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INTRODUCTION

A number of methods for the visualisation of quantum
properties of the radiation field such as photon antibunching,
sub-Poissonian photon statistics and squeezing have recently
been proposed and in some cases implemented [j,2]. Photon
antibunching is characterized by a field for which the norma-
lized two-time second-order correlation function g™(Kt;%,t+7)
for T >0 is greater than its initial value for T=0 » This
phenomenon describes a situation in which fewer photons
appear close together than further apart, and is the opposite
of photon bunching for which the photons tend to bunch in time
and o®(F,t;K,t+T ) for T >0 is always below its initial
value for T=0 . Photon antibunching is a quantum phenomenon
with no classical analog in the sense that the corresponding.
.state of the electromagnetic field cannot be given in the form
of a positive diagonal coherent-state representation [3]. This
nonclassical effect has been predicted theoretically for meny
optical processes [1,2] and observed experimentally in reso-
nance fluorescence from single atoms [4,5]- However, anti-
bunching venishes if the field is radiated by many atoms, but
is still preserved for two or three atoms [6,7]. This is due
to the fact that antibunching is specific to fields with a
smell number of photons. Hence it is interesting to consider
the possibility of obtaining photon antibunching in sponta-
neous emission from two two-level atoms, where we have two
photons only.

INTENSITY CORRELATION FUNCTION

The aim of this paper is to calculate the spontaneous
emission from two nonidentical atoms with different transi-
tion frequencies and/or different natural linewidths from
the viewpoint of the photon antibunching effect. We concen-
trate on the normalized two-time second-order correlation
function /intensity correlation/ for photons detected in the
same direction R and at different times, defined as
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and particularized for the collective spontaneous emisgion
from two nonidentical atoms, separated by 73, and coupled to
each other via retarded dipole-dipole near-field interaction
as well as to all the modes of the electromagnetic field,.
which are agsumed to be initially in their vacuum state
|£0 $> . The atoms are assumed to have the transition frequen-

es W, and cw, , respectively, the corresponding natural
linewidths 2y4 and 2{ , and both to be initially in their
regpective excited sta

In the far-field limit the positive /negative/ frequen-

¢y part of the field ope ator E(R,t) can be expressed in terms
of the atomic operators f

I
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where K=, /C, w:.th €, = (Ly 1‘604)2/ 2 — the renormalized

frequency of t o-atom system, ¢ is the atomic transition
dipole moment /R — the unit vector in the direction K ,
and S =(S; ) are operators that raise and lower the

energy of t e atom ( and together with the operator S
/describing the energy of the atom, i/ satisfy, the well-—lmown
commutation relations LS}, S”J1=2S7di; and[$F,$%]=

Since the field is mitially' in the vacuum state,‘ the vacuﬂm
part Eo"(ﬁ’ t) does not contribute to the expectation values
of the normally ordered correlation operator in equation (1),
and we obtain for q“’(R ¢; 'ﬁ t+7) the expression
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where 2y¢ is the Einstein A coefficient for the atom ¢ .
According to eq. 3 , in order to study the intensity corre-
lation function we have to find the correlation functions

for the atomic operators. To this aim we use Lehmbergrs mas-
ter equation 8 , generalized to the case of nonidentical
atoms 10 , which enables us to obtain the equation of motion
for the atomic correlation functions, and reads

2 . -
3% = i 2 mlsEg] - A4LS[S, 5]
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where AA':*AQ—A = (49, )2, The collective parameters —Qij
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and Y. , both dependent on the interatomic distance ;, ,
aris ¥rom the retarded dipole-dipole and radiative interac=-
tion between the atoms, and are defined in [8-10].

For two nonidentical atoms, equation (4) leads to a clo-
sed set of equations of motion for the vacuum expectation va-
lues given in eq.(3). By the Laplace transform method, this
get transforms into an easily solvable system of algebraic
equations in transformed varisbles. The _gene al solution for
the intensity correlation function ¢*%(R ¢, R,t+T ) 1is very
complicated; thus, we restrict ourselves to discussing the
solution for g“’( B.t; B,t+7) in some limiting cases of in-
teratomic inteéractions and directions of photon emission.

A/ The case A#0 ,¥,= Y2 and .Qn>>V¥4X2 . Here, the
interatomic separation is very small by comparison with the
regsonant wavelength, the difference between the transition
frequencies of the atoms differs from zero, but the natural
linewidths of the atoms are identical. For simplicity, we
assume that the photons emitted are observed in the same di-
rection ©=90° where (¢ is the direction of observation of
photon emission with respect to the line connecting the two
atoms. On these assumptions, the solution for the correlation
function (3) takes the form

ro- mz%u- 05 20,,%) ]

AM+2a(lta) e WT (1 - ¢ 7)]
where A= Yie/\Vay2

12 o
Equation (5) shgwb; that for small T the intensity correlation
function decreases with T , thus menifesting the tendency of
the photons to bunch in time. This is illustrated in figure 1,
where 9""(9070; 90° ¢ ) 1is plotted for Ne=A/12 , with

(5)

(2) 0 0
9 (90,0; 905T) =

1.0
(2
g }r)
0.8 \
m o\ A=0 Y
0.6~ \\\ /,/
L\ - 7 X /'/
W\ AN /7 A\ /
04k \" V. XN / /]
\\_ /// \\ N // \\\'=10/. ;
- \\\/-/ \ ,\4/// \ e )
0.2 / : \ / \ = /
\\\ // \\__ // \\.2..9/
1 1 1 | | 1 | 1 {
0.0 0.2 0.4 0.6 0.8 .7 T 1.0
192
Figa.1

297



A== tné'resonant waveleigth, and various values of the parame=~
ter A . One photon is observed at the time ¢=0 and the other
at the time T in the seme direction &= 90°. Obviously, for all
values of the parameter A , the intensity correlation function
decreases with T, and for A # ¢ it exhibits quantum beats

with amplitude increasing with growing A . The explanation

of these effects /photon bunching and quantum beats/ can be
given with in the framework of collective states of a two-
-atom system [11].

On this model, our two-atom system is equivalent to a
single four-level system with one upper state [2> , one gro-
wnd state (41> and two intermediate superradient [4> and
subradiant |~> states. For identical(4=0) strongly intera-
cting atoms, the transition probability to and from the subra-
diant state |-> is very small, and only the superradiant
state [+D can radiate. We thus have simple exponential decay
of the photon correlations, and quantum beats do not appear
because we have only one channel for emission. Por nonidenti-
cal atoms with ¢J,#wW, (8+#0) , the states |1 are no lon-
ger eigenstates of the two-atom system. The Hamiltonian of
the system with A7#0 can be rediagonalized [10] introducing
certain eigenstates with two new states "{’t> which already
include the superradisnt [+> and subradiant [—>  states.
In this case we have two channels |y —>[|1> and |Y.>-> 11>
which can radiate simultaneously, since at the same moment
we have radiation of correlated pairs of photons leading to
photon bunching. Moreover, interference between these two
trangitions gives quantum beats.

B/ The case Y4 # Y2 ,4= 0 and ﬂn > VX4¥2 . Here, we
have two atoms with identical transition frequencies &,= ¢z
but different natural linewidths ,,;ty,, + For simpliocity, as
in the case A, we assume that dipole-dipole interaction bets
ween the atoms is very strong and the photons are observed in
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the direction @-= 90". With these assumptions, the correla-
tion function (3) takes the form:

9¥(30° 0;30°T) =
[2+ ut(1—cos2RaT)]

- o (y11¥2)T )
2m2§4 + ZYQSZZEZY # )[)(42 (u? + 22 ) t Y. (—sz-uz)_]f

with u=(ﬁ—{.,)/2¥y,y> and w:(%u—x;)/z {Ysy2 - Equation (¢)
shows sinusoidal modulation of tHe 1ntensiiy correlation
function with amplitude proportional to the difference
of the natural linewidths of the two atoms. Moreover, for
small T the intensity correlation function (6 ) increases
with T and is greater than its initial value for T=0 .
This means that in this cese the photons have a tendency to
anticorrelate in time. This is shown in figure 2, where
‘?a) 90°,0;90°, T ) is plotted for #;,=A/12, A=0 and
ifferent natural linewidths of the atoms.
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