Hermitian. It is useful to
break them down into Hermitian quadrature operators [2, 3]:

S A+
QA a+a (22)
P=—i(d—a")
They satisfy the commutation relation
[0, B] =2 (23)
The uncertainty equation for them takes the form
A2 )
(A0) )(aP) ) =1 (24)

Considering the minimum uncertainty state (coherent state or vacuum
state) we obtain the variances equal to unity:

(40)°) = ((aP)) =1
and

(807 )(ah)) = 1 0s)

In terms of the quadrature operators (22), the electric field can be written
as

E(z,t) =C[Qcoswt+ﬁsin wt] (206)
Hence, Q and P may be identified with the amplitudes of the two

quadrature phases of the electric field [117].
The displacement operator (20) for the quadrature components,

D(a) = exp[i(lm aQ — Re aﬁ)] (27)

transforms them in the following way:
DA+
D"+

a)0D(a) =0 + 2Rea

s s X (28)
a)PD(a) =P+ 2Ima
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C. Squeezed States

The variances of the quadrature operators are equal (25) for a coherent
state. However, one can imagine that one of them has a value below unity
but together with the second variance satisfies the uncertainty relation
(25). So the following generalized definition for the quadrature operators
can be introduced:

0, = Qexp(—s)
P, = Pexp(s)

(29)

where s is called the squeezing parameter. According to Egs. (29), the
quadrature variances have the modified form:

<(AQS)2> = exp(—2s)
<(A};2)2> = exp(2s)

(30)

and the annihilation and creation operators, connected with them (22),
take the new form

d,=dcoshs —a*sinhs
(31)

@t =ad* coshs — dsinhs

These generalized operators remain in commutation relations:

)., B| =2i
[0.. 2] )
[a,,47] =1
The displacement operator has to be redefined:
D(a) = exp|ad} — a*d]
(33)

D,(a) = exp[i(lm a0, — Re aﬁs)]

If s > 0 the exponential, in Egs. (29), Compresses the original variance of
Q and expands the original variance of P. The squeezing condition for one
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Q> Q

Figure 1. The error countours in the quadrature components plane for the coherent
state (circle) and the squeezed state (ellipse) when 8 = 0. If 6 + 0 the error ellipse is inclined
at angle 8 /2 (dashed axes). We denote AX = ((AX)?*)'/? for X = Q, P.

of the quadrature components (X = 0, P) is given as
((ax)) <1 (34)

In the Q, P plane the circular error contour for the coherent state is
squeezed into an elliptical error contour (Fig. 1).

So far we have discussed the simplest case of squeezing, occurring along
the Q and P component. To obtain squeezed states in general the squeeze
operator has to be used [2, 3]:

$(2) = exp[4(¢*a? - (a*?)) (35)

where { = sexp(i6), 0 < 8 < 27, and 0 < s < . This operator squeezes
the error contour in directions inclined at angles 6 /2 to the O and P axes
(dashed line in Fig. 1).

The squeeze operator (35) transforms the 4 and 4* operators in the
following manner:

S$*({)aS(¢) = dcoshs —a* exp(if)sinh s (36)

S$*(2)a*S(¢) = a* cosh s — dexp(—i@)sinh s
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Using the squeeze operator we can define the squeezed states,

la, ) = D(a)$(£)10) (37)
This definition (37) of squeezed states was proposed by Caves [118)]. Yuen
has given an alternative definition [119]:

1B, ,v) = UD(B) 10) (38)

where U is the squeeze operator and ﬁ(ﬁ) the displacement operator.
The two formalisms of squeezed states are equivalent [2],

B =pa+va*
u = cosh s (39)
v = exp(if)sinh s

D. Fundamental Properties of Squeezed States

In this section some useful properties of the one-mode squeezed state are
discussed.

- The average values of the annihilation and creation operators are

(@) = (40)
(@*) =a*
They do not depend on the squeezing parameter (.
« The average photon number is
(AY = (d*4) = la|* + sinh®s (41)

The second term arises from the process of squeezing the vacuum.
» The eigenvalues of the quadrature operators are

(Q>=a+a*=2Rea

R (42)
(P)=2Ima
They also are independent of the squeezing parameter (.
- The variances of the quadrature operators are as follows:
<(AQ)2> = exp(—2s)cos*(30) + exp(2s)sin®(36)
(43)

<(Aﬁ)2> = exp( —2s)sin’*(30) + exp(2s)cos’(30)

The variances are not dependent on the coherent amplitude «.
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- The uncertainty relation (1) for the quadrature operators is
<(AQ)2><(Aﬁ)2> = cosh? 25 sin® @ + cos” @
It is obvious that the minimum quantum noise occurs for 6 = 6, r:
((a0) N(apy)=1
and the maximum for 6 = /2,37 /2.
(A0)")}(AB)") = cosh? 2 (44)

« The condition for squeezing in the Q component is

cos @ > tanh s

Therefore,
(a0)") = exp(~25)  (for 6 = 0) (45)

- The condition for squeezing in the P component is

cos @ < —tanh s

Therefore

((AP)") = exp(-25) (for 6 - ;) (46)

E. Two-Mode Squeezing

Obviously, it is possible to define squeezing not only for the one-mode
case. If we consider light in two different frequencies w, and w_ it is
useful to introduce two-mode squeezed states, which can be obtained from
the vacuum state [2, 3],

la,,a_,0) = DA+(a+)DA—(a-)§(£)|0>

where the displacement operators are defined as

D, (a,) =exp(a,dl—a%d,)
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and the squeeze operator is
$(¢) = exp({*a,a_— {atar) (47)

This two-mode squeeze operator transforms the annihilation and creation
operators [2, 117):
S*(¢£)a . S(¢) = @, cosh s — a% exp(i6)sinh s

. . (48)
S*({)aiS(¢) = a7l coshs — dyexp(—if)sinh s

Similarly to the one-mode case, two-mode quadrature operators can be
defined similarly to one-mode operators:

) = %(a++ at+a_+ar)

> _+ar
A (49)
P=ﬁ(¢i+ al+d_—ar)

Because of the usefulness of two-mode squeezed states, in the next
sections we given some of their more important properties:

(dy) =a, (50)
(A,)=la,|® + sinh®s (51)
(aids) = afaz (52)
(d,d,)=a% (53)
(4,4%) = a,a_— exp(if)sinh s cosh s (54)

and for the quadrature operators:
Q) = 22 (Rea,+ Rea_)
(P) = 2V (Ima,+ Ima_)

<(AQ)2> = exp( —2s)cos?(30) + exp(2s)sin®(36)

(55)

<(A};)2> = exp( —2s)sin®(36) + exp(2s)cos’(30)
(56)
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The variances of the quadrature operators for two-mode states (56) are
identical with the variances for one mode. This means that they are
independent of the number of modes in the field.

In this section the theory of the squeezed states is only touched on. We
have left out an account of higher-order squeezing [3, 73] and the ampli-
tude-squared squeezing defined by Hillery [75].

Squeezed states of light are not considered only theoretically. In recent
years many experimental results have been reported {29, 30, 31, 40, 76, 83,
120, 121]. To measure the variance of a quadrature component of the field
a special phase-sensitive method is needed. It has been shown that
homodyne and heterodyne detections are suitable. The homodyne method
is used for a single quadrature measurement and the heterodyne measures
both. These methods are based on the interference of squeezed light with
a coherent field.

In the next sections we discuss in detail the possibilities of generating
squeezed states in the propagation of light and harmonics generation in a
nonlinear medium.

IV. ANHARMONIC OSCILLATOR MODEL

The anharmonic oscillator is the simplest model for the description of
interaction between quantum light and a nonlinear medium. It was pro-
posed by Tana$ [66]. In spite of its simplicity, this model gives the
possibility of obtaining exact analytical results which, among other things,
show the dissimilarity between the squeezing process in light propagation
and the ordinary squeezing, generated by the squeeze operator (35).

It is assumed that the well-known Hamiltonian of the anharmonic
oscillator can describe, for example, a single mode of the field propagating
through a nonlinear medium. Then the Hamiltonian takes the form [66]

H=hod*d + thka ™% (57)

where 4, 4" are the annihilation and creation operators of the mode, @ is
the frequency of the mode, and « is an anharmonicity parameter (real). It
is necessary to know the time evolution of 4 and 4™ to obtain information
about the respective quantum effects. To attain this the Heisenberg
equation is constructed:

1 A
dr l—h—[a,H] (58)
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According to the Hamiltonian (57) the equation of motion has the follow-
ing form:

da
Frie —i(w + kd*ad)a (59)

+

Since the number-photon operator A = d*d is a constant of motion,

[A,H]=0 (60)
it is possible to obtain the solution in the form
a(t) = exp{—it[o + kd™*(0)a(0)]}4(0) (61)

where 4(0), 47 (0) are the annihilation and creation operators at ¢t = 0.
The term exp(—iwt) is associated with the free evolution of the system,
whereas the second term comes from the nonlinear interaction included in
the second part of the Hamiltonian (57). This exact operator solution (61)
allows us to give all the characteristics of the field at the time ¢, if the state
of the field at ¢ = 0 is known.

We assume that the field is in a coherent state |a) initially (+ = 0).
Since the photon number is a constant of motion, the photon-number
distribution retains Poissonian statistics (14). This does not mean that the
field has to be in a coherent state throughout its evolution. To search for
squeezing we use the quadrature operators defined in (22). As was shown
in Section III this effect occurs if one of the variances of the quadrature
components has a value below unity:

(A0) Y<1 or {(aF))<1 (62)

It is convenient to introduce normal ordering of the operators. Then we
can write

(:(a0)")={((a0)") -1
(:(aB)") = ((aP)") -1

where the colons denote normal ordering. Here, the squeezing conditions
take the following form:

(63)

((a0)) <0 or (:(aB):)<0 (64)
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meaning that squeezing occurs when one of the normally ordered vari-

ances takes a negative value. In terms of the annihilation and creation
operators these variances can be written as

(:(A0)":) =((Aad)) +((Ad*)) +2((a"a) — (a*)a))
((APY:) = ~((88)") —((Aa*Y) +2(¢a*a) — (a* X&)

(65)

Using solution (61) in the equations above, the following results can be
derived [66]:

(:(30)":) = 2Re[a? exp| =i + lal*(exp(~2ir) = 1)]]
— 2Re[a exp[2|a| (exp(—i’l’) B 1)” (66)
N 2|a|2[1 _ exp[2|a|2(COS T — 1)”

(:(AP)":)= —2Re[-+- ] + 2Re[ -+~ ] + 2lal’[ -+ ]

where 7 = xt; the brackets in the second equation (66) contain the same
expressions as the first equation; « is the coherent amplitude, and la|?

the average number of photons. The variances of the quadrature operators
(66) are plotted against B = |«|?r in Fig. 2. We assumed that 7 = 1 X 107°
and chose the initial phase to have « real. Both curves oscillate between

Figure 2. The variance of the Q quadrature component (solid line) and the variance of
the P component (dashed line) are plotted versus g = lee|r
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negative and positive values. The first minimum of the Q component (solid
line) has a value of —0.66 and appears for 8 = 0.6. The second minimum
is deeper and reaches —0.98. The first minimum of the P component
(dashed line) occurs for B = 1.82 and has a value of —0.93. The next
minimum is deeper and reaches 0.99. Note that if one of the variances is
squeezed then the other is not.

This analysis supposes that a considerable amount of squeezing can be
obtained for a large number of photons (Jal®* > 1). In this case we can
assume that |a|>7 takes a value of the order of unity. Moreover, we can
make the assumption that 7 < 1, because of the small value of the
anharmonicity parameter k. These assumptions allow us to expand equa-
tions (66) in power series and to retain only the leading terms. Hence we
have the following approximate formulas for the quadrature variances:

(:(a0)") = 2B[B - (sin2B + B cos2p)]
(67)

(:(aP)":) = 2B[B + sin2B + B cos 28]

These equations are simpler and we shall use them to compare the results
obtained in the next section.

Formulas (66) and (67) mean that the states obtained in the anharmonic
oscillator model do not preserve minimum uncertainty in the sense of the
coherent states, i.e., fluctuations in one of the quadrature components of
the field can be reduced.

We would like to emphasize that the solution (61) differs from the
transformation (36) which defines ordinary squeezing.

In the next section it is shown that the result derived from the
anharmonic oscillator is a particular case of a more general model.

V. SELF-SQUEEZING OF LIGHT IN NONLINEAR MEDIUM

A. Classical Treatment: Self-phase Modulation

Before giving a description of the squeezing effect in light propagation
through a nonlinear medium, as proposed by Tana$ and Kielich [67, 68], it
may be helpful to recall the classical treatment and some of its more
interesting results. The classical approach is based on the assumption that
the electric field is described by a vector E, which can be the sum of the
positive and negative frequency parts at the time—space point (r, ¢):

E(r,t) =E*(r,t) + E~(r,t) (68)



SQUEEZED STATES OF LIGHT IN SECOND AND THIRD HARMONIC 515

The positive and negative parts can be written as

E*(r,t) = ZE*(wi)exp[i(kmi r— wit)]
: (69)
E(r,t) = ZE‘(wi)exp[ —i(k,, - T — w;t)]

where o; is the frequency and k, the wave vector of ith mode. On taking
into account one mode only, formulas (69) take the following form:

E*(r,t) = E*(o)expli(k - r — wt)]

. (70)

E~(r,t) = E-(w)exp[—i(k - r — wt)]
We are interested in the interaction between the field and the nonlinear
medium. It is contained in the time-averaged free energy [122],

F= _%XijklEik(w)Ej_(w)Elj(w)El+(w) + c.c. (71)

where E;*, () are the components of the vector E¥,x;y, is the
fourth-rank tensor, describing the third-order nonlinear susceptibility, and
the summation is defined by Einstein’s convention. The free energy is the
starting point for the calculation of the components of the nonlinear
polarization vector at the frequency w. They can be obtained from the
well-known formula

. oF
P (w) = T9ET (72)
Hence, on using Eq. 71, the vector components take the form
PH (@) =3xiu(—0,— 0,0, 0)E] (0) Ef (0) E/ (o) 73)

P (®) = 3xu(~0,— 0,0,0)E7 (0) Ef (0) Ef (@)

The above formulas do not include dissipative and resonant processes. In
this case the following symmetry relation is fulfilled [122]:

X —w,~ 0,0, 0) = x;(—0,~ 0,0,0) (74)

On the assumption that the medium is isotropic and has a center of
symmetry, it is possible to write the third-order susceptibility as follows
[123]:

Xijkl( W, W, w, w) = Xxxyy‘sijakl + Xxyxysikajl + Xxynyilﬁjk (75)
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Moreover, this tensor is symmetrical in the pairs of indices i, j and k, .
So, instead of three, we have two independent components: x,,,,, and
Xxyxy = Xxyyx:

Considering light propagation in an isotropic medium, it is of advantage
to introduce a circular basis to describe the field and the polarization of
the medium. When the field propagates along the z axis, then the right-
and left-polarized components take the forms

E}=2""?[Ef(w) FiE] (o)] (76)

Using formulas (74)-(76) we obtain the following equation for the average
free energy (71):

F= ——%{gi"[E;(w)in(w)z+E:(w)2Ef(w)2] )
+4g3[ E5(w) EZ(0) EX(@) E*(w)]}

where the nonlinear coupling parameters g{’, g5 are defined as follows:

giﬂ = 6Xxyxy(_w7_ w, w, w)
(78)

gy = 3[,\/xxyy(——a),— ©,0,0) + X n(—0,— o, w,w)]

Applying Egs. (72) and (77), we write the components of the nonlinear
polarization vector in the new representation as

Pi(w) = [gPIE7(@)* + 288 1E5(w)?] EL(w) (79)

This expression can be inserted into the Maxwell wave equation. In the
slowly varying amplitude approximation the following equation is obtained
[122}):

dEY 270 |
dz e Ps (80)

w

On insertion of (79) into (80) we have

dEj(w,z) 27w _ "
22D ST gl (@) + 288165 (0) P]EL(w) (8D)

w
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where n, = k,c/w is the refractive index for the frequency w. Since
[E |2 does not depend on z (the derivative vanishes), Eq. (81) has the
simple exponential solution

E*(w,z) = exp(i¢ ,2) E%(w,0) (82)
where
27w _ 5 _ 2
ba= ——[sPIEL (@) + 2e51E5(w) 7] (83)

w

is the light intensity-dependent phase of the light. This phase is responsi-
ble for the emergency of circular birefringence. The refractive index is
connected with the nonlinear polarization by the relation [122, 123]

n,én E (r,t) =27P (r,t) (84)

According to Eq. (79) one easily finds the variations én ,:
2 B ) B )
on y(@) = —[g?IEZ(0)I* + 2831E5 (@) /'] (85)

So, the difference between the right- and left-polarized indices is deter-
mined as

on (o) —én_(w) = —Tr[6xxxyy(—w,— w,0,w0)
o (86)

x(IEZ(@)’] = 1E5 () %)
The expression above is related to the self-rotation of the polarization
ellipse, described by Maker et al. [124]. This effect occurs during interac-

tion between a classical field and a nonlinear medium. To search for
squeezing it is necessary to use a quantum description.

B. Quantum Treatment: Self-squeezing
The quantum description is based on the analytical form of the Hamilto-

nian. Generally, the Hamiltonian can be written as

H = Hy + Hpree + H, (87)
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where H,, is the Hamiltonian for the nonlinear medium and Hgygy is the
Hamiltonian for the free field. Our interest bears on H,, the Hamiltonian
describing the interaction between the medium and the propagating light.
In nonlinear optics [125], it is useful to construct an effective interaction
Hamiltonian. Such a Hamiltonian can be obtained from the averaged free
energy of the system,

H, = deV (88)

Formally, in the quantum approach, we replace the field vectors by field
boson operators, defined as

2rho |\ R
+ (89)

£ - i

where 4,47 are the annihilation and creation operators, satisfying the
commutation relations

i

[4,4,] =
(90)
7=

4., 4;

ar,af) =0
i ij

On insertion of the averaged free energy (77) into the formula (88) one
finds [67, 68]

H, = - = |gp(a12a%+ a2%2 ) + 4gatata,a_ (91)

where the nonlinear coupling parameters have been denoted by

_ V(2rhe \

BT n2v

(92)
o V{(2mhe \* "
81 = P ni—V 82

We use the Hamiltonian (91) to find the field operator time dependence,
according to the Heisenberg equation. Taking into account only the
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effective interaction Hamiltonian, we write

dEt(w) 1., .
a4 E[Ei(w)’Hl] (93)

The time evolution, generally, is considered in a quantum cavity. Since the
propagating field must depend on the path z traversed in the medium, we
replace ¢t by —n_z/c and obtain the Heisenberg equation in the new form

da (z) in, .

Erraii s Gl &
On insertion of (91) into (94) and using the commutation relations (90),
one easily finds

dﬁi(‘z) .na) —wA+ A =wA+ A A
T dz - graia.+ 2gydzdz|a, (9)

Since the number of photons in the two circular components d1d,d*d_
are constants of motion, Eq. (95) has the simple exponential solution
[67, 68]

i.(z) = expli(=aL(0)d ,(0) + 3a%(0)d5(0)]d,(0) (%)

with the nonlinear parameters
e= gy 8=2-"gf (97

This exact operator solution (96) for the field propagating in an isotropic
nonlinear medium can be used to search for quantum effects.

Note that this solution is the general two-mode case of the single-mode
solution (61), calculated on the anharmonic oscillator model. If the light is
circularly, say right-polarized, then the second term in the exponential
vanishes and we get the result for the anharmonic oscillator.

We assume that the incoming beam is in a coherent state with ampli-
tude consisting of two components |a) = |a_, a_). To search for squeez-
ing we introduce the quadrature components of the field (22). On insertion
of (96) into the formulas (65) we obtain the following normally ordered
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quadrature variances [67, 68]:

((A0,)":) = 2Re[a? explic
+(exp(i2e) — 1)la, |> + (exp(i28) — 1)|a_|]
—a? exp[2(exp(ic) — 1)la, |?
+(exp(i5) — 1)la_|?]] (98)
+ 2la, I*[1 - exp[2(cos & — 1)la, |’
+2(cos 8 — 1)lar_|?]]

((AB,):)= —2Re[ -]+ 2la, [ -+ ]

where the expressions in brackets in the second equation are the same as
in the first equation. On replacing the indices + and — we obtain the
variances of the left-polarized quadrature components Q_, P_. If one of
the variances has a value less than zero the field is in the squeezed state.

Because of the complexity of the exact analytical results (98) it is
difficult (without numerical analysis) to determine whether they are nega-
tive or positive. In real physical processes the nonlinear parameters are
very small ¢ << 1, § < 1. This means that significant changes in fluctua-
tions appear for large numbers of photons in the components |a|> > 1, in
other words, for strong field. This fact allows us to expand the expressions
(98) in_power series and to neglect all terms less than ezla,+? or
8zla i|2. On the assumption that the phase of the incoming beam is zero,
ie, la,] = a,, we obtain the following simpler formulas for the normally
ordered variances:

<:(AQA1)2:> = Z(B%t-'_ VoY) = Z[Bj: sin2(B .+ v+)
+(BA+ vy _)eos2(B .+ vs)]

<:(Aﬁi)2;>=2(-..)+2[...] (99)
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where the brackets in the second equation include the same expressions as
those in the first equation. The parameters are defined as

B.= ezla > and y,=ézla |? (100)

Considering only one mode of the field, for example |a_ |* = 0, Egs. (99)
go over into formulas (67) obtained on the anharmonic oscillator model.

The numerical results based on the exact solution (98) have been
discussed in detail by Tana$ and Kielich [67, 68], showing the possibility of
obtaining 98% of squeezing in one of the components for a proper choice
of the initial phase. We should note that the canonical nonlinear transfor-
mation (96) differs from the transformation (48) for ordinary squeezing
and this is the reason why the states obtained in this model also have
different properties. Tana$ and Kielich [67, 68] proposed the term “self-
squeezing” for the effect, because it depends on the intensity of the mode
undergoing it. In 1986, when analyzing the states created due to self-phase
modulation in a nonlinear medium, Kitagawa et al. {88, 89] obtained a
quasiprobability density with crescent shape. In fact, crescent squeezing is
the same as self-squeezing. Tana$ et al. compared the two representations
in Ref. 87.

VI. SECOND-HARMONIC GENERATION
BY SELF-SQUEEZED LIGHT IN NONLINEAR MEDIUM

A. Second-Harmonic Generation: Classical Treatment

Second-harmonic generation is an important and highly useful nonlinear
process. Its first observation by Franken et al. [41] has been the source of
much progress in nonlinear optics. Classical effects in second-harmonic
generation have been studied extensively [122, 123], and before we de-
scribe squeezing we would like to recall some of them.

In the classical approach it is assumed that the field at the space—time
point (r, ¢) is the superposition of two ficlds with the fundamental fre-
quency w and the second-harmonic frequency 2w:

E(r,t) = E*(w)expi(k, ' r — wt)]

(101)

+ E*(2w)exp|i(k,, ' T — 20t)] + c.c.
where k ,k,, are the wave vectors of the fundamental and second-
harmonic light waves. We are interested in the interaction between the
field and the nonlinear medium. Following Bloembergen [122] and Kielich
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[126], the time-averaged free energy can be written in the form
F=—xu(—20,0,0)E  (20)E/ (0)E{ (w)exp(iAk, " T) + c.c.
-—%[xiik,( -0, w,0,0)E (0)E (0)Ef (0)E (w) + c.c.]
=3[ xijpi( @~ 20,0,20) E] (0) E; (20) E{ (w)
XE(2w) + c.c.]
— [ X (20, 20,20,20) E; 20) E; (20)
XEf(2Qw)E(Qw) + C.C.]

(102)

where Ak, =2k, — k,,. E*(w), E*(Q2w) are the components of the
field vectors. Recall from the preceding section that nonlinear polarization
can be obtained from the averaged free energy (72). In this case we get the
following form of the polarization components:

P (w) = 2xi(—w,— w,2w)Ej_(w)E,:“(2w)exp(—iAk2 °r)
+ 3Xijkl(—w1_ w,w, w)Ej_(w)E]:—(w)Ef-(w) (103)
+ 6x;ju(—w,— 20, w,Zw)Ej“(Zw)E,:“(w)Ef(Zw)

and for the second-harmonic frequency

P7(20) = xiu(—20, 0, 0) Ef" (0) E{ (w)exp(iAk, - 1)
+ 6xx( —20,— 0,20, w)Ej_(w)E,:"(Zw)E,+(w)(104)
+ 3xu(—20,- 20,20,20) E; (20)
XEf(Qw)E!(Qw)

In Eq. (103) the third-rank tensor x,;(—®,— »,2w) describing second-
order susceptibility is related to the reconversion of part of the second
harmonic back into the fundamental beam, x;; (- ®,~ 0, w, ®). As we
showed in Section V, this is related to self-induced ellipse rotation (86)
and x;; (—,— 20, »,2w) determines the optical Kerr effect at » due to
the intensity |E~(2w)|% In Eq. (104) the tensor Xij(—20, 0, w) is respon-
sible for second-harmonic generation [41]; x;/(—2w,— 0,20, w) deter-
mines the variation of the refractive index at 2w, stimulated by the
intensity |E (w)|% and Xijl{—20,— 20,20, 20) is connected with the
effect of self-induced intensity-dependent refractive index at 2w.

Since Egs. (103) and (104) concern a nonresonant, nondissipative pro-
cess, it is possible to derive the following symmetry relations for the
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susceptibility tensors:

Xi(—0,— 20,0,20) = xy;( —20,- 0,20, ®)

Xi";k,(—w,— 20,0,2w) =ka.(—a), 2w, 0,20) (105)

X;kjkl( —w,” 0,0,0) = Xklij( —w,~ 0,0,0)
Xi(—0,— 0,20) = x;;( 20,0, 0)

Let us consider a nonlinear isotropic medium with a center of symmetry.
In this case the tensors x,;(—2w, ®, w), which are responsible for the
generation of the second harmonic, vanish. To arouse the wave at fre-
quency 2w an externally dc electric field has to be applied to destroy the
center of symmetry. Then the medium becomes capable of generating the

second-harmonic beam. Assuming the dc electric field to act along the y
axis, the third-rank tensors can be written [127] as follows:

Xisz(Eo) = Xlzjl;()(o) + X,f,‘:yyaijEk + XxyxyszkEO + nyxysjkEO (106)

where E° is the external dc field. Since the second harmonic propagates
along the z axis, like the fundamental beam, the x,;(0) vanish [79].
Moreover, considering the isotropic medium with center of symmetry we
take into account the symmetry relation (75). As was shown in Section V,
it is convenient to have recourse to circular components. If the field
propagates along the z axis they are defined by formulas (76). On using
this basis the averaged free energy takes the form [79]

F= -4t E7(0)’EL(0) + EZ(0) E*(0)7]
+4g3EZ(0)EZ(w)EI(0)EX(w)
+g3°| E;(20)°E1(20)" + EZ(20) EX (20 )
+4g3°E; (20)E~(20) E* (20) E*(20)]
~i[ g2 Ez2w) E*(w)” - EZ(20)E*(w)’]
—2g2*[E;(20) — EZ(2w)]|EX(0)E*(w)]exp(iAk,r) + c.c.
~82*[E7(20) E~(0) E}(0) E*(20)
+E-Z2w)E;(0)EX(0)EI(2w)]
—g3°|EXQw)EZ(0)EX(w)EI(20)
+E7(20)E7(0)E}(0)E*(2w)]
~£3*[ E5(20) E;(0) EX(@) E1(20)
+E-(2w)EZ(0)EX(0)E*(2w)]

(107)
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The nonlinear coupling parameters are defined as (Q = w or 2w)
= Xy (—Q,— Q,0,0)
28 = 3 Koo (-0~ ©,0,9) + x,y0(— 0, 0,9,0)]
g = 21/2Xxxyy(-—2w,w,w,0)E3
82 = 27 Xy (—20,©,0,0) + Xy, (—20, 0, @,0)| E} (108)
gl = 3[,\/””(—2(»,— 0, 0,20) + x,,,(—20,— 0, w,2w)]
82° = 3[ Xaayy(—20,— ©,©,20) + Xy —20,~ ©,0,20)]
83 = 3[ Xayi( —20,— ©,©,20) + Xy —20,~ ©,0,20)]

In accordance with formula (72) we obtain the following components of
the nonlinear polarization:

Pt(w) = [P1EZ(w)I” + 2881E5(0) P] E ()

~2i[ +g3*°E1(2w) E3 ()

~g; [ EX(20) - E*(20)] E5(w)] (109)

xexp(—iAk, 1) + gZ*E-(2w)E} (w)E{(2w)

+[g2°1E720) > + g2°1E5(20) IP] EL(w)

and at 2w
Pi(2w) = [g°IE3(20)* + 2g2°|E7(20) )| EL(20)

+i[ £82°E % ()’ T gJ°E*(w)E*(w)]
xexp(iAk, ' r) + g2°E-(0)Ef(w)EX(2w)
+[82°lEz(0)I” + g3°E3(0) IP] EL(20)

(110)

On insertion of these expressions into the Maxwell equation (80) and
neglecting terms unrelated to the self-induced intensity-dependent effect,
one finds

dEL(Q) _ 270

dz [ MEL(Q) + 22fIEZ(Q) ] EL(Q) (111)

Since (d/d2)|E7 |2 = 0, Eq. (111) possesses the simple solution
E{(Q,z) = exp(i¢ ,z) EL(Q,0) (112)
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where the phase shifts have the form:

$.=1

n

27 Q)
—[gPIET (@) + 28 R1E7 () ] (113)
0

Equation (112) represents the general solution for the fundamental wave
(Q = w) (obtained above in Eq. (82)) and, at the same time, for the second
harmonic () = 2w).

Similar to the case of light propagation at w alone (Section V), it is
possible to analyze the birefringence effects for the fundamental and
second harmonic. Applying formula (84) and inserting the nonlinear
polarization of Eqgs. (109) and (110), one can easily calculate the variations
of the refractive indices:

27 B ) ~ 5
on4(w) = —=[gFIEL(w)* + 2831E3(w)|

+82°lEz(20)|* + g2°|E; (20) 1]
(114)

277- 2w - 2 2w - 2
on,(2w) = ;——[gllEi(Zw)I +2g2°|E7 (20)]

2w

ol - 2 ol - 2
+82°|E7(0)|* + g2°|EL ()]
Hence, the difference between the two circular components takes the form

én (w) —én_(w)

2T 5 .
= ;——[6/\/””(—(»,—- w,w,w)[IE:(w)I — |E7 (o)l ]
. (115)

+3[)(xxyy(—w,— 20,0,20) — X,y (—0,— 2w,w,2w)]
X(IEZ(20)* - |E(20)1?)]
and, at 2w,
on, (2w) — 6n_(2w)
2 5 )
= -’1—[6,\/””(—20),-— 2w,2w,2w)[|E:(2w)| - |E7(Cw)l ]
2w

+3[X”yy(—2w,— 0,20,0) = Xy —20,- 0,20, w)] (116)
X (IEZ(w)I* = |E5()1%)]
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The first term of Eq. (115) was discussed in Section V. The second term is
responsible for the additional anisotropy caused by the intensity of the
second harmonic. The effect determined by expression (116) has not been
studied experimentally.

B. Squeezing in Second-Harmonic Generation

As was done in Subsection V.B, the electric field vectors should be
replaced by boson operators in the quantum description. The operator for
the fundamental field was defined in (89). Similarly, the operator for the
second-harmonic field can be determined as

2mhl2w 1/2A
b, (117)

E*Qw) =i
i( w) 1( n%wV

where b i,IS‘; are the boson annihilation and creation operators for
photons at the frequency 2w. These operators obey the boson commuta-
tion relations (90) and additionally
[a,,6;] = [a*. 5] = [a. 7] =0 (118)
To consider the squeezing effect it is necessary to have available the
form of the field propagating through the nonlinear medium. We get it
from the Heisenberg equation (93), taking into account the interaction
Hamiltonian (slowly varying amplitude approximation), which can be de-

rived from formula (88). On insertion of the averaged free energy (107)
into (88) the interaction Hamiltonian, in our case, takes the form

X exp(iAk, - r) + h.c. (119)

A A

- h[gsz“’(ﬁidté+l3_+ bidid_b+)
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where the nonlinear coupling parameters (108) are redefined:

2
- [0
2 n\ nyv ‘
172
g2o = K 2mh2w 2mhw 420 (120)
SR W % nzy |74
e V(2rhle\(27he |
856,7 = z n%wV niV 85,6,7

Replacing the time ¢ by the path of propagation z, as in Section V, the
Heisenberg equations become

dd.(z)

ing, .
dz _—hc_[ai’H]

(121)

db . (2) in,, 1o
jz hz [b+’H]

In accordance with formula (119) one obtains the general operator equa-
tions of motion for the fundamental and second-harmonic fields:

dﬁi(z) .nw
_ L =

dz c

|
[—
—
o3
=g
[
Ht+
ESH
H
+
[\
Ll
Neg
D
H+
ESH
+
e
D>
+

dgi—(z) .n2w

dz c

The first equation in (122) is a generalization of the expression (96). Since
both equations in (122) contain interference terms, they should be solved
simultaneously. This is a difficult task and some approximations are
needed. To start with we assume that the dominant process resides in
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self-interaction of the fundamental beam that is described by the parame-
ters g and g5. Hence, this assumption means that the other coupling
constants are smaller and can be neglected. We next apply the solution
(96) as zero-order solution in solving (122) for the second harmonic
perturbatively. On formal integration, we arrive at the following equation
[79]:

bo(z)=5b,(0 )+1"ﬂ] dz’ exp(iAk,z')| g3°4% (2")
(123)

~2g3°a,(2")a_(2")]

where terms containing the second-harmonic operators b +(z) have been
neglected. Next, we assume that the fundamental field is in a coherent
state with circular polarization, for example right. Automatically the term
with g2 vanishes (a_la, > = 0). Moreover, the second harmonic does
not exist for z = 0 (b N [a » = 0). These assumptions enable us to find
simple formulas for the variances of the quadrature operators. Inserting
(96) into Eq. (123) and using the definitions of the quadrature operators
for the second-harmonic field we obtain their normally ordered variances,

<:(AQ+)2:>
<:(A13+)2:>
= — ZK%wfzdz'fzdz”[ tal cos[(Akz +e)(z' +2")
0 0
+4ez" + |a, |*sin2s(2' + z")]exp[(cos 2e(z' +2") — 1)|a+|2]
Fat cos[(Ak2 +e)(z' +2") + la, |*sin2ez’ + |a, |*sin 282"]
Xexp[(cos 26z’ + cos2ez" — 2)|a+l2]
—la, [*cos[(Ak, + £)(2' — 2" + la, P sin2e(2" — 27)] (124)
Xexp[(cos 2¢(z' — 2") - 1)Ia+|2]
+|a, |2cos[(Ak2 +e)z' —2") + la, |*sin2¢ez’ — |a,|*sin 252"]

Xexp[(cos 2ez’ + cos2ez” — 2)|a+|2]
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where the coupling parameter is determined as

nZw —
Kyw = —C—g;f‘” (125)

w

The squeezing effect occurs, in the second-harmonic beam, if one of the
variances in (124) takes a negative value. These equations are very compli-
cated and difficult to analyze. From Section V, we find that it is possible to
make the assumption that ez < 1. Then the variances can be expanded in
power series and we retain only terms containing £z|a 12 = 1 for |a + 12
> 1. Moreover, we assume phase matching, i.e., Ak, = 0, and that the
phase of the incoming beam is zero, ie., |a, | = a,. On these assump-
tions the following approximate expressions are obtained:

2

<:(AQ+) :> = 22;’7—2[2005 B, —cos2B, — 1 — B,(sin2pB, — sin B,)
2
+(cos B, — 1 + B, sin 32)2]
A \2 n . .
<:(AP+) :> =~ ZE[—ZCOS B, + cos2B, + 1 + B,(sin28, — sin B,)
2
+(sin B, — B, cos 32)2]
(126)
where we introduce
B, = 2ezla,|? (127)

By n we denote the part of the fundamental beam power transferred into
the second harmonic,

263 la %22 I(2w)

n = ~
la, |? (o)

(128)

The approximate results (A126) are convenient to analyze. The normally
ordered variances of the P component of the second harmonic is plotted
in Fig. 3 against £zla, | together with the Q component of the funda-
mental beam (99) showing that the squeezing effect in the second har-
monic (solid line) is correlated with the self-squeezing in the fundamental
beam (dashed line), because they are negative for small values of B,. The
squeezing from the ) component of the fundamental beam can be said to
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Figure 3. The approximate variance of the Q component of the fundamental field
(dashed line) and the approximate variance of the P component of the second-harmonic field
(solid line) are plotted versus B,/2 = ezla, |*(n = 0.1).

be transferred, in some sense, into the p component of the second
harmonic. However, we have to recall that these results (126) have been
obtained under the approximation that there was no coupling of the
second harmonic back into the fundamental. Hence, if n takes a large
value this assumption breaks down.

VII. THIRD-HARMONIC GENERATION BY SELF-SQUEEZED
LIGHT IN NONLINEAR MEDIUM

In a nonlinear medium that, with regard to its symmetry, admits third-
harmonic (not second-harmonic) generation, two nonlinear processes oc-
cur simultaneously: first, nonlinear propagation of the fundamental field,
described in Sections IV and V, leading to the self-squeezing effect, and
second, third-harmonic generation. In the classical treatment the latter is
a well-known phenomenon [123]. Since the self-squeezed light produces
the third harmonic we can suppose that, as in the second-harmonic case
(Section V), squeezing is transferred to the beam at 3w.

To find the squeezed states in this process we have to find the equation
describing the evolution of the field. As in the preceding sections, we use
the Heisenberg equation (93). In quantum description, using a spherical
basis, the third harmonic can be written as

2rh3e \?
nsV

w

Ef(3w) = i( ¢, (129)
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where ¢ ,,é% are the annihilation and creation operators for a photon at

the frequency 3w. The interaction Hamiltonian, in terms of these opera-
tors, takes the form [80]

A, = 2ng*(e1a%a_+ ¢*a%a, Jexp(iMk;z) + he.  (130)

where the nonlinear coupling parameter is determined as

)

=3 V(2wh3w\'?( 2mhe |
- n, V nv Xxxxx(_3w: w, w, ll)) (131)
3 w

w

The susceptibility tensor obeys relation (75). We have assumed that both
beams propagate along the z axis with the linear phase mismatch Ak, =
3km - k3w.

Applying the Heisenberg equation (93) and replacing ¢ by z, one easily
finds the following relations [80]:

dé (Z) n3w_ A

_(iiz_ =i . g°°4% (z)d ;(z)exp(iAk;z)

da (z) M _ R R A

—, -~ AE2eL(2)al(2)ak(2) (132)

+8:(2)a%%(z)]exp( —iAk,z)

Equations (132) show the coupling between the third harmonic and
fundamental beam. On the assumption that the main process is the
self-squeezing described by (95) it is possible to use the solution (96) as the
zero-approximation solution solving the first equation of (132). On formal
integration the following formula is obtained:

¢,(2) =¢,(0) + 2ix3w_/:ﬁi(z')d;(z')exp(iAk3z’) dz' (133)

where we denote

n3w —
K3, = 783“’ (134)

To say whether squeezing occurs in the third-harmonic beam it is neces-
sary to analyze the quadrature variances (65) defined for the operators
¢,,6%. We assume that the incoming field is a coherent state at z = 0.
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Using Eq. (105) and taking into account the solution (96) the normally
ordered variances are found [80]:

z z
- 8K§wf0 dz'f0 dz’[Re ata? expli(z' +2")(Ak; + & + 23)

+(expli( 2z’ + 2")(2¢ + 8)] — V], |?

+(expli(z' + 2" (e + 28)] — 1)la_|?

+iz"(5e + 26)]

~Re ata? expli(z’ +z")(Ak + ¢ + 20)

+(expliz'(2¢ + 8)] + exp[iz"(2e + 8)] — 2)le,I?

+(expliz'(e + 28)] + expliz"(e + 28)] — 2)|a_|2]

—la, [*la_[*exp[ —i(z' = 2")(Aks + £ + 25) (135)

+(exp[—i(z' — 2")(2¢ + 8)] — Vla, |

+(exp[ —i(z' — z")(& + 28)] —)la_lz]

+lar, *la_|” exp[ —i(z' — 2")(Aky + & + 25)

+(exp[ —iz'(2¢ + 8)]

+expliz’(2e + 8)] — 2)la, > + (exp[ —iz'(e + 26)]

+exp[iz”(e + 28)] — 2)!a_|2”
The variance of the left-polarized component is obtained by replacing all
plus subscripts by minus subscripts in Eq. (135). The expressions for the
quadrature operators P, differ in the signs of their Re terms from
Eq. (135). It is obvious that the variances are zero if only one of the
circular components exists in the incoming beam. Hence, we take into
account a beam linearly polarized along the x axis, i.e., a,=a_=a/ V2.

Moreover, we assume that the parameters ¢ and & defined in formula 97
are equal. Using the x, y, z basis, as the simplest in this case, one easily
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obtains the following equation:

<:(AQX)2:> = — 2K§w|aI(’fozdz'fozdz"[exp[(cos 3e(z' +2") — 1)|a!2]
><cos[(Ak3 +3g)(2' +2") + 9ez" + |al’sin3e(z' + z”)]
—exp[(cos 3¢z’ + cos3ez" — 2)|a|2]
><cos[(Ak3 +3e)(z' +2") + |lal®(sin3ez’ + sin3ez”)]
—exp[(cos3e(z’ -z") - l)IozIZ]cos[(Ak3 +3e)(z' - 2")
+lal®sin3e(z’ — z")] + exp[(cos3ez' + cos3ez” — 2)la|2]
><cos[(Ak3 +3e)(z' — 2") + lal*(sin3ez’ — sin3z—:z”)”

(136)

This equation is still too complicated. Since the parameter ¢ is very small
in real physical situations it is possible to expand formula (136) in a power
series and to neglect all terms less than |a|282 =~ 1. On the assumption of
nonlinear mismatch Ak, = 0, the approximate equations for the quadra-
ture variances of the third harmonic can be written in the form

<:(AQX)2:> ~ 2—112—{3[2 cos By — cos 2B, — 1 — B,(sin2B; — sin B5)]
3
+(cos B; — 1 + Bysin [33)2}
<:(A13x)2:> ~ 2%{3[—2c0s By + cos2B; + 1 + B,(sin2B; — sin ;)]
3

+(sin B; — B5 cos B5)°)
(137)

where

B, = 3ezlal® (138)
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Figure 4. The approximate variance of the Q: component of the fundamental field
(dashed line) and the approximate variance of the P component of the third-harmonic field
(solid line) are plotted versus B5/3 = ezlal*(n = 0.1).

and

3k? lal®2?  I(3w)

TT T RE T I(e)

(139)

is the power-conversion ratio describing the part of the power of the
fundamental that is transferred to the third harmonic.

The normally ordered variance (139) for the P component of the
third-harmonic beam is plotted in Fig. 4 in comparison with the variance
of the Q component of the fundamental (99). Squeezing occurs when the
variances have negative values. The curves in Fig. 4 show a correlation
between squeezing in the P component of the third harmonic (solid line)
and self-squeezing in the Q component of the fundamental (dashed line)
for small z. We can say that squeezing is transferred, in some sense, from
the fundamental to the third-harmonic beam. The squeezing effect in the
third harmonic depends on the conversion ratio. If 7 increases, then the
squeezing increases too. However, we have to recall that the coupling of
the third harmonic back to the fundamental beam has been ignored in our
considerations. Hence, the approximation is not true for large n. Compar-
ing Fig. 3 with Fig. 4 one can say that the correlation between the
self-squeezed fundamental beam and the third harmonic is stronger than
that between the fundamental and second harmonic.
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VIII. CONCLUSION

In this paper we have considered the light squeezing at propagation in a
nonlinear isotropic medium. The exact operator results obtained in the
two quantum descriptions show a dissimilarity between the squeezing
occurring in propagating light and the ordinary squeezing, briefly recalled
in Section II. This effect has been named self-squeezing by Tana$ and
Kielich [67, 68]. We have also analyzed the second- and third-harmonic
beams, generated by self-squeezed light in an isotropic medium with a
center of symmetry.

To make the medium capable of generating a wave at double fre-
quency, an external dc field has to be applied. The classical and quantum
equations describing the time evolution of the fundamental and second-
harmonic beams have been derived under the assumption that the main
process resided in self-interaction of the fundamental field. To discuss the
squeezing in the second-harmonic beam we used the analytical form of
normally ordered variances of the quadrature components. Some correla-
tion between the squeezing in the second-harmonic and self-squeezing in
the fundamental beam is found. One can say that squeezing is transferred
from the fundamental into the second-harmonic beam.

In the same way, third-harmonic generation has been described (obvi-
ously without assuming an external dc electric field). The results obtained
in our approach, similarly to the second-harmonic case, show correlation
between squeezing in the third harmonic and self-squeezing in the funda-
mental. It is seen from Fig. 3 and Fig. 4 that this correlation is stronger in
third-harmonic generation.

The normally ordered variances of the quadrature components of the
second- and third-harmonic beams obtained in our treatment are directly
proportional to the conversion ratio n. In our discussion we have taken
into account that only 10% of the power of the fundamental beam is
transferred into the harmonics field. For higher conversion ratio our
assumption breaks down and the pairs of equations (122) and (132) have to
be solved simultaneously.

We should emphasize that to obtain a considerable amount of squeez-
ing in the second and third harmonic by the mechanism discussed in this
paper, the linear mismatch should be much smaller than the intensity-
dependent nonlinear mismatch.

The past few years show that interest in the optical phenomena,
especially quantum phenomena, occurring in nonlinear media has been
increasing steadily [128-169]. One can expect great advances in the
research.



536 S. KIELICH AND K. PIATEK

20.
21.
22.
23.

24.

25.
26.
27.
28.
29.

30.

31
32
33
34
35
36

References

. D. F. Walls, Nature 306, 141 (1983).

. R. Loudon and P. L. Knight, J. Mod. Opt. 34, 709 (1987).

. K. Zaheer and M. S. Zubairy, Adv. At. Mol. Opt. Phys. 28, 143 (1990).

. M. C. Teich and B. E. A. Saleh, Quantum Opt. 1, 153 (1989).

. Special issue of J. Mod. Opt. 34, Nos. 6/7 (1987).

. Special issue of J. Opt. Soc. Am. B 4, No. 10 (1987).

D. F. Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).

. L. Mandel, Phys. Rev. Lett. 49, 136 (1982).

. Z. Ficek, R. Tana$, and S. Kielich, Opt. Commun. 46, 23 (1983).

. W. Vogel and D. G. Welsch, Phys. Rev. Lett. 54, 1802 (1985).

. R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).

. D. Stoler, Phys. Rev. Lert. 33, 1397 (1974).

. G. J. Milburn and D. F. Walls, Opt. Commun. 39, 401 (1981).

. K. Wédkiewicz and M. S. Zubairy, Phys. Rev. A 27, 2003 (1983).

. A. Lane, P. Tombesi, H. J. Carmichael, and D. F. Walls, Opt. Commun. 48, 155 (1983).
. G. Sharf and D. F. Walls, Opt. Commun. 50, 245 (1984).

. H. J. Carmichael, G. J. Milburn, and D. F. Walls, J. Phys. A 15, 469 (1984).
. M. Wolinsky and H. J. Carmichael, Opt. Commun. 55, 138 (1985).

. P. G. Fernandez, P. Colet, R. Toral, M. San Miguel, and F. J. Bermejo, Phys. Rev. A
43, 4923 (1991).

H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 334 (1979).
R. S. Bondurand, P. Kumar, J. H. Shapiro, and M. Maeda, Phys. Rev. A 30, 343 (1984).
J. Pefina, V. Pefinova, C. Sibilia, and B. Bertolotti, Opt. Commun. 49, 285 (1984).

M. D. Reid and D. F. Walls, Opt. Commun. 50, 106 (1984); Phys. Rev. A 31, 1622
(1985).

H. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32,
1550 (1985).

J. Janszky and Y. Y. Yushin, Opt. Commun. 60, 92 (1986).

G. V. Varada, M. S. Kumar, and G. S. Agarwal, Opt. Commun. 62, 328 (1987).
M. S. K. Razmi and J. H. Eberly, Opt. Commun. 76, 265 (1990).

M. S. K. Razmi and J. H. Eberly, Phys. Rev. A 44, 2214 (1991).

R. E. Slusher, L. W. Holberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett.
55, 2409 (1985).

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. Devoe, and D. F. Walls, Phys.
Reuv. Lett. 57, 691 (1986).

. M. W. Maeda, P. Kumar, and J. H. Shapiro, Opt. Lett. 12, 161 (1987).

. M. S. Zubairy, M. S. K. Razmi, S. Igbal, and M. Idress, Phys. Lett. A 98, 168 (1983).
. R. Loudon, Opt. Commun. 49, 67 (1984).

. P. Meystre and M. S. Zubairy, Phys. Lett. A 89, 390 (1982).

. A.S. Shumovsky, F. L. Kien, and E. 1. Aliksenderov, Phys. Lett. A 124, 351 (1987).

. S. Y. Zhu, Z. O. Lin, and X. S. Li, Phys. Lett. A 128, 89 (1988).



SQUEEZED STATES OF LIGHT IN SECOND AND THIRD HARMONIC 537

37. J. R. Kuklifiski and J. L. Madajczyk, Phys. Rev. A 37, 3175 (1988).
38. M. J. Gagen and G. J. Milburn, Opt. Commun. 76, 253 (1990).
39. O. Aytir and P. Kumar, Opt. Lett. 15, 390 (1990).

40.
41.

42.

43,
44.
45,
46.

47.
48.
49.
50.

51,
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67
68
69
70
71
72
73
74

Ling-An Wu, H. J. Kimble, J. L. Hall, and Huifa Wu, Phys. Rev. Lett. 57, 2520 (1986).
P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118
(1961).

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918
(1962).

D. F. Walls, Phys. Lett. A 32, 476 (1970).

B. Crosignani, P. Di Porto, and S. Solimeno, J. Phys. A 5, L119 (1972).

N. Nayak and B. K. Mahanty, Phys. Rev. A 15, 1173 (1977).

J. Pefina, V. Pefinova, and L. Knesel, Acta Phys. Pol. A 51, 725 (1977); Czech. J. Phys.
B 27, 487 (1977).

V. Pefinova and J. Pefina, Czech. J. Phys. B 28, 306 (1978).
A. D. Stolarov, Zh. Prikladnoy Spektroskopii 25, 236 (1976).
M. Kozierowski and R. Tana§, Opt. Commun. 21, 229 (1977).

S. Kielich, M. Kozierowski, and R. Tana$, in L. Mandel and E. Wolf (Eds.), Coherence
and Quantum Optics 4, Plenum, New York, 1978, p. 511.

R. Hanbury-Brown and R. W. Twiss, Proc. Roy. Soc. London Ser. A 243, 291 (1957).
D. F. Walls, Nature 280, 451 (1979).

H. Paul, Rev. Mod. Phys. 54, 1061 (1982).

V. Pefinova and J. Pefina, Czech. J. Phys. B 28, 1183 (1978).

V. N. Gorbaczev and P. H. Zanadvorov, Opt. Spektrosk. 49, 600 (1980).

K. J. McNeil, P. D. Drummond, and D. F. Walls, Opt. Commun. 27, 292 (1978).
P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Commun. 28, 255 (1979).
P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Acta 27, 321 (1980).

P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Acta 28, 211 (1981).

L. Mandel, Opt. Commun. 42, 437 (1982).

M. Kozierowski and S. Kielich, Phys. Lett. A 94, 213 (1983).

S. Kielich, M. Kozierowski, and R. Tana$, Opt. Acta 32, 1023 (1985).

S. Kielich, R. Tana$, and R. Zawodny, J. Mod. Opt. 34, 979 (1987).

L. A. Lugiato, G. Strini, and F. De Martini, Opt. Lett. 8, 256 (1983).

S. Friberg and L. Mandel, Opt. Commun. 48, 439 (1984).

R. Tana$, in L. Mandel and E. Wolf (Eds.), Coherence and Quantum Optics 5, Plenum,
New York, 1984, p. 645.

. R. Tana$ and S. Kielich, Opt. Commun. 45, 351 (1983).

. R. Tana$ and S. Kielich, Opt. Acta 31, 81 (1984).

. S. Kielich, R. Tana$, and R. Zawodny, Phys. Rev. A 36, 5670 (1987).
. G. J. Milburn, Phys. Rev. A 33, 674 (1986).

. G. J. Milburn and C. A. Holmes, Phys. Rev. Lett. 56, 2237 (1986).

. B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).

. C. K. Hong and L. Mandel, Phys. Rev. A 32, 974 (1985).

. M. Kozierowski, Phys. Rev. A 34, 3474 (1986).



538

75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111,

112.
113.
114.

S. KIELICH AND K. PIATEK

M. Hillery, Opt. Commun. 62, 135 (1987).

A. Sizman, R. J. Horowicz, G. Wagner, and G. Leuchs, Opt. Commun. 80, 138 (1990).
A. Luk§, J. Pefina, and J. Krepelka, Acta Phys. Pol. A 72, 443 (1987).

P. Chmela, M. Kozierowski, and S. Kielich, Czech. J. Phys. B 317, 846 (1987).

S. Kielich, R. Tana$, and R. Zawodny, Appl. Phys. B 45, 249 (1988).

S. Kielich, R. Tana$, and R. Zawodny, J. Opt. Soc. Am. B 4, 1627 (1987).

A. Ekert and K. Rzazewski, Opt. Commun. 65, 225 (1988).

M. Kozierowski and V. I. Man’ko, Opt. Commun. 69, 71 (1988).

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hali, Phys. Rev. A 38, 4931 (1988).
T. A. B. Kennedy, T. B. Anderson, and D. F. Walls, Phys. Rev. A 40, 1385 (1989).
A. Luks, V. Pefinova, and J. Pefina, Opt. Commun. 67, 149 (1988).

R. Loudon, Opt. Commun. 70, 109 (1989).

R. Tana$, A. Miranowicz, and S. Kielich, Phys. Rev. A 43, 4014 (1991).

M. Kitagawa and Y. Yamamoto, Phys. Rev. A 34, 3974 (1986).

Y. Yamamato, S. Machida, M. Kitagawa, and G. Bjork, J. Opt. Soc. Am. B 4, 1645
(1987).

A. Miranowicz, R. Tana$, and S. Kielich, Quantum Opt. 2, 253 (1990).
Lu-Bi Deng and Lian-Zhou Zang, J. Mod. Opt. 38, 877 (1991).

D. Mihalache and D. Baboiu, Phys. Lett. A 159, 303 (1991).

A. V. Belinski, Kvantovaya Elektronika 18, 343 (1991).

R. Tana$ and S. Kielich, Quantum Opt. 2, 23 (1990).

V. N. Gorbaczev and E. S. Polzik, Opt. Commun. 77, 247 (1990).

R. Schack, A. Sizman, and A. Shenzle, Phys. Rev. A 43, 6303 (1991).
M. J. Collett and R. B. Levien, Phys. Rev. A 43, 5068 (1991).

V. N. Gorbaczev, Izv. Akad. Nauk SSSR, s. fiz. 55, 219 (1991).
You-bang Zhan, Phys. Lett. A 160, 498 (1991).

You-bang Zhan, Phys. Lett. A 160, 503 (1991).

. Tanas$ and S. Kielich, J. Mod. Opt. 37, 1935 (1990).

. Tana$ and Ts. Gantsog, J. Mod. Opt. 39, 749 (1992).

. Hor4k and J. Pefina, J. Opt. Soc. Am. B 6, 1239 (1989).

. Pefinova and A. Luks, J. Mod. Opt. 35, 1513 (1988).

. J. Daniel and G. J. Milburn, Phys. Rev. A 39, 4628 (1989).

. J. Milburn, A. Mecozzi, and P. Tombesi, J. Mod. Opt. 36, 1607 (1989).
. Pefinova and A. Luk§, Phys. Rev. A 41, 414 (1990).

. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988).

S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989).

D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).

R. Tana$, Ts. Gantsog, A. Miranowicz, and S. Kielich, J. Opt. Soc. Am. B 8, 1576
(1991).

Ts. Gantsog, R. Tana$, and R. Zawodny, Phys. Lett. A 155, 1 (1991).
R. Tana$ and Ts. Gantsog, J. Opt. Soc. Am. B 8, 2505 (1991).
R. Tana$, J. Sov. Laser Res. 12, 395 (1991).

O<QU<®mrARR



115.
116.
117.
118.
119.
120.
121.

122.
123.
124.
125.
126.
127.
128.

129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

151
152
153
154

SQUEEZED STATES OF LIGHT IN SECOND AND THIRD HARMONIC 539

R. J. Glauber, Phys. Rev. 130, 2529 (1963); Phys. Rev. Lett. 10, 277 (1963).
Wei-Min Zhang, Da Hsuan Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).
C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).

C. M. Caves, Phys. Rev. D 23, 1693 (1981).

H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

S. Machida, Y. Yamamoto, and Y. Itaya, Phys. Rev. Lett. 58, 1000 (1987).

T. Debuisschert, S. Reynaud, A. Heidmann, E. Giacobino, and C. Fabre, Quantum Opt.
1, 3 (1989).

N. Bloembergen: Nonlinear Optics, Benjamin, Reading, MA, 1965.

S. Kielich: Nonlinear Molecular Optics, Nauka, Moscow, 1981.

P. D. Maker, R. W. Terhune, and C. W. Savage, Phys. Rev. Lett. 12, 507 (1964).

D. F. Walls and R. Barakat, Phys. Rev. A 1, 446 (1970).

S. Kielich, Acta Phys. Pol. 17, 239 (1958).

S. Kielich, IEEE J. Quantum Electron. QE-5, 562 (1969); J. Opto-Electron. 2, 5 (1970).

F. Kaczmarek and R. Parzyfski: Laser Physics, Part 1, Introduction to Quantum Optics,
Poznafi University Press, 1990.

G. S. Holliday and S. Singh, Opt. Commun. 62, 289 (1987).

D. F. Smirnov and A. S. Troshin, Sov. Phys. USP 153, 233 (1987).

1. Abram, Phys. Rev. A 35, 4661 (1987).

R. Lynch, Phys. Rev. A 36, 4501 (1987).

A. V. Belinski and A. S. Chirkin, Kvantovaya Elektronika 16, 889 (1989).

A. V. Belinski and A. S. Chirkin, Opt. Spektrosk. 66, 1190 (1989).

G. S. Agarwal and R. P. Puri, Phys. Rev. A 40, 5179 (1989).

M. Hillery, Phys. Rev. A 40, 3147 (1989).

C. C. Gerry and J. B. Togeas, Opt. Commun. 69, 263 (1989).

P. S. Gupta and J. Dash, Opt. Commun. 79, 251 (1990).

M. Zachid and M. S. Zurbairy, Opt. Commun. 76, 1 (1990).

Zhi-ming Zhang, Lei Xu, and Jin-lin Chai, Phys. Lett. A 151, 65 (1990).

A. V. Belinski, Kvantovaya Elektronika 17, 1182 (1990).

P. V. Elyutin and D. N. Klyshko, Phys. Lett. A 149, 241 (1990).

L. Zeni, A. Cutolo, and S. Solimeno, J. Mod. Opt. 37, 2085 (1990).

L. A. Lugiato, P. Galatola, and L. M. Narducci, Opt. Commun. 76, 276 (1990).
Zhi-ming Zhang, Lei Xu, Jin-lin Chai, and Fu-li Li, Phys. Lett. A 150, 27 (1990).
A. D. Wilson-Gordon, V. BuZek, and P. L. Knight, Phys. Rev. A 44, 7647 (1991).
I. Abram and E. Cohen, Phys. Rev. A 44, 500 (1991).

R. J. Glauber and M. Lewenstein, Phys. Rev. A 43, 467 (1991).

M. 1. Kolobov, Phys. Rev. A 44, 1986 (1991).

Chin-lin Chai, Fu-li Li, and Zhi-ming Zhang, J. Phys. B 24, 3309 (1991).

. E. M. Wright, Phys. Rev. A 43, 3836 (1991).

. V. Buzek and 1. Jex, Phys. Rev. A 41, 4079 (1990).

. M. Dance, M. J. Collett, and D. F. Walls, Phys. Rev. Lett. 66, 1115 (1991).

. R. B. Levien, M. J. Collett, and D. F. Walls, Opt. Commun. 82, 171 (1991).



540

155.
156.
157.
158.
159.
160.
161.
162.
163.
164.

165.
166.
167.
168.
169.

S. KIELICH AND K. PIATEK

M. Hillery, Phys. Rev. A 44, 4578 (1991).

1. H. Deutsch and J. C. Garrison, Opt. Commun. 86, 311 (1991).

M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153 (1991).

N. P. Pettiaux, P. Mandel, and C. Fabre, Phys. Rev. Lett. 66, 1838 (1991).

M. Brisudova, J. Mod. Opt. 38, 2505 (1991).

L. Z. Zhang, L. B. Deng, and S. G. Sun, J. Mod. Opt. 39, 445 (1992).

G. V. Varada and G. S. Agarwal, Phys. Rev. A 45, 6721 (1992).

G. Drobny and 1. Jex, Phys. Rev. A 45, 1816 (1992).

V. BuzZek, A. Vidiella-Barranco, and P. L. Knight, Phys. Rev. A 45, 6570 (1992).

C. Cabrillo, F. J. Bermejo, P. Garcia-Fernandez, R. Toral, P. Colet, and M. San Miguel,
Phys. Rev. A 45, 3216 (1992).

Y. Qu and S. Singh, Opt. Commun. 90, 111 (1992).

D. Yu, Phys. Rev. A 45, 2121 (1992).

M. Hillery and D. Yu, Phys. Rev. A 45, 1860 (1992).

A. Luk$ and V. Pefinova, Phys. Rev. A 45, 6710 (1992).

Fu-li Li, Xiao-shen Li, D. L. Lin, and T. F. George, Phys. Rev. A 45, 3133 (1992).



