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Symmetric and Non-Symmetric Hyper-Raman
Scattering: Its Polarization States and Angular

Dependences*

Stanislaw Kielich and Tadeusz Bancewicz

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznaf, Poland

A theory of three-photon (hyper-Raman and hyper-Rayleigh) scattering is proposed using the approach of irreduc-
ible Cartesian and spherical tensors. A general expression for the intensity—time correlation function of symmetric,
non-symmetric and symmetric—non-symmetric three-photon scattering is derived in terms of separated, irreducible
field- and molecular-rotational invariants. The occurrence of the various types of scattering is dependent on the
physical conditions, i.e. on the molecular symmetry and the ratio of the light frequency and molecular frequency.
The (general) number of five irreducible molecular-rotation and field invariants can undergo a reduction under
appropriately chosen experimental and model conditions. The expressions for the intensity function hold for arbi-
trary (e.g. elliptical) states of light polarization and angular distributions. In particular, they are applied to linear
and circular polarization. On their basis, equations are derived for the depolarization ratio and reversal coefficient

of hyper-Raman and hyper-Rayleigh scattering.

INTRODUCTION

When a molecule is in the electric field of a light beam
with a high density of photons, there is a by no means
negligible probability for the occurrence of three-
photon scattering: the molecule ‘absorbs’ simulta-
neously two photons (of circular frequency w) and
‘emits’ a photon with doubled frequency w; = 2w in a
process of spontaneous elastic three-photon scattering,
referred to as hyper-Rayleigh scattering. If, in the
process, the molecule undergoes a transition from its
initial quantum state |i> to a final state {f| with the
transition frequency w;;, we have inelastic three-photon
scattering at the vibration frequency w, =20 F w;,
referred to as hyper-Raman scattering.

The earliest experiment ensuring non-linear three-
photon light scattering from molecular liquids is due to
Terhune et al.,' who used the beam of a ruby laser. In
addition to elastic non-linear (hyper-Rayleigh) scat-
tering, they observed inelastic three-photon (hyper-
Raman) scattering. Cyvin et al.? showed that the selec-
tion rules for vibrational hyper-Raman scattering differ
from those for infrared and the usual Raman scattering,
the polarizability theory of which is due to Placzek.’
The foundations of the quantum-mechanical theory of
hyper-Raman scattering*’ were established and
various theoretical®!7 and experimental!®-2° aspects of
this novel type of scattering were studied. The achieve-
ments in this new branch of non-linear molecular spec-
troscopy have been discussed in several reviews.26-3°

In this paper it is our aim to give a complete mathe-
matical description of three-photon scattering on the
basis of irreducible tensors, both Cartesian and spher-
ical (Racah algebra). The formalism applied will permit
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the expression of the intensity components of three-
photon scattering in terms of the respective irreducible
molecular-rotational and geometrical-field invariants.
This will enable us to separate the symmetric, non-
symmetric and mixed symmetric-non-symmetric parts.
Our results are generalizations of the partial results
obtained hitherto,*-0:12.17.28-31

FOUNDATIONS OF THE THEORY

Consider a system of N molecules in a volume V on
which is incident a light wave with electric vector

E(r, t) = eE, exp {i(k - r — wt)} )

at the spece-time point (r, t) and of frequency w, propa-
gation vector k and polarization vector e.

We define as follows the intensity—time correlation
function of scattered light analysed at the point R =
k, R (of the wave zone R > 1,) with an analyser trans-
mitting waves with polarization n(n 1 k):

10 =5 <z [n* - m(tohmto + )" - n]> @

where m,(t) is the electric dipole moment induced in a
molecule p at the moment of time t,, and the symbol
{ > represents appropriate statistical averaging over the
positions and orientations of the molecules.

If the field strength E(¢) is sufficiently great (although
still unable to cause optical breakdown), the dipole
moment induced can be expressed by the series

m,(t) = m{Y() + mP() + mP(e) + ... 3)

where the first component of the sum describes normal
(linear) light scattering and the other components
describe non-linear scattering.
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Here, we are interested in non-linear scattering of the
second order given by the expression

1
my(t) = - B, EE(®) @

where B, = Bk is a tensor of the third rank describing
the non-linear polarizability of the second order (the
hyperpolarizability) of molecule p.

Placzek® has shown that the polarizability of a mol-
ecule is not constant in time but is subject to different
changes caused by vibrations of its nuclei. Thus, molec-
ular polarizabilities are functions of the normal vibra-
tions

Qv(t) = QOv Cos (wvt + d)v) (5)

where Q,, and w, are the amplitude and frequency,
respectively, of the vth normal vibration.

For small harmonic vibrations we can write, in
Placzek’s approximation, the following expansion:*

B,(Q) = ﬂp(0)+2< Q> vt (6)

where the tensor B,(0) is the hyperpolarizability when
the normal vibrations are in their equilibrium positions.

From Eqns (2) and (4), we have for the intensity
correlation function (2) of second-order (second-harmo-
nic) scattering

) = AZ“’<Z [W : By(t0)]

P q

x [W @ B(to + )T* exp [ix - R(t)]> (7)

where k =k, — 2k, R(t) = R,(0) —
introduced the tensor (triad)

W = n*ee (8)

constructed with the unit polarization vectors of the
incident and scattered fields. The factor 4*“ contains
w.* and (| E(0)E(t)|?) in addition to other quantities.?®

Making use of the Rayleigh expansion®? of the inter-
ference factor

R,(t) and we have

ao

exp [ix - R(®)] = 4= Y i,[xR(t)]

x (YO®) © YO[R®D) )

and expressing the internal product W : p in terms of
the sum of scalar products of the irreducible
parts!3:33:34 of W and B:

W:B=WuxBux= Z, We2 o ") (10

where J is the rank of the irreducible tensor and s is an
index describing its permutational symmetry, we trans-
form Eqn (7) to

19() = A2w4n< Y
P4,5y,S;
Jpdpl

e B(;’lbh))(w(sz, J2) ') bsls’z'..lz))*

Bi[kROIAWET O

x (YO®) O Y”’(ﬁ(t)))> (1n

Equation (11) gives the autocorrelation function of the
scattered light which, for ¢ = 0, expresses its integral
intensity. Here, we propose equations for hyper-
Rayleigh scattering. For hyper-Raman scattering due to
very weak correlations of the normal vibrations of dif-
ferent molecules, the coherent part (when p # ¢q) of the
intensity Eqns (7) and (11) is negligible.>* Moreover, for
hyper-Raman scattering, the hyperpolarizability tensors
of Eqn (7) denote the derivative of § over the appropri-
ate normal vibration Q, [Eqn (6)]

On applying the rules governing changes in the coup-
ling scheme of irreducible sphencal tensors,32 it is
readily found that, in particular,*®

(A(a) ') B(a))(c(c) o) D“’)(E(e’ 0} F(e))
= Z {[(A(") ® C(C))(g) ® E(e)](h) '0)
g, h

X [(B(a) ® D(t))(q) ® F(e)](h)} (12)

where © represents a scalar product and ® an irre-
ducible tensorial product.

The transformation (12) enables us to separate, in
Eqn (11), the factors which are dependent on the
geometry of the experimental set-up from those which
originate in the properties of the molecular system.
Obviously, the expression accounting for the geometry
requires no averaging. We thus write

I20) = A4n Y, i’{[(w“h’”

515855
Jpd il

® W(sz,Jz)‘)(Ja) ® Y(“(IA()](‘"

<Z JKREILBE™

pq

® B @ Y(')(ﬁ(t»]”’>} (13)

For an isotropic fluid the mean value occurring in Eqn
(13) has to be a rotational invariant.*® Hence, in Eqn
(13), only the terms with J = 0 differ from zero. This
greatly simplifies our further considerations. Each of the
terms of the expansion for the scattered light intensity
can now be written as the product of a geometrical-field
factor dependent on the experimental set-up:

4
[ L (s1, J1)
QI+ 1DRJ,+1) [
® Woz 0 o YOR)] (14a)

and a molecular factor dependent on the properties of
the individual scatterers and the medium as a whole:

4n(2J, + 1)
20+ 1

< <z JIKROTBS

(U] =i
s1J1s2J2 —

lelszlz( )

® BS99 o Y("[ﬁ(t)]}> (14b)

The scattered light intensity is the sum (13) of the
respective components. The number of the latter
depends on the range of variability of s, J,, 5,, J, and
I. The hyperpolarizability tensor S, responsible for
second-harmonic scattering, like the tensor W,x con-
structed with the polarization vectors (Eqn (8)], is sym-
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metric in its last two indices: f;x = Biks. In the
irreducible representation such tensors have com-
ponents of the first, second and third rank. Hence, J,
and J, of Eqn (14) can assume the values 1, 2 or 3. The
range of variability of [ is limited by the triangular
relationship, whence [< 6. The terms with [ =0
describe the scattering due to fluctuations in molecular
orientations only. If [ # 0, fluctuations in molecular
positions are also active in the scattering process, and
the respective expressions describe coupling between the
rotational and translational motions of the molecules of
the liquid. It follows from Eqn (14b) that fluctuations in
positions alone, which lead to Rayleigh—Brillouin scat-
tering in the linear case, cannot be a source of second-
harmonic scattering (for the lack of a term with J, =
J, =0).

Second-harmonic scattering is predominantly the
result of fluctuations in molecular orientation. The
terms accounting for coupling between rotational and
translational motion are considerably smaller and are
responsible for the fine structure of the spectral line of
hyper-scattering. Here, we shall restrict our consider-
ations to second-harmonic scattering due to fluctua-
tions in orientation alone, i.e. to the case when [ = 0.
The geometrical-field factor now reduces to

1 .
St =3 T (WoBI0 © We2I2"g, - (15a)

whereas the molecular factor takes the form

PO, = <z JoDER@BE

@ '35;,2; Jz)‘)>5.l1lz (ISb)

In Eqn (15b) and henceforth, the hyperpolarizability
tensors should be expressed in the molecular frame. We
accordingly denote this by small lower-case indices as

ijk -

THE POLARIZATION STATE AND
ANGULAR DISTRIBUTION OF
SCATTERED LIGHT

Although in our further calculations we could make use
of methods of the algebra of spherical tensors, the
analysis, particularly that of the field-geometrical factor,
simplifies considerably if one notes that the scalar pro-
ducts of irreducible spherical tensors occurring in Eqn
(15) can be represented in terms of internal products of
the irreducible Cartesian tensors?® W, and Sy,
respectively:

WeD @ We) = Widwid®  (16a)
6" © B =BE"BE” (16b)

When decomposing a Cartesian tensor T;;, symmetric
in its last two indices, into its irreducible terms T;”,
one readily finds!' that one has two linearly indepen-
dent terms of the first rank (J = 1), a single term of the
second rank (J = 2) and a single term of the third rank

(J = 3). Obviously, the third-rank term T;?, equal in

rank to the tensor Tj; itself, is completely symmetric.
Separation of two linearly independent first-rank terms
is not unique. Here, we shall separate the completely
symmetric part:

1
tfl; D = E [51’1(27;mk + T;mn)

+ 02T + Tpp) + 04T, + Tl (17)

and the non-symmetric ‘remainder?’

1
TG = ¢ [0 Tom

- T;mn) + 6ik

X (’I:mj - T}nn) - 26jk(7:mi - T;'nn)] (18)

Clearly, the tensor TV is still symmetric in its last

two indices, and so is the irreducible second rank tensor
T, ?. Thus, among the irreducible Cartesian tensors
we are confronted with two possibilities with regard to
their permutational symmetry:

(1) complete permutational symmetry—we denote
this case by s = 1;

(2) symmetry in the last two indices—to be denoted
ass =2

Equations (16) are valid in the case of the scalar
product of two irreducible tensors of the same rank pos-
sessing the same permutational symmetry s. The
occurrence of two linearly independent first-rank irre-
ducible tensors differing as to their permutational sym-
metry leads to the emergence of mixed products of the

tpr
TD O T ) (19)

As stated above, in calculating this scalar product we
are unable to make use of Eqn (16). If, however, the
form of the irreducible components of the spherical
tensors TV and T ! is known?®37 as a function of
T, the required scalar products can be calculated
directly from the definition of the scalar product in
spherical coordinates:

T0D © TN =F TETEI*  (0)

The autocorrelation function of the scattered radiation
can now be written in the following form:

ILZ)(t) = AZa) Z ¢s1J1s2]z F.?lhszlz(t) (21)

as the sum of six terms, four of which are ‘quadratic,
Ji=Jy,=1, s;=5,=1; Jy=J,=1, 5;=35,=2;
Ji=J,=2,5=5,=2;J,=J,=3,5,=5,=1, and
twomixed, J, =J,=1,s, =1, s,=2and J, =J, =1,
5, = 2, 5, = 1. We shall calculate the geometrical factors
@2 5,5,4, determining the angular dependence of each of
the above terms, in addition to the molecular factors
F? ;,5,5,(t) corresponding thereto. For brevity, we shall
henceforth omit the subscripts p, 0 on the tensors
related to the pth molecule at the moment of time ¢t = 0.
The fact that a tensor B refers to a molecule g at a
moment of time ¢ will be denoted by a bar over §; thus
Bii = Biig, ). Moreover, we shall assume that the
range of the intermolecular correlations is much shorter
than the wavelength of the scattered radiation:
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Jo[kR(t)] =~ 1. We thus have (n - n*) = (e - e*) = 1):
(0] — i * . . ok . * . ok
Hri11 = 45 {4(n* - e)n - *) + (e - e)(e* - e¥)

+ 2(n* - e)(n - e)e* - e*)
+ 2(n* - e¥)(n - e*)e - )} (22a)

1 _ _

1_5 <4ﬂiijﬁkkj + zﬂiijﬂjkk

+ 2ﬁijj.gkki + BijjBikk) (22b)
1

$3121 = 3 {(e - e)e* - e*) + (n* - e)(n - &¥)

— (n* - e)n - e)e* - e¥)

F(l)lll(t) =

— (n - e¥)(n* - e*)e - e)} (23a)
1 _ _
F92(0) = 3 $BiijBrwi — Biii Bk
- ﬂijjﬁkki + ﬁijjﬁikk> (23b)
(5"
2t = a5 {(e - e)e* - e¥) — 2(n* - e)(n - &¥)
+ 2(n* - e)(n - e)(e* - e¥)
—(n* - e¥)n - e¥)e - )} (24a)
0 (5)1/2 _
F111(8) = <ﬁl]jﬂlkk BiijB ik
+ 2ﬂijjﬁkki - Zﬁiijﬂ-kkj> (24b)
o (5)1/2
1121 = {(e - e)e* - e*) — 2(n* - e)(n - €¥)
- (n* - e)n - e)e* - e¥)
+ 2(n* - e*)(n - e*)(e - €)} (25a)
(5)1/2 _
FY o0t = <ﬂzuﬁlkk — BijiBui
+ 2ﬂiijﬁjkk - 2ﬁiijﬁkkj> (25b)
We note that
#2111 = (@2121)* and  F3,,,(0) = (F9,,,(0)*
(25¢)
Moreover,
1
#3222 = I {2—(e-e)fe*-e*) — (n* - e)(n - e*)

—2(n* - e*)(m - €) + (n* - e)(n - e)(e* - e*)
+ (0* - e*)(n - e¥)e - e)} (26a)
1 _ _ -
F9500(t) = 3 2B Bis + Biji Buwi + Biij B ik
- zﬂijkﬂ-jik - ﬂijj.gikk - ﬂiijﬂ_kkj> (26b)
s = 75 15— (e e)e* - &9
+ 10(n* - e*)(n - €) — 4(n* - e)(n - e*)
— 2(n* - e)(n - e)(e* - e¥)

— 2(n* - e*)(n - e*)e - ¢)} (27a)

1 - - -
F(l)313(t) = E <5ﬁijkﬂijk + IOﬂijkﬂjik - 4ﬂiijﬂkkj

- zﬁiijﬂjkk - zﬂijjﬂkki - ﬁijjﬂikk> (27v)
On the assumption that the hyperpolarizability tensor
Biji is completely symmetrlc the only non-zero molecu-
lar parameters will be F9,,1(8) and F9;,5(t). For the
integral intensity (t = 0) of the incoherent part (p = gq) of
the scattered radiation, they take the form

3
F(1)111(0) = g ﬂiijﬂjkk (28a)

F(1’313(0) = ﬂijkﬂijk -

One readily finds that for arbitrary symmetry of scat-
terers the parameters Fy,; ,,;,(t = 0) are related directly

3
g ﬂiijﬂjkk (28b)

to the molecular parameters | B,,’ |2 previously intro-
duced by us: .14,15,17,34
F11,(0) = Z | Byt |2 (29a)
M
F3150) =Y | By (290)
M

In particular, for molecules of the symmetry groups C,
C, and C,, ...C,, the totally symmetric tensor f;;
haS the form b333 =aq, b311 = b131 = bllS = b322 =

by3; = b,,3 = b. From Eqn (28) we now obtain
F1110) =

(a + 2b)? =| B, | (30a)

| Bo* |2 (30b)

2
F(1)313(0) 5 —(a— 3b)2

DEPOLARIZATION RATIO

Let us assume the following set-up: the linearly pol-
arized (vertically along the X-axis or horizontally along
the Y-axis) light beam propagates along the Z-axis of
the laboratory system of coordinates XYZ. The scat-
tered radiation is observed in the YZ plane at an angle
8 (subtended by the propagation vectors k and k,). The
respective intensities with vertical vibrations, Iy, or
horizontal vibrations, I,;, are calculated with Eqns (21)
and (22)«27). If the incident beam is polarized verti-
cally, the depolarization ratio will be defined as Dy =
Iwv/lyy and, by Eqns (21)«27) and introducing F!SN =
F9,11 + F9,,,, we obtain

TFQ11y + 12FY3,5+ 7

(5F3101 + 3F30 + /S 3,
63F] 1, + 18F%3,5

Similarly, for the depolarization ratio of horizontally
polarized incident light Dy, = Iyy/Iyy We obtain

D2m —
7F1111 +12F 313+7(5F 121+3F3222+\/§F15N)
TFY 11(1 + 8cos?0) + 6F95,,
(2 + COsze) + 7(5F(2)121 + 3F(2)222 + \/EFISN)Sinzo
(32)

200 __
Dy =
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On neglecting the non-symmetric and symmetric-non-
symmetric parts, Eqns (31) and (32) take the form of our
earlier results.?®

REVERSAL COEFFICIENT

In the case of incident circularly polarized light, the unit
field polarization vectors are

1
e = ﬁ (x + iy) (33)

where e, and e_ refer, respectively, to the right- and
left-polarized waves with unit vectors x and y in the
direction of X and Y.

On assuming the incident light wave to be right-
polarized circularly, we calculate with Eqns (21)}~27) the
scattered intensity components I, , and I_, . Defining
the reversal coefficient as R, =1_,/I,,, we obtain
generally

R2+w(9) = {7(4F(1)111 + 5Fglzl -2 5FISN)
x (1 — cosf)* + 21F9,,,
X (5 — 2 cos — 3 cos?0) + 6F%5,,
x (13 + 14 cosf + 3 cos?6)}/
x {T(4F1yy + SF3y5, — 2/5F'SN)
x (1 + cosb)* + 21F9,,,
x (5 + 2 cosf — 3 cos?0) + 6FY,,,

On restricting ourselves to symmetric scattering, we find
that Eqns (34) and (35) lead to our earlier results.?®

Equations (21)+27) moreover enable us to calculate
other quantities measured in studies on light scat-
tering,?*3 including studies involving elliptically pol-
arized light.?!

CONCLUSIONS

Rejecting Kleinmann’s assumption of complete sym-
metricity of the hyperpolarizability tensor f;;, we have
obtained, in addition to symmetric three-photon scat-
tering, non-symmetric and symmetric-non-symmetric
scattered components. The occurrence of these types of
scattering hinges on the physical conditions, namely the
symmetry of the molecules and the relationship between
their characteristic frequencies and the frequency of the
incident light beam. In general, the number of irreduc-
ible rotational invariants is five; however, under certain
well defined conditions, their number reduces to four,
three, two or one, permitting the determination of the
numerical values of the molecular invariants for well
defined conditions of observation of hyper-Raman and
hyper-Rayleigh scattering. The experimental studies of
Long et al.?? have shown with a high degree of accu-
racy that the hyperpolarizability tensor 8, can be dealt
with as completely symmetric, reducing to two the
number of molecular and field invariants in Eqns (21}~
(27) and thus simplifying the Eqns (31), (32), (34) and
(35). There are, nonetheless, cases when g, is not com-

x (13 — 14 cos@ + 3 cos?6)} (34) pletely symmetric23-243° and its non-symmetricity has
. . to be taken into account in order to describe the spectra
In the case of forward scattering (6 = 0), Eqn (34) gives observed. Measurements can be extended as well
45F9,,, beyond the depolarization ratio and reversal coefficient
o o e to deal with other quantities for ot_her states of
R2(0) = TA4Fi111 + 5F2151 — 2\/§F ) (35) polarization!®12-3%38 and the respective structural
+21F%,,, + 3F%;,; models of the incident light beam,10-28.29.39-41
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