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Magnetic analog of Pockels’

effect in transparent antiferromagnetic crystals

R. Zawodny and 8. Kielich

A. Mickiewicz University,

ARSTRACT

shown that
polarized, Dbecomes endowed with
polarisation on traversal of an
antiferromagnetic crystal acted o% by a
static magnetic field (induction ). The
ellipticity can be linear in B, thus Dbeing
the Magnetic Analog of Pockels’ Effect
(MAPE). If the light wave propagates along
the z-axis (parallel to the highest-fold
symmetry axis of the crystal), the
ellipticity will contain only contributions
linear in in crystals with the symmetry 3m
(CoCO.) at §-8§B, in ones with the symmetries
agd §/mmm &t B=e B, and in ones with the
] etries 4/mmm (CoF,) and m3pm (DyaAl 01 )
gtA =8 _B, whereas for“6/m. 6/mmm and Qma gt
=g B &nd for 3m and /m at B=8. B the
con§ributions linear in will be achmpaniod
by ones dependent on the square of the
magnetic field.

4. INTRODUCTION

Tavger and Zaitaev1 showed that
by adjoining time inversion 1 (electric
current reversal) as an element of symmetry
to the well known 32 point groups G(P) with
crystallographically limited fold-ness of
their symmetry axes one can construct three
kinds of groups G (122 groups in all) as
follows: G(P) (X)G(Ll) = G(NM), G(P) and G(P’)+

It light, initially
linearly

elliptical

is

In 1956,

(G(P) = GIP')] (D1 = G(M): where G(P') is a
subgroup of the group G(P) [it has to contain
one half of the elements of the group
G(P)]; whereas G(P) -~ G(P’) denotes the set

of those elements of G(P) which did not enter
the subgroup G(P').

Magnetic symmetry, once taken into account
different symmetry considerations, has
the prediction of numerous new
optical effects, Magnetically ordered
crystals {the directional symmetry can be
described by the groups G(P) and G(M)] with
so-called tranaparency windows® in the range
of optical frequencies, in the complete
absence of perturbing factors (electric or
magnetic fields, maechanical stress, etc.) can
exhibit, in 3q&ldition to natural optical
birefringsgge ’ and natural optical
activity {which occur as well for non =~
-magnetic crystals, groups G(NM)}, two novel
optical effects; natural gyrotropic
birefringence (changing its sign on 7gtyersa1
of the light propagation dirgsgign). and
natural gyrg&ropic rotation. Krinchik
and Chetkin have shown that in certain
magnetically ordered crystals the omimsion
of magnetic susceptibility in the optical
frequency range postulated by Landau and

in
permitted
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Lifshits is unfounded. It taken into
account, it gives additional contributions
to the above-named optical effects and,

moreover, can modf;yighe type of propagation
of the light wave,'’

If moreover the crystal possesses
spontanecus magnetisation ﬁ. it can exhibit a
spontaneous Cotton-Mouten or Voigt, Faraday
and optical birefringence effect proportional
to the product of and the wave vectqg 25
the light wave <traversing the crystal.”™’
These effects resemble the well known effects
of Cotton and Mouton, as well as Voigt, and
Faraday (the theoretjical foundation of which
have been e§ggggded in numerous handbooks and
monographs) as well as optical
birefringence proportional to the product of
the static magnetécsfi,lgoand the wave vector
of the probe beam™’ "’ that occur in non-
-magnetic media under the action of a static
magnetic field. Crystals with spontaneous
magnetisation can give rise (in addition to
the above) to new offects without
counterparts in non-@ggnetic media. The most
important are these: optical birefringence

proportional to the first power of the
spontaneous magnetisation , nd rotation
proportional] to the square of and to the

product of and the wave vector of the probe
beam. Discussions of the existing theoretical
and experimental work in the field of
spontaneous magneto-optics are 5? 52 found in
the respective review articles.” ™’

The past 10 to 20 years have brought
considerable developments in the optical
study of magnetically 19rg§;3§ crystals in
static magnetic fields®’’ Here, the
magnetic symmetry admits of quite new
effects, such as birefringence proportional
to the first power of B -1§h34gsgnetic Analog
of Pockels’ Effect (MAPE); '’ as we%éa a8
rotation proportional to the square of ’
and proporticnal to the product19f B and the
wave vectoj'5 of the light beam. Dillon and
co-workers were the first to show that the

birefringence linear in

canﬁpe*oxpected in
the longitudinal geometry Ble ik

(Faraday

configuration) in Dy,Al.0 cr?atala (m3m) .
The effect has alreaay 3033 measured for the
antiferromagnets DyFeO, (mmm), Ca.Mn,Ge O12
(4/m), CoF, ( 4/mmm ), 2o-Fe,0, and GoCO

( 3m ). An extensive diacaaaion of ?he
experimental work on the above and other
optical effects ocecurring in
antiferromagnetic crystals subjected to

external magnqﬁ;c fields is due to Eremenko
and Kharchenko$

It is our aim here to determine the
polarisation state of light on traversal of a,



transparent antiferromagnetic crystal of
thickness z ( in the direction parallel to
its highest~fold symmetry ax%s) acted on by a
static magneti field , at Faraday
configuration ( parallel to the light
propagation direction %) and _ at Voigt
configuration (ﬁ perpendicular to k), for the
case when the light incident on the
antiferromagnet is polarized linearly. We
shall show that in either case the initially
linearly polarized 1light wave changes its
state of polarisation from linear to
elliptical, with ellipticity & proportional
to the first power of This effect is
g?yyr?!§mby a third-rank axial tensor

a (w) antisymmetric with respect to
tim$ !n$3;&§on and symmetric in its first two
indices. The effect, with regard to the
permutational symmetry of this tensor and the
linear dependence of & on B, represents the
analog of the respectively longitudinal and
transversal Pockels effect. Accordingly, we
refer to it as the magnetic analog of the
(longitudinal or transversal) Pockels effect
(MALPE or MATPE). It is shown that MALPE and
MATPE will not be perturbed £y, the natural
spatial-dispersional effects £pd, o She
digpersional magneto-optical effects™ '""°°

as well as the Faraday and/or Voigt
effects only in antiferromagnetic crystals
with the magnet ¢ symmetry classes 3m (CoCO.,
a—{e 03) when =8 B, 8/mmm and 6mm whin
B=5, 8. %and 4/mmp (¥oF,) and mdm (DysAlg0,,).
whe¥ ﬁ-ezB.

2. FOUNDATION OF CLASSICAL MAGNETO-OPTICS
2.1, The materjal equations

The electric and magnetic properties of a
medium agted on by a time-variable gloctric
field B(¥,t) and magnetic field R(¥,t) is

escribed by the electric induction vector

(r,t) ng, respectively, magnetic induction
vector (r,t). 1gn Sl units, they take the
well known form

BE.t) = o, BiF,t) + B ()

BE.t) = u (REF, ) + B (F.t)) (1)

with: = and u the electric = gnd,
respec ivgly, magne?ic permittivity, and (r
t). (r.t) the electric and magnetic

polarisﬂtion vectors of the medium at the
moment of time t and the point r.

Assume a moderately intense light wave to %o
incident on the medium. The amplitude B(w, k)
of the electric field of the wave is assumed
to be moderate compared with the intra-atomic
field; at the moment of time t and in the
point ¥ within the medium, (r,t) as well as
the other vectors of Eq. (1) have the form

B2 t) = B(w, k) expl-i(uwt = k-¥)] + cc. (2)

eing given by the well known
formula ke=(wn/c)s, where n im the refractive
index of*the medium, ¢ the light velocity in
vacuum, 8 the unit vector in the direction of
light propagation and ® the circular

the wave vector

frequency of the wave, whereas cc. stands for

complex conjugate.

2.2, _Linear electric and magnetic multipole
susceptibilities

Information concerning the electric and
magnetic properties of the medium in the
range of optical érequgnciea és cgnvoyed by
the amplitudes P (w,k) and P (w,k) of the
electric and, respectiveTy. magnetic
polariaatigas which,in the case of weak
excitation for antiferromagnetic crystals
in a static magnetic Eaeld can be written
in the following form:

> > @
Pag(@.R) = px s (0K, B) Egw,k) +

AX
> »
Mo W g kB Byl (3

with A=e or A=m. Here we apply the Einstein

summation convention. Ehi polar tengoia
of second rank oxe(w, ,B) and _x (w,k,B)
describe the electro-elect i@ and
magneto~magnetic susceptibilities of the
antiferromagnetic under the action o the
static magnetic tield_,of induction aTho
axial tensors (w,%,B) and § (w,k,B)
describe its 1InBar electro-magBefic and
magneto-electric susceptibilities. In the

case of crystals, wherg spatial dispersion is
not excessively great™ and in a moderately
strong magnetic field B, the above four
linear susceptibility tensors can be gnﬁtten

in multipole expansion form as

follows:
2 (1), (1)

exeij(w'k'ﬁ) ee ii(w‘§)+

iwn [(1), (2) -

T3c [ o¥e 1(31) @ B)

(2),(1)
anseB]e o @

2 . (D (1)
oXm 14 KB oXm 150 B+

2 (1),(1)
m¥e 13 KB = e 130 B) +. (5)

2 (1),(1)
mm 15 KB = wm 150 B+ (6)
where

(@), (0B = @1 (@) + My 3 4

(°;xéq)mm(w)-~§ﬁ ... (7)

>
with x (w,k,8) = 0 in the optical
region?shboWeT éao dots denote the double

scalar product. The tensor component indices

i, j and 1 refer to the laboratory
fg?r139°tee and take the values x,y,z. Above

X (w) describes the linear
olgcgric—multipole (A=e) or magnetic—
-multipole (A=m) susceptibility of order
a(for a=1,2,...we have respectively the
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related with
and magne§19

dipole and quadrupole moment)
electric multipole (Qwe)

multipole (Q=m) transitions of order
(thus, for Qe=e and gq=1 or 2 we have a
transition E1 or E2 whereas for Q=m and g=1
we have a transition Mi). In formula (4) the
subscripts in semicircular parentheses (...)
label the components of the electric
guadrupole moment; these parentheses at the
same time serve to denote the
invariancy (symmetricity ) of the respective
components with respect to transposition of
the subscripts.- The tensora with one or two
superscripts m express the variations induced
in the multipole susceptibilities by a static
magnetic field: respectively in a linear
(first order of stationary Vperturbation
calculus) and gquadratic approximation (second
order of stationary perturbation calculus).

2.2,1 _ Permutational symmetyy for _linear
glg_e&ns_____m___.mmma_____.mu ltipole

i In transparent
(loss-less) medium, the time~averaged
divergeyge 1of the Poynting vector has to
vanish. From the above theorem
and the formulae (4) - (7) the multipole

susceptibilities in a loss-less medium in the

absence as well as in the presencglofaa dc
field Cﬁ%) qg) shown( }o(aful the
relation a (w)={ q (w) (their
linear and qu§§9at1c magngi§c varzations too
tulfil a similar relation) signifying
hermiticity of the tensor. Moreover, in
magnetic materials, the multipole

susceptibilities as wolf1 T% i&eir magnetic

variations are conjugate g0 that each

of them can be expressed in the form
(a#%q”w)_ “#éq”w)+ ﬂ‘h@quL (8)

The hermiticity and the conjugate nature of
the multipole susceptibilities lead to the

following transposition (permutation)
relations:
(a8) (1) , (q), (a) (a) (q) (a) (a)

A%Q A A'Q oA 9
and similarly for the linear and quadratic
magnetic variations of the preceding

multipole susceptibilities (for the sake of

brevity we have omitted w).

2.2.2 _ Time-reversal  symmetry _l.i.,;;.nssf_r:
electric and magnetic “multipole
susceptibilitied. Making use of the
transposition relations we can _express the
electric polarization vector ﬂe(r t) and
magnetic polarization vector (r.t) in a
form involving the elect 1c* and
magnetic field strength B(¥,t) and H(F,t) as
well as their time-derivatives B(r.t), and
B(f.t),. With the respect Ve expre s;ons. and
keepin§ in mind that B(r,t), A(2.t), and

(r,t) are invariant with respe t* to
%?ge 1nv sion whereas (r.t) (r.t),

(r,t), (¥, t), B and & undergo o change in
sign if T——»—t we are immediately in a
position to determine how the linear

multipole suasceptibilities tranaform on time
inversion. In this way we find that
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components ¢« with an even number of lower and
upper indices m {(subscripts and superscripts
jointly) and components » with an odd number
of indices m are 1nvarxaat under time
inversion (after Birgss, “we shall be
referring to them as i-tensors), whereas the
others (o with an odd number of indices m
and » with an even number of indices m)
undergo a change in sign (c~tensors) for
arbitrary m and gq.

2.3.__Neumann’'s principle as selection rule
for_magneto-optics.
s e 23,42
It follows from Neumann's principle

that i-tensors can exist both in magnetic and
non-magnetic crystals whereas c-tensors can
exist in magnetic crystals only. Hence, the
expressions (4) - (7) determining the linear
electro-electricv and respectively electro-
~magnetic susceptibilities of non-magnetic
crystals will involve only i-tensors. For
this case these susceptibilities will fulfil
the relations

o P
Ao U((é.k.ﬁ) - va¥q X ji(ﬂ.~k,~é) (10)

where w,=1 (likewise w. ) for A=e and w, = -1
for A= in compketg agreement wit the
result of Onsager’ sléynmetry principle for
kinetic coefficients which 18 considered
in the literature as the selection rule for
the existence of linear 43magneto—optical
effects in crystals. Kleiner has shown that
the relations {10) are valid only for
non-maghetic crystals. For the magnetic
crystals whose directional symmetry is
described by 32 magnetic aymmetry classes
G(P) no Onsager principle can be enounced,
whereas for the remaining 58 magnetic
symmetry classes G(M) a generalized Onsager
principle can be formulated. From what has
been said we draw the conclusion that with
regard to magnetic crystals one has to drop
the Onsager principle as a selection rule for
the existance of linear magneto-optical
effects. Here, the Neumann principle imposes
itself as more adequate selection rules: it
is applicable to non-magnetic as well as
magnetic crystals provided that the
transformation properties of the tensors
under time inversion are known. In other
words, the expansions (4) ~ (7) in the case
of magnetic crystals will involve i-tensors
as well as c-tensors, the latter leading to
new magneto-optical effects, forbidden Dby
Onsager's principle with regard to non-
-magnetic crystals. Egs. (10), one of which
is MAPE.

3. _THE_REFRACTIVE INDICES
On taking into account the expressio (4)~
- (6) in the Maxwell equations for
insulators we obtain the following
equation for the light refractive index n of
the medium:

2 2 R . -
EC ACHEE IR ¥ S MU



6y5m(1/8,) gxg y4(@.Bit.. JEj(0,R) = 0 (11)

with

(,B) -

(©.B) = 19 [(1) (2)

%4 ju 3 e%e i(ju)

(2)
e

(1)
Xe (iu)j *

(w.ﬁ)] + (w,B) 5,

o*m ip Jju

j(w.ﬁ>. (12)

6iuw mSe w

Here, 6ari and 6 K denote respectively the
a

Kroneck nd Leéf—Civité unit tensors.

Let ths 1light wave propagate in the
crystal along the z-axis taken as parallel to
the highest of its axes of asymmetry. We
accordingly have

. »
8, e, = o, s, - 1 and Ez(w.k) = 0. (13)
On equating to zero the determinant of the

coefficients at E_(w,k) and E _(w,k) in Egqs
(11) and with reg#rd to (13) w8 arrive at an
esquation of the fourgh degree for n. Since it
involves terms in n” and n, it ie not easily
solvable., One immediately notes that these
terms vanish if one puts

Xz (@ B) = Xy (0. B) = 2, (0, B) =

Xyyg(©.B) = O (14)

By having recourse to Tablea42 giving the
form of { - and ¢ - tensors of the second,
third, fourth and fifth rank one can
determine thomse crystal symmetries that
ensure fulfilment of the condition (14).
Obviously, if the static magnetic field is
applied along the x- or y- axis, the
condition (14) is fulfilled for crystals with

the following symmetries:(4/m), 4/m, 4/mmm,
4/mem, (4/mmm) . (3), 3m, (3w, (6/m), 6/m,
§/m. 6mm, 6/mmm, 6/mmm, (6/mmm), 6&/mmm, m3,

m3m and m3m, whereas if the field is applied
strictly along the z-axis it is fulfilled
moreover for the classes: (4mm)., 4/mmm . (3m).,

3m, (8, 6mm), 6m2, B2m, (Bm2). 6/mmm and m3m.
Thus, the condition (14) restricts our
solution to uniaxial crystals (n_en_=n_) and
isotropic ones ( n =n en =n ) w¥thYth8 above
stated symmetries. The %ma netic symmetry
classes in parentheses do not admit of

antiferromagnetic ordering. Formula (11) with
the condition (14) taken into account gives
the following solution for n:

+ n(B) * &(B)

o (15)

n,= n

where we have introduced the notations

2 (1) ,(1)
no 1+ (l/co) ‘e xx(w)‘

(1), (1) () o (1) (1) ()

e & XX e & YY (16)

. (1) (1)m (1) (1)m

n(B) (1/450#0) e xxu(w) + T e% qu(w) +
(1), (1)mm (1), (1)mm .

[ % xx(uw) (“) * Te% vy(uw)(”)] Bw*“}Bu

17)

5(B) = (1/4n)Y n(B)*+ 4lg(B)*+ £(B)°]  (18)

By = (1/e){Aafl)B () - Aall)m (o
[(1;&i)$?(uw)(w)-(1;a£1;$Tuw)(w)]Bw+'}Bu (19)
g(B)-(l/co)[(lguilixy)(w) + Lo l10  wBy ¢
(1L°é1}:$)(uw)(w)nusw oo ] (20)
tBr=1/e) [P o B0 @B
o S cany IBB, +.]. (21)

On insertion ,of and n respectively into
the first and secdnd equation of the set (11)
and with regard to (14) we get the following
relation:

a. = 2[g(B) *if(B)]
* (B) + n, (
(22)

E (%, )=a B (0,k,),
a_E, (w,k_)==E,(v.k_),

where obviously a = a *. Hence we see that
in the direction 2z twd light waves propagate
in the medium. We have assumed thg 2lectric
field of either of them at a point ree ? and
a moment of time t within the medium ¢n the
form of a plane wave (2). The one propagates
with the velocity y+-c/n and the amplitude

(@, k) = Ex(w.k+)[ex+(1/§+)ey]. whereas for

he other we have, respectively, V =c/n_ and
(w.k_)-Ex(w.k_)(ex-a_ey]. where e,  and €

Y
are unit wvectors along x-and vy. The
superposition of the electric field vectors
of the two waves in an arbitrary point z and
at an arbitrary moment é in the meQium can be
expressed in the form (z,t) = exEx(z,t) +

eyEy(z,t) + cc., where

[ N R IR
2z, N [+]

Y - Hly (23)

l ~-aa_
1 +aa_

wzi(B)] T

Pr = coa(—————- ainfwzi(s)].
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i2a,

. 3 w2z (B)

Q:- 1 + aa_ ain[ c ] (24)
whereas Ex(o.t) and E _(O0,t) are the
components”™ of the eloct¥ic field vector

oscillating along the x- and y~ axis in the
point 2z=0, i.e., at the input to the
crystal; EJ(o.t)-EJ(w)exp(—iwt) for j= x and
Y.

4. _APPLICATION AND DISCUSION
For a totally polarized light wave, the
azimuth ¥ (the angle between the major axis
of the ellipse and the x-axis) and the

ellipticity 2 (the ratio of the minoga and
major axes of the ellipse) are equal to:

¥ - %arctan(sz/sl), 3 - %arcsin(sa/so) (25)

where So. sl. 52 and 53 are the well Xknown
Stokes parameters.

We shall consider two cases, the one for
f(B) = 0 and the other for h(B) = 0.

4.1. The case f(B) =0
Using the definition of Stokes’ parameters4
and putting Ey(O.t) » 0 in (23) as well as
writing £(B) = 0 in a, and expanding the
function sin(wzé(B)/c] ©f Eq (24) we get

(26)

} (27)

(-1 Xu(n, g) 2%+ 2
(Zk + 1)!

¥ = larctan(Ay/a;). @ = farcsin(Ay)

where

(-1)¥(2u(n,q) 12X
2k + 1)1

15-

wzg(a){ 1.5
Ly

Ay Q(B)h(B)[§%§EJ2{1+§;;

A 2, ® K 2K, 2
e () (e Sl

(28)

with

Ulh,g) = (wz/dn,c)Y h(B)® + 4g(B)° (29)

= a, In accordance
that two waves

1f £(B) = 0, then a_ = a
with (22) this signifies
propagate along the z-axis; they are linearlv
polarized in the digectigna e =8 + (1/7a)e

and, respectively, e_ =~ e -~ aé o¥ that with
regard to e - e_ =0 ¥heir Y polarisation
directions art mutually perpendicular, The
formulae (26) and (27) show that if g(B) = 0
the superposition of the two waves in a point
Z (on traversal of the path 2 in the medium)

is an elliptically polarized wave. Here, we
deal with linear birefringence (of linearly
polarized waves). In particular, if a =1

(this takes place if h(B) = 0) the parameters
of the ellipse are equal to

134 / SPIE Vol. 1018 Electro-Optic and Magneto-Optic Materials (1988)

$ - wzg(B)/(Znoc), ¥ =0 (30)
its major axis lying along the
x-axis.Obviously, the light wave will

propagate in the medium with its state of
polarisation unchanged if a = 0; this occurs
if g(B) = 0.

Let us consider the case when the incident
wave ig polarized linearly at an angle of N/4
to the x-axis in the xy-plane. At the input,
we now have E_(0,t) = E_ (C,t). If moreover

the parameterx a vanishes (this occurs if
£(B) = 0 and g(B) = 0}, two linearly
polarized waves will again be progagating in
the medium, in the directions e and ()

respectively, theiy superposition xgiving a

elliptically polarized wave:
- n/4

& = wzh(B)/(4n,c). L4 (31)

coinciding with
the wave at the

the major axis of the ellipse
the polarisation direction of
input to the crystal.

4.2. _The case h(B) =0

Putting h(B) = 0 we have
E . (o,t) vanishes, ¥ and % are
the formulae (26), though now

g(B) i (02
As = ""[E;E Y g(B)*+ f(BiZZ!

Y g3 + £(8)°

2.1, 1f

[a,]” =
stxtl given by

3 £(B)

- tan [‘fi_.
1 Yam? + £(B)°

noc

Y g%+ £(B)? ]'
(33)

Here, two elliptically polarized waves
propagate in the medium; their superposition
in a point 2z is also an elliptically
polarized wave. Thus, we are dealing here
with optical birefringsnce of elliptically
polarized waves, In particular, if g(B) = 0,
two circularly polarized waves with opposite
ssenses will Dbe propagating in the medium,
their superposition giving a linearly
polarized wave: # = 0 with its polarisation
plane at an angle ¥ = wzf(B)/(2n_c) to the
xz~-plane. Here, we deal with circular
birefringence (of circularly polarized
waves). The first term of (21{1)d?§9rmining
the parameter f(B), i.e., 14

e 8 'X¥la-14
describes natural gyrotropic rotation;

the second term at u = 2z (magnetic field
acting along the z-axis) describes the well

known Faraday effect; and the third term a

arbitrary orientation of the field
describes quadratic magnetic variation in
natural gyrotropic rotation (quadratic

magneti§7qa§ation of the light polarization
plane).” "’

3. MAPE

The formulae derived by us for ¥ and & are
valid for antiferromagnetic crystals which
fulfil the condition (14) and, additionally,



if ¢£(B) = 0 or h(B) = 0. In other words,
the above conditions define a set of
antiferromagnetic crystals where the
sxperimenter is invited to measure MAPE
(linear optical birefringence proportional to
the first power of the field , d.e,,

of By making use of Tables giving the
axial and polar i- and c~ tensors of the
second, third and fourth ranks for the 90
magnetic symmetry classes, we have found the
parameters h(B), g(B) and f(B) for all
the antiferromagnetics fulfilling the
condition (14) for applied along x, or v,
or z. The results thus obtained are assembled
in Tables 1 where, morsover, we give our
expressions for the ellipticity & and the
rotation angle ¥ of the major axis of the
ellipse with respect to the x-axis (where the
fourth column specifies the configuration of
the electric field of the light wave at the
input to the crystal). When determining ¥ and
¥ we have restricted ourselves to the first
term of the series expansion of arctan(A,/A,)
and arecsin(A,) —-an apparently aatiafagto Y
approximation“since the terms omitted in the
two expansions are proportional to the third
power of the argument of the respsctive
function, thus giving a contribution to ¥ and
¥ whose dependence on has an exponent
higher than that assumed in the expressions
(4) - (7). For the same reasons, in the
expressions defining A./A, and A, ,we have
neglected the terms con aiﬁing the“parameters
Uth,g) and U(g.f). Obviously, these
considerations are valid for weak magnetic
fields, as long as arctan{A./A,) and arcsinA5
can be expanded in serYes, i.e., if
|Aa/A ] <1 and |Ag] < 1. Table 1 shows that
MAQE §s described By the constants g,, 95 and
‘h.. and that the ellipticity & ®ill® be
slrictly linear _in only in crystals having
the symmetries 3m -GXB); §/mmm, and _Smm (B=
@ B); as well as 4/mmm and m3p (ﬁ-e B): with
t¥e major axis of the ellipse iubtending
angles of ¥, , ¥, and wzf,B/(2n_c) with the
x-axis. In &he ?irst two éaaea fe have MATPE
the magnetic analog of the transversal
Pockels effect, whereas in the last case we
deal with MALPE — the magnetic analog of the
longitudinal Pockels effect. Thus, Iif a
linearly polarized 1light wave traverses a
crystal having the aymmetry 4/mmm or mSS
along the highest-fold symmetry axis with
applied parallel to the light propagation
direction, the wave becomes endowed with
elliptical polarisation, the major axis of
the ellipse subtending the angle ¥ with
the x-axis. In both these magnetic symmetry
classes MALPE is accompanied by Faraday’'s
effect. Luckily for the experimenter, the two
effects do not obscure each other since MALPE
is apparent in &, whereas Faraday’'s effect
reveals itself in ¥, so they are accessible
to measurement separately.

ell%rticity proportional to thizfirst power
).

It is to be regretted that the angles ¥
and ¥ as well as the others are hiqh1§
compligated functions; already in a first

approximation they are dependent on the third
power of the magnetic field strength and thus
exceed the approximation assumed in Eq. (7).

so that (in the case of fields for which
|wz8(B)/c| <1 ) one can write ¥, 0,

For crystals possess ng the symmetries
6/m . =2 B) as well 3m

§/gmm and 6mm (

and 6/m (B~e _B), the elliptiéity contains (in
addition to ¥he linear term) a quadratic term
typical of the Voigt effect and the Cotton-
-Mouton effect. The linear term is easily
separable from the quadratic term since it

changes ite sign on reversal of the magnetic
field.

The birefringence proportional to the
firast power of the static magnetic field

which im at the core of our interest will
occur as well as in non-centrosymmetric
magnetic crystals, possessing the symmetries
3, 3, 32, 32, 3m, 3m, 6, 6, 622. 62m and 6mZ.
In these magnetic symmetry classes, however,
the condition (14) ceases to hold so that the
birefringence in question will be accompanied
by other optical effgcts such as natural
optical lz_ﬁftivity. natural 7_lfyrotropic
rotation and birefringence, and their
variations are proportional to the first and
second LPEWELS,, of the magnetic field
strength™ '’ rendering difficult the
observation of birefringence proportional to
the first power of the static magnetic field.

5.1, The phveics of MAPE

A static magnetic fielad ):) acting on a
magnetic crystal (%qdifies the well known
magnetic vectors 2'"’which cﬁérgfterize the
magnetic ordering (the vector represents
the resultant magnetisation of the A-th
sublattice of the crystal) to the following
form:

) .
(N) ) £
H (B) = 20+ xy; (0) By +... (34)
z(k)

where x (0) is an polar tensor of the

second rank symmetric with respect to time
inversion and accounting for the change in
magnetimsation of the sublattice X under
the action of For a §Yg79ub1attico
antiferromagnet the vectors are the
well known ferromagnetism yector and the
aﬁtiterromagnet{gm Yaftor . The multipolar
susceptibility X {w ﬁ) for a two-
~gublattice antifér om%gnet acted on by a
static magnetic field ﬁan be expanded in a
series in the vectors M(B) and L(B). This

leads to expansions similar to31 the
expressions obtained by Pisarev. Oon
omparing his expansion and our expansion in
, wWe can wri}g) ?H?m linear multipolar
susceptibility AaQ (w) a8 follows:
(a)_(q)m (a) _ (9)ML M

2%Q iju(«) A% igpr (@) xpy (DLy +
(a)_(q)MM M (a)  (q)LL L

A% ijpr(w)xpu(O)Mr + 7% ijpr(w)xpu(O):r

(35)
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Table 1. Explicit

form of

the

parameters h(B),
sym%etry classes ensuring fulfilment of thecondition (14) and three selected directions
of B.

g(B),

£(B),

¥ and ¢

for magnetic

~
B - 8B
Maqneﬁi:azzgmetry h(B) g(B) E(O,t) ¥ ®
4/mmm, 4/mmm, 6/mmm, 2 aAA 2
%m' m3, mim, wm, HlB 0 (ex+ey)E(O.t) n/s4 (wz/4noc)H13
m
2 ~
3m 3132 glaz e E(o,t) ¥ (wz/2nc)g,B
~ 2
6/m Hlﬂ 618 exE(O,t) Wa (wz/2n°c)GiB
2 2 ~ 2
6/m 2h,B+H, B g,B+G,B e E(o.t) ¥, (wz/2n°c)(913+613 )
2 PR 2,
§/mmm, Smm 2hlB+HlB 0 (ex+ey)E(o,t) /4 (wz/4n°c)(2h1§+H13 )
A
B gyB -
Magnetic symmetry h(B) g(®) 2(0,¢) ¥ 3
4/mmm, 4/mmm, 6/mmm, _u ne 2 . - 2
6/mpm. m3m, m3m., W30 HlB 0 (ex+ey)E(0.t) n/4 (uz/4n°c)HlB
2 AA ) 2
m3 HzB 5 0 (ex+ey)E(O.t) n/4 ] (wz/4n°c)H2B
A A 2
3m -2g,B-H,B ] (€,+8 )E(0,t) n/4 |-(wz/4nc) (2g,B+H, BY)
2 2 ~ 2
6/m —HlB ~GlB exE(O.t) Q6 -(wz/Znoc)GlB
2 2 ~ 2
é/m -ZQIB—ng hlB-GlB exE(O,t) @4 (wz/2n°c)(hlB-GlB )
~
Q/mo m —H].B hla exE(Ort) \Ps (wZ/znOC)hlB
3 - eEB
Magnetic symmetry g(B) £(B) Bo,t) 3
4/mmm, 4/mmm,. 6/mmm,
6/mem, S/mpm, 6/mmm. A
3m. 3m, §/m, 6/m, 6my, 0 f,B e E(0.t) (w2/2n,c) £, B 0
8m2, 62m, m3, m3m, mim
4/mmm, m3m 928 fla SXE(O,t) (wz/2n°c)le (wz/2n°c)928
where:
o 1 f(1) (1)mm _ (1) _(1)mm -1 (L) _ (Lmm
H1 £, [ e yyxx(w) e%e xxxx(w))' Gl N %o (xy)xx(w)f
- 1 (1) (1)mm _ (1) _(1)mm - 1 () (1)m
Hy C5 [ o%s xxxx(®) e xxyv(w)]‘ 9 s o% (xy)x(®)-
e 1 () (1)m -1 (1) (I)m
fl €, e :xy)z(w)' 92 €y e (xv)z‘w)'
- 1 (1) _(1)m
hl = e yyx(“)'

(]
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2
(1/2)(sz/2n°c) (g, + 618)(2h1 + H,B)

'l‘z 5
1l - 2[¢~‘zB(91 + GlB)/(Znoc)]

¥ = ¥(hym0. Gy=0). ¥y = ¥p(gy=0, hy=0)

Table 1 (Contd.)
(1/2)(sz/2n c) (291 + H B)(h -G B)

1 - 2[sz(h1 - GlB)/(Znoc)l2

4

WS - 94(91'0, Gl'O), W6 - W4(gl-0, h1-0)

where (a) (q)m (w) as well as the two others
are tensgrg of the rank a+q+2, axial if Aw=e
and Q=m (or inversely) but polar if A=e and
Q=e (or if A=Qem); their permutational
symmetry and transformation properties with
respect t?ayima)inversion are the same as
those of (v») . In particular, putting
A=Q=s and obq 1 in (3%5) we get the e§gression
obtained by Eremenko and Kharchenko.

5.2. _of MAPE
i

Applications in__scjence and

The MAPE is sensitive to the magnetic
crystal symmetry and to reorientation of the
antiferromagnetic vector. Moreover, it
undergoes a change in sign when the direction
of the magnetic moments of a sublattice are
inverted. Owing to this, MAPE can be used to
study the time-reversed domain structure of
antiferromagnets, to determine the symmetry

of magnetic ordering, and to study the

magnetic crystal fgwrgy spectra by
spectroscopic methods.

Since the (1?x?f§1mentally determined

suscept1b111ty (w) of antiferromagn,ts

gelativesg great [of order ( 10 "'—

)Oe , a magnetic field of several

kOe will suff:ce to endow linearly polarized
light with ellipticity amounting to several
tenths of a radian on traversal of a crystal
some tenths of a cm thick, thus making MAPE
an effective tool for the modulation of laser
light.
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