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Abstract. The quantum theory of light propagation in a nonlinear Kerr
medium is applied to calculate the Stokes parameters and their variances in the
process of light propagation. Exact quantum formulae are derived for the
expectation values of the Stokes operators and thus for the azimuth 6 and
ellipticity 5 of the beam. The role of quantum fluctuations in light polarization
characteristics is discussed. The periodic behaviour of quantum evolution of the
light polarization is revealed explicitly. It is shown that the degree of polarization
is diminished at early stages of each period of the evolution but then reverts to its
initial state of complete polarization at the end of the period. The variances of the
Stokes parameters are also periodic and intensity-dependent; however, they
never fall below their coherent state values.

1. Introduction

It is a well known fact that an isotropic medium becomes birefringent when
subjected to a strong optical field. The optical Kerr effect observed by Mayer and
Gires [1] as well as the self-induced ellipse rotation observed by Maker et al. [2]
belong to the earliest nonlinear optical phenomena observed experimentally.
Nowadays, optically induced birefringence is a standard subject of textbooks on
nonlinear optics [3,4]. To understand phenomena like the optical Kerr effect and
self-induced ellipse rotation there is no need for field quantization. On the other
hand, it has been shown by us [5] that, if a strong optical field propagating through a
nonlinear Kerr medium is treated as a quantum field, some new phenomena appear.
For instance, the field propagating in such a medium can squeeze its own quantum
fluctuations. We refer to this effect as self-squeezing. Such self-squeezed light can be
to some extent controlled by means of a static magnetic field [6] and can serve, in
other nonlinear processes, to produce for instance the third [7] or the second [8]
optical harmonic. Recently, Kerr media have also been considered as suitable
candidates for performing quantum non-demolition measurements [9, 10]. So there
is growing interest in revealing those aspects of nonlinear propagation which are
directly related to the quantum properties of the field.

Changes in the polarization state of light propagating through a nonlinear
medium can be effectively described in terms of the Stokes parameters. The Stokes
parameters, which are real numbers in the classical description of the field, become
Hermitian operators in a quantum description. On having defined the Stokes
operators, which are quantum mechanical observables, one is naturally led to
address the problem of quantum fluctuations in these quantities as well as quantum
field effects on the polarization state of fields propagating in a nonlinear Kerr
medium. In this paper we discuss quantum fluctuations in the Stokes parameters of
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strong light propagating in an isotropic nonlinear medium. We show that the degree
of light polarization can be degraded due to quantum fluctuations of the field. The
results are particularly instructive because the problem of light propagation in an
isotropic nonlinear medium admits exact operator solutions.

2. The Stokes operators and the polarization of thé light beam
To describe quantized fields it is convenient to split the field into positive and
negative frequency parts:

Ei(r, t)=Eg+)(r) t)+E$—)(I', t)’ (1)

where i denotes a polarization component of the field. The next step is to perform
a mode decomposition of this field. For plane-wave decomposition of the free field
propagating in a medium with refractive index 7(®) one can write

2nhw, \'/?
EN =Y il 5] ePayexp[—i(wz—k-r)], 2
i(r, 1) kz; nz(a))V ki @z €xp [ —1(wy i (2)
where e is the ith component of the polarization vector associated with the

polarization state A and the propagation vector k, and V is the quantization volume.
For the quantized field, a;; is the annihilation operator of the photon with
propagation vector k and polarization A satisfying the commutation rules

[akss a;r] =00y 3)

The polarization vectors satisfy the orthogonality conditions
Ay (A D —
Z_e;u').e;:i '=0,4, Ze;zi)ki =0 “
|13 L

For a monochromatic field of frequency w propagating along the z axis of the
laboratory reference frame, we can drop the index % in the above notation and write

2nhew \1?
E(.+) N Y Bidtideadil —i(wt—E (4) , 5
Iz, ) l(nz(w) V) expl-iwi~k2)] 3 df¥a; ©®)
with k=n(w)w/c. In equation (5) the sum over the two mutually orthogonal
polarizations of the field still remains, so that we have a two-mode description of the
field. If the field is a coherent superposition of these two modes however, the two-

mode description can be replaced by one mode of a generally elliptically polarized
field:

ea=eVa, +ePa,, 6)

where €{') and e{?) are the ith components of the orthogonal unit polarization vectors
&Y and &? of the modes a, and a,, and e; is the 7th component of the polarization
vector & of the mode a. The relation (6) can also be considered in the reverse sense as
a decomposition of initially elliptically polarized light into two orthogonal modes.
Applying the orthogonality condition (4) for the polarization vectors, we obtain the
formula

a=cta, +e}a,, (7
where

e‘l"=é*'é(1), ef:é*'é(z).
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So far the decomposition (6) (or, equivalently, (7)) is quite general and can be
further specified either for two modes with mutually perpendicular linear polariz-
ations or for right- and left-circularly polarized modes.

In the case of a Cartesian basis, the unit polarization vectors are

é(1)=g, é(2)=y’
whereas in that of a circular basis we have
é(1)=é(+’=(ﬁ+i9)/\/2, é(2’=é(‘)=(ﬁ—i9)/\/2

where % and ¥ are the unit vectors in the x and y directions, respectively. The unit
vector & of the elliptically polarized light can be written in either a Cartesian or a
circular basis as

é=ektey=c, & te &), (8)
with [11]
e,=cosfcos—isinznsin, e,=costsin0+isinncosf 9
and
ey =(1/\/2)(e, Fie,)=(1/{/2)(cos n £ sinn) exp (Fi6). (10)

In equations (9) and (10) 8 is the azimuth of the polarization ellipse denoting the
angle between the major axis of the polarization ellipse and the x axis measured
positive from the positive x axis towards the positive y axis, and 7 is the ellipticity
parameter

Tt< <1't
§SIsp

where tan# describes the ratio of the semi-minor axis and semi-major axis of the
polarization ellipse and the sign defines its handedness (plus indicates right-handed
polarization on the helicity convention).

According to (7) the annihilation operator of the elliptically polarized field can be
written as

a=e¥a,+efa,=eta, teta_, (11)
where e,, ¢, and e, are given by (9) and (10), and
a, =(1/{/2)(a,Fia,). (12)

Hence, the annihilation operator a of the elliptically polarized light is a superposition
of two orthogonal modes in either a Cartesian or a circular basis. Defining a coherent
state of the field with respect to the operator a as follows:

aloy =olap, (13)
we have simultaneously
loc) = loee Doty > = oty Dloe— ), (14)

where |a,), |a,» and |a, ), [x_) are the corresponding coherent states defined with
respect to the operators a,,a, and a,,a_. By (11), (13) and (14) one can write

a=efo, +efa,=eXo, +eta_, (15)
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and due to the orthogonality relations

e¥e,+efe,=1, ete, +ete_=1
one obtains
o =e,0, o, =e, (16)
oL =e4d, ¢¥))

where e,,e, and e, are given by (9) and (10), and
ol + oty |2 = for o 2 4 for - |2 = |orf?.

A Cartesian or a circular basis can be used alternatively to describe the propagation of
elliptically polarized light in a nonlinear Kerr medium. In isotropic media however,
the circular basis is more advantageous as will become clear later on.

The two-mode description of the field allows us to introduce the following
Hermitian Stokes operators [12]:

R
+ : +

So=afa,+afa,=ata, +a’a_

Sy=aja,—aa,=ala_+a’a,

> (18)

S;=afa,+a}a,=—i(ata_—ala,

it + N+ +
Sy=—i(aga,—a,a,)=ala, —ata_
7/

where the annihilation and creation operators of the particular modes satisfy the
commutation relations (3). It is easy to check that the Stokes operators themselves
satisfy the commutation relations:

[S1,8,]1=2iS; (and cyclic interchange of indices),
[S;, Sel=0, i=1,2,3. (19)
Moreover, we have
S2+82+8%=5,(S,+2). (20)

The quantum mechanical expectation values of the Stokes operators (18) are the
Stokes parameters describing the polarization of the light beam. The parameters of
the polarization ellipse are given by

<85>
Sy (21)
tan 27 ={S33/({S; )% +<S,)*)'?
One can also define the degree of polarization as
P=({81>2 48,52 +<83) 2/ Sp). (22)

When the state of the field is the coherent state given by (13) and (14), the
quantum mechanical expectation values are easily calculated and, using equations
(10) and (17), one easily recovers the relations (21) and obtains the value P=1 for the
degree of polarization. This means that the coherent state of the field corresponds to
a classical, fully polarized field. However, the non-commutability of the Stokes
operators puts well known limits on measurements of the physical quantities

tan 20 =
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represented by these operators. For example, according to the commutation
relations (19), we have the following Heisenberg uncertainty relation:

({(AS)*H{(AS)*H) 2 2[(S5)l. (23)

It is also well known that the state of a field propagating in a nonlinear Kerr medium
does not remain coherent; in fact, it can be self-squeezed [5]. This poses the question
of quantum fluctuations of the Stokes parameters and the polarization characteristics
of the light propagating in such a medium. Some of these problems are discussed in
this paper.

3. Equations of motion for a light field propagating in a Kerr medium
In a classical description, the optical Kerr effect and self-induced ellipse rotation
are related to the third-order nonlinear polarization of the medium. When a field at
frequency @ propagates through a Kerr medium, the third-order nonlinear
polarization in the electric-dipole approximation can be written as follows [3, 4]:

P{I(@)=3Y iju( — 0, — @, 0, 0)E{ (@)EL(0)Ef (), (29)
Jki

where ¥;;(—®, —®,®,®) is the third-order nonlinear susceptibility fourth-rank
tensor of the medium and the electromagnetic field is decomposed into positive- and
negative-frequency parts, as in (1); the field amplitudes E (*)(w) are however,
classical quantities. Such a decomposition of the field gives the following expression
for the intensity of the beam at the frequency w:

1@)="2 5 BO@E (), es)

where n(w) is the refractive index of the medium at frequency w determined by its
linear (first-order) polarization.

For an isotropic medium with a centre of inversion the nonlinear susceptibility
tensor X;u(®) = xiju( — @, —, ®, ) takes the form [3]

Xijkl(w) = Xxxyy(w)éijakl + Xxyxy(w)éik(sﬂ + Xxyyx(w)éiléjk, (26)
with the additional relation

Xxxxx(w) = nyyy(w) = Xxxyy(w) + Xxyxy(a)) + Xxyyx(w) . (27)

With regard to the permutation symmetry of the tensor y;;; in its first and second
pairs of indices we have, moreover, ¥, (®) = X1yy(®). The light beam is assumed to
propagate along the z axis of the laboratory reference frame.

On insertion of the polarization (24) into the Maxwell equations and applying the
slowly varying amplitude approximation, one obtains the following equation for the
amplitudes of the field [4]:

dE{"(0) i2nw
dz  n(w)c

P (), (28)

where the slowly-varying amplitudes E{*)(w) are assumed to be dependent on z.
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By (28) we have for example,
dE{"(0) 27w
dz  n(w)c

{31xsm (@ ET @) ES (@) + EH ()]

+ 6Xayy () EST (@) EL (@) + ES U@ ES (@) ESH (@)} (29)

If the circular basis is introduced, which is the natural basis for isotropic media,
with the circular components of the field

E¢ (o) =% (B (@) iED(@)], (30)

the nonlinear polarization becomes
PN 0) = 61y (W) ES (@) PES (@) ,
+ 6 Xy (@) + Xayy (DIE P (@)PE L (w),  (31)
and the equations of motion for the field amplitudes are [8]
dE‘N (@) i2nw
dz  n(w)c

P{(w)

i2nw
" ()
+ [Xxxyy(0) + Xy (@ EG ()P} ESH (). (32)

Equations (32) immediately visualize the advantage of the circular basis over the
Cartesian basis used in equation (29). One easily checks that d/dz|E{ (w)|? =0, that
is the intensities |E{")(w)|? of both circular components are constants of motion. This
is not the case for the Cartesian components, except for the case of linear
polarization. Since the intensities |E{"(w)|? do not depend on z, equation (32) has
the following simple exponential solution [13]:

E(w; 2)=exp (i9 4 2)ES (w3 2=0), (33)

6{)cxyxy(w)IE‘*’(w)l2

where

2rw

(@) — = 6{ ey (ONE @) + Ly (@) + Xy (0 EG (@)}, (34)

=
determines the light-intensity-dependent phase of the field (self-phase-modulation
or intensity-dependent refractive index). These classical nonlinear effects are well
known [3, 4] and will not be discussed here. We are interested in effects related to the
quantum properties of the light field. So we have to replace the classical field by the
field operators which can be done according to (2). However, we shall also need
quantum equations of motion for the field operators. Such equations (the Heisen-
berg equations of motion) can be obtained from the following effective interaction
Hamiltonian [5}:

h
H,=E[rc1(a12a%r +at%at)+2katata_a,]

_h
=3 [lcl(a“a2 +a, %al +2a} a] ayax)+

21€ (af?+a)?) (a2 +a2)J (35)
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where the nonlinear coupling constants k; and k, are real and are given by

V[ 2nho P
K= 7 [ﬁ] 6x.xyx)‘(w)’
| (36)
V| 2=nh 2
=7[(T§DV] 6LLxers (@) + Lryzy(@)]

The linear part of the interaction has already been incorporated into the
refractive index of the medium. The interaction Hamiltonian (35) is written in two
equivalent forms with the use of Cartesian as well as circular basis field operators.
The annihilation operators in the two bases are related by equation (12) and satisfy
the commutation relations (3).

Using the interaction Hamiltonian (35) and the commutation rules (3) one easily
arrives at the Heisenberg equations of motion describing the time-evolution of the
field operators. On replacing t by —n(w)z/c (we are dealing with propagation rather
than a field in a cavity) we obtain the following equations:

day() _ (o)
dz

[k1a1(2)a.(2) + K a7 (2)az(2)]ax(2). (37

The equations for the creation operators are Hermitian conjugates of (37). When
the relation

. 2 h 1/2
E‘J)(w)=l<;%> as (38)

between the annihilation operators and the corresponding field operators is applied,
equation (37) reverts to the form of equation (32), but now the field is quantized.
Quantum-classical correspondence is thus maintained.

An alternative version of the equations of motion, in a Cartesian basis, could be
obtained from (35), but it has a much more complicated structure and would not be
very useful here. Having solved the equations in a circular basis one can always apply
the relation (12) to get the solutions in a Cartesian basis.

Since the numbers of photons in the two circular modes ata, and a*a_ are
constants of motion (they commute with the Hamiltonian (35)), equation (37) has the
simple exponential solution

a4 (z)=exp {iz[ea1(0)a.(0)+6a3(0)az(0)]}a,(0), 39)
where we have introduced the notation

"D, "9, (40)

4

&=

The solutions (39) are exact operator solutions for the field operators of light
propagating through an isotropic nonlinear medium which have been used for
calculations of quantum effects such as photon anti-bunching [14] and squeezing [5].
In this paper we will use the solutions (39) to discuss the problem of quantum
fluctuations in the Stokes parameters, as well as the polarization characteristics of
light propagating in a Kerr medium.
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4. Quantum fluctuations in the Stokes parameters of light propagating in a

Kerr medium

If the solutions (39) are inserted into equations (18) defining the Stokes
operators, exact operator solutions are obtained for the evolution of the Stokes
operators of light propagating in a Kerr medium. The Stokes parameters defining
the polarization characteristics of the field are the expectation values of the Stokes
operators taken in the initial state of the field. Such expectation values are easy to
calculate and at the same time most interesting if the initial state is a coherent state of
(generally) an elliptically polarized field defined by equations (13)—(17). The results
are the following:

o} So(2)ley = alat(z)a()|a) +{alal(z)a_(2)|a) = a| So(0)e) =]l

(S, (2)|le) =2 Re {a*a_ exp [(exp —iz(e— ) — |a, |* + (exp iz(e — ) — )| -|?]},
(] Sy(2)|a)>=21Im {ata_ exp [(exp —iz(e—)— e, |* +(exp iz(e— ) — D]a_|*]},
oS3y =loey |*— o2, 41)

where the o, are defined by (17). Since ala, and ata_ are constants of motion, the
Stokes parameters {a|S(2)|a) and {«|S;(2)|x) do not change during the propagation
process of light in isotropic media. So, only the parameters {a|S,(2)la) and
{alS,(2)|a) will change as the light propagates. The internal exponentials that appear
in the evolution (41) are the result of the quantum treatment of the field. Were the
field classical, the exponentials would have never appeared [15]. According to (10)
and (17), we have

0| S;(2)|ay =|a? cos 21 exp {{cos [2(e — 5)] — 1 }|o|?} cos {20 — |«|? sin 2 sin [2(¢ — )]},

<a)S,(2)|oe) =|a? cos 2y exp {{cos [2(e — 8)] — 1 }|o|?} sin {20 — |o? sin 2n sin [2(s — 6)]},
(42)

where |a}? is the mean number of photons of the incoming beam whereas 0 and # are
the azimuth and ellipticity of the polarization ellipse. When the solutions (42) are
-inserted into equations (21) the parameters of the polarization ellipse of light that has
traversed a path 2 in the Kerr medium are obtained as

tan 20(z) = tan {20 — |a|? sin 29 sin [2(c — 8)]}, _ (43)
tan 2n(2) =exp { — {cos [2(¢— 6)] — 1}|a|?} tan 27. (44)

These are exact solutions taking into account the quantum properties of the field.
Classical solutions are obtained on replacing sin [2(¢—3J)] by z(¢—4J) in (43) and
dropping the exponential in (44). Thus, classical solutions are obtained when
only linear terms in 2(¢—J) are retained in the series expansions of sin [2(¢ —d)] and
cos [2(e—9)]. This means that as long as 2(¢—9) is small the classical solutions are
valid. The classical solutions for the Stokes parameters of light propagating in
isotropic nonlinear media subjected to a d.c. electric field have been obtained by Sala
[16]. It is seen from (44) that, classically, the ellipticity of the beam does not change
whereas its azimuth does change whenever the initial ellipticity n differs from zero.
This is the well known effect of self-ellipse rotation [2—-4]. The quantum solutions are
periodic in z(¢—d), and for z(¢ — 6) =2~ the initial values of @ and i are recovered. If
z(¢—0) is not small the polarization of the field is essentially effected by the quantum
fluctuations of the field. However, if the initial field is linearly polarized (n=0) both
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and 7 remain unchanged even in the quantum case. This result can seem a bit
surprising if we remember that in a Cartesian basis the number of photons a; a, and
a; a, do not commute with the interaction Hamiltonian (35) meaning that linear
polarization is not preserved in the course of propagation. To resolve this
contradiction we have to calculate the degree of polarization defined by (22). The
result is

PX(z)=1—cos? 2n{1 —exp {2{cos [2(¢— 8)] — 1 }|o}?}}. (45)
In the case of linear polarization (n=0) we have (see also [17])
P(z)=exp {{cos [2(¢ — 8)] — 1}||?}. (46)

It is now clear that the degree of polarization becomes smaller than unity due to
quantum fluctuations of the field. Classically, this quantity remains unity all the
time. We can say that the polarization of the initially completely polarized light is
degraded as a result of the quantum fluctuations, and the initially linear polarization
of the beam preserves its direction of polarization in that part of the field that is
polarized whereas part of the incoming intensity becomes unpolarized (isotropic).
An interesting feature of this quantum evolution, as is seen from (45) and (46),
resides in the periodicity of the degree of polarization. This means that after initial
degradation the polarization of the field returns to its initial state of complete
polarization. This is illustrated in the figure, where the degree of polarization P is
plotted against the dimensionless length of the medium 2(¢ —d) for several values of
the mean number of photons |«|. Since, according to the operator relation (20), the
square of the ‘total spin’ is conserved, one can easily calculate the variance of the
‘total spin’ as

(87 —(8)*=( ST +{SP + (P — ({81 D2 +{8)* +(83)?)
=|a|? cos? 2n{1 —exp {2{cos [z(¢— )] — 1 }|aI*}} + 3|o?
=3lof? + [a2[1 — P*(2)]. (47)

The lowest level of this variance is reached when the field becomes completely
polarized. According to the uncertainty relation (23), the two Stokes parameters
{8;> and {S,) cannot be measured simultaneously with high precision. Using the
solutions (39) and assuming that the initial state of the field is the coherent state

1 T T T T T T T
Plz) L \_/ :

L 10 J

0 1 1 'l 1 ] A L L 1

l z(e-8) ="

The degree of polarization P(z) plotted against 2(¢— ) for the mean number of photons |«}?
equal to 0-1, and 10.
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defined by (13) and (14) the uncertainties {x|(AS,)*a) and {&(AS,)*|a) can be
calculated explicitly, giving the results

Cal(AS), )%y = al S zley — {al Sy, ple)?

4
=%cos2 2n { + [exp ({cos [22(¢— )] — 1}|el?)

x cos {40 —|o|? sin 2 sin [22(e —d)]}
—exp (2{cos [2(e— )] —1}|«?)
cos {40 —2|a|? sin 2y sin [2(e — 6)]}]
+1—exp (2{cos [2(¢— )] — 1}]2|*)} + |o>. (48)

Both variances are equal to |#|? (the mean number of photons) when the light is
circularly polarized (= +n/4), and do not change during propagation. For linear
polarization of the field (n=0), we have

4
(al(AS;, 9> =" (£ [exp (feos [25(6— 5)]~ 1)1l

—exp (2{cos [2(e— 5)] — 1}|a|?)] cos 40
+ 1 —exp (2{cos [2(e — )] — 1 }||*)} +|o|. (49)

The quantum fluctuations in the Stokes parameters are intensity-dependent and
periodic in 2(¢ — 8). However, they never become lower than |«¢|?. This means that the
quantum fluctuations in the Stokes parameter cannot be squeezed below the level for
a coherent state, contrary to the field variances which can undergo squeezing in the
propagation process [5].

5. Conclusions

In this paper we have considered the problem of quantum fluctuations in the
Stokes parameters which determine the polarization of the field propagating in an
isotropic Kerr medium. The two-mode description is needed to describe an
elliptically polarized field propagating through such a medium. In the case of
isotropic media, exact operator solutions of the Heisenberg equations of motion are
allowed. We have used these solutions to calculate the Stokes parameters and the
azimuth and ellipticity of the polarization ellipse of the field propagating in such a
medium. The solutions are exact quantum solutions showing new features charac-
teristic for quantum evolution, such as periodic behaviour. It is shown that, due to
the quantum character of the field, the degree of polarization is lowered at the initial
stage of evolution and then returns to its initial value after a period. Also, the azimuth
# and ellipticity n of the polarization ellipse exhibit periodic behaviour and their
evolution in the quantum case essentially differs from the classical evolution. Since
all the solutions are exact, they are highly instructive in revealing specific quantum
features of the evolution. The variances of the Stokes parameters are also calculated,
and although they are reminiscent of the field operator variances determining
squeezing, it is shown that their values cannot fall below the level for a coherent state.
Thus, there is no squeezing of quantum fluctuations in the Stokes parameters, at
least when the initial state of the field is coherent.
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When dealing with quantum fluctuations in the Stokes parameters we completely
ignored the effect of.dissipation. It has been shown by Milburn and Holmes [18] that
in the case of an anharmonic oscillator, losses can degrade or even completely wash
out the quantum effects. This should certainly hold as well in the case of the quantum
effects considered here. So, to observe these effects, one would need a medium with
minimal losses. Some approximate solutions of the problem of coupled nonlinear
oscillators with losses have recently been obtained by Horik and Pefina [19].
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