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The spectral distribution of optical sum-frequency generation (SFG) by incoherent
non-linear mixing of two chaotic beams with identical spectral width 5 is calculated
theoretically in the first approximation of the iterative method including dispersion of
the non-linear medium and the difference x between the group velocity of the input
beams. It is shown that for the same group velocities (x = 0) of the input beams in
non-linear medium the resultant field has a spectral width narrower than #, and if a
phase mismatch is present the spectral maximum of the resultant field is shifted towards
lower or higher frequencies according to the sign of the phase mismatch. If the input
beams have different group velocities (x # 0) in the non-linear medium, then the
spectral distribution of SFG is strongly dependent on #. For small 5 the spectral
distribution of SFG is the same irrespective of x. For large n the difference in group
velocities broadens the spectrum of SFG and for very large differences in group velocity
the SFG has a spectral width identical to that of the input beams.

1. Introduction
Optical wave interaction in a non-linear medium leads to wave mixing which is a non-linear
phenomenon giving rise to generation of waves at sum and difference frequencies. The
process of optical sum-frequency generation (SFG) is one of the most useful non-linear
optical effects, for example in extending the tunable range of lasers to shorter wavelengths.
The physical interpretation of sum-frequency generation is straightforward. The laser
photons at the lower frequencies w, and w,, by way of non-linear optical interaction in a
quadratic medium, generate photons at the higher sum-frequency w; (w; = w, + w,).
The basic classical theory of optical sum-frequency generation is due to Armstrong et al.
[1] and has been verified in experiments by Bass ez a/. [2]. In frequency-conversion experiments
one usually deals with single or multimode laser radiations with fluctuating phases and
amplitudes. Therefore, it is important to understand the influence of the light fluctuations
on non-linear optical processes. The influence of partial coherence of the generating
radiations was first discussed by Ducuing and Bloembergen [3] and Akhmanov and Chirkin

0306-8919/90 $03.00 + .12 © 1990 Chapman and Hall Ltd. 123



Z. Ficek et al.

[4] in second-harmonic generation (degenerate sum-frequency generation) and by Chmela
[5] in parametric up-conversion. Various aspects of incoherent three-wave mixing and
second-harmonic generation with phase fluctuations were studied in [6-8]. In particular, as
was shown in [7], the efficiency of three-wave mixing in non-linear dispersive medium with
one coherent beam and one spectrally narrow chaotic input beam increases with increasing
difference between the group velocities of the input beams, but decreases for large spectral
width of the chaotic beam. Much attention has recently been paid to the incoherent
parametric non-linear optical interaction of short laser pulses in connection with the
limitation imposed on the conversion efficiency.by group velocity mismatch [9-11].

The statistical behaviour of light in incoherent non-linear optical interactions of
radiations possessing well-defined spectral widths in dispersive medium represents a
peculiar topic among other statistical phenomena in non-linear optical processes [4, 12-15].
In particular, the theoretical description of incoherent non-linear optical interactions,
including partial coherence of interacting radiations and medium dispersion, is mathemat-
ically rather more exacting than for coherent interactions.

In this paper we study the spectral distribution of sum-frequency generation with chaotic
input radiations when the generating beams have arbitrary intensities and finite spectral
widths. Moreover, differences between the group velocities of the input beams in dispersive
medium and phase mismatch are assumed. We start from the set of first-order differential
equations for complex, slowly varying field amplitudes describing the incoherent quadratic
non-linear optical interaction. The solution for the spectral distribution of SFG is derived
to a first approximation by the iterative method [4].

2. Spectral distribution of SFG
The aim of this paper is to calculate the spectral distribution of the resultant sum-frequency
radiation in non-linear optical interaction of three quasi-monochromatic waves:

E(r,1) = eA;(r, hexplitk; - r — w;1)] Jj=1273 (1)

propagating in a dispersive medium, where e; are the unit polarization vectors and the
frequencies w,, w, and w, satisfying the resonant frequency condition , + ®, = w,. The
complex, slowly varying field amplitudes A,(r,#) in a dispersive non-linear quadratic
medium can be described, from the point of view of classical theory, by means of three
coupled first-order partial differential equations [4, 5]:

grad A, f, + u;'0A4,/0t = i, A;AFexp(iAk z)
grad A, f, + u;'84,/0t = 10,4, A¥exp(iAkz) )
grad A;* f, + u; ' 0A4,/0t = ioy A, Ayexp(—iAkz)

where ;(j = 1, 2, 3) are the group velocities in the ray directions f; of the individual waves,
a; are the coupling constants which depend on the second-order susceptibility of the
non-linear medium [5], and Ak = (k; — k, — k), represents the normal component of the
wave-mismatch vector. The co-ordinates of the system (x, y, z) are oriented so that the
z-axis is normal to the first boundary of the non-linear medium.

The homogeneous Equations 2 for non-perturbed amplitudes have the well-known
solutions

Ajolr, 1) = Ay, <t J%) Jj=123 3)

7

124



Group velocity in incoherent SFG spectrum

Thus, when considering the interaction of spatially unlimited plane waves, we can write the
boundary conditions for SFG in the form

Ao(r D) = Ay (x —%-’) for z<0(j=1,2) @)
f

and A;o(r, 1) = 0 forz < 0.

In order to study the spectral distribution of SFG we have to know the two-time
second-order correlation function {A;(r, t) A¥(r, t + 7)) for the complex amplitudes
of the resultant field. To this aim we shall solve the system of three coupled equations
(Equations 2) by the iterative method [4]. We restrict our solution to the first step of
the iterative method. In this approximation we assume that neither of the generating
beams at w, and w, are perturbed by the non-linear interaction, and that they are given
by Equation 3. For the resultant field the first-step iterative solutions of Equations 2
with the boundary conditions 4 leads to the following expression for the stochastic
amplitude:

. z i f-r f’r
Ay(r, ) = oy jo due '*r 4, <t - _;1{_ — ez + ) Ayt — ;_ — &nZ + Enp

1 2
5)

where 6, = a3 /cos fi;, with f3; the refractive angle in the ray direction f;, and ¢, (j # 3)are
typical dispersion coefficients dependent on the group velocity difference between the
generating and resultant fields, and are defined as

| 1 COS 03 .
= sk (% SR) =12 (6)

J

where g;; are the divergence angles between the two ray directions f; and f;. Hence, from
Equation 5 and assuming that the two input beams at w, and , are initially not correlated,
we find that the two-time second-order correlation function of the complex amplitudes of
SFG has the form

(A, DAX 1+ D) = a1 [ duy | dpexpl—i Ak — )]

X (A p(D ATl + T + ey — W)
X CApo() AFolt + T + ex(y — )P 0

From this equation it is evident that, for explicit calculations of the spectral distribution of
SFG generated in an incoherent non-linear optical interaction, it is necessary to know the
mean values <A, ,(t,) Af,(t,)>. To this aim, we assume that both input beams are chaotic
with identical finite spectral half-width I" and obey the factorization relationship [15]

<Aj,0(tl)A/>'!.‘0([2)> = <Jj,0>eXp[_r(tz - 1) (8)

with {J;4> = {(A4;,A4},> describing the initial intensity of the input beams.
On deriving the Fourier transform of Equation 7 with Equation 8 and assuming that ¢,
and &,; are positive and that ¢; > &, we obtain the following formula for the spectral
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distribution of SFG:
ar's’e
[(me)* + (@ + AYIl(nK)* + (Q + A — x Q)]
8ntde "™sin(Q + A)p — 4nB[l — e ™ cos(Q + A)g]
Qdn® + QN[()* + (Q + AY'P
B 8P Ae ™ sin(Q + A — kQ)p + B[l — e ™ cos(Q + A — kQ)o]
Qdn* + Q) + (Q + A — Q)

DQ) = @, (

®)
with
® = 2775<J|,0>]z12~]2,0>”40'3
A = ()’ — (Q+ MNQ + A + xkQ)
A = A+ 2kQ2Q + 2A — Q)
B = 'k’ + (Q + A4k — QQ + A)]
B = B — x4y’ — H(2Q + 2A — xQ)
where, for simplicity, we have introduced the notation
0 = <J1,0>]/4<J2,0>1/40'32 A = <JL0>l/4A<‘k]2‘0>1/403
Ile enlw — o
iz v ey i 19
o = €13 — &
€13

The explicit iterative solution (Equations 9) shows the resonance structure of the SFG
spectrum which is dependent on four parameters: 5, A, k and ¢. The parameter # describes
the spectral half-width T of the input beams, whereas A describes the normalized wave-
mismatch vector. The parameter k is dependent on the difference between the group
velocities of the input waves; k = 0 for identical group velocities of input waves, whereas
k = 1 for a very large difference between them. The solution (Equations 9) is valid for all
values of the input intensities {J, o) and {J,,), but is of limited applicability with respect
to the parameter ¢, which describes the normalized thickness of the non-linear medium.

The solution (Equations 9) shows for k # 0 a Lorentzian structure of the SFG spectrum
with peaks at Q, = 0,Q, = —Aand Q, = —A/(1 — k). The peaks at , and Q; have a
spectral width dependent on k. Since k € {0, 1), these peaks are narrower than the width
of the input beams, and are the same only for very large differences between the group
velocities (k =~ 1). If the group velocities of the input beams are identical (x = 0) in the
non-linear medium, the solution reduces to

) g [sink(@ + A\
o(Q) = @, |:(4,,2 + Q2)< 1(Q + Ao >:| 0
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Figure 7 Spectral distribution of SFG for A = 20, ¢ = 0.4, « = 0 and different values of the spectral
width #.

If follows from Equation 11 that the central maximum of SFG becomes narrow compared
with the spectral distribution of the input beams, and its location and width are dependent
on the function sin’x/x?, which has a strong peak at x = 0. For A = 0 this maximum is
located at Q = 0, but for A # 0 the spectrum is asymmetric and the main peak is located
at Q = — A according to the sign of A. For sign A = + 1, the central maximum is shifted
towards lower frequencies, whereas the central maximum is shifted towards higher fre-
quencies if sign A = — 1. This effect is similar to that discussed in [5] for parametric
up-conversion. The intensity of this shifted maximum is dependent on the spectral width of
the input beams. This is shown in Fig. 1, where the spectral distribution of Equation 11 is
plotted for A = 20, ¢ = 0.4 and different values of 5. For small spectral width 5 of the input
beams the spectrum consists of one high peak at Q = 0 and a small side peak at Q = —A.
As n increases, the intensity of the side peak increases whereas the peak at Q@ = 0 decreases.
The dependence of SFG on the spectral width of the input beams can be explained within the
framework of the phase mismatch effect. At the beginning of the process the phase mismatch
does not markedly affect the non-linear process and the frequency maximum of SFG appears
at w3y = W, + w,,, Where w;, are mean values of the frequencies w;. For considerable
large phase mismatch (|A] > 1), in the further course of SFG only those frequencies will
be systematically amplified which satisfy the approximate phase matching condition

(kg — koy — k). S 70 (12)

w3

The remaining frequencies which do not satisfy this condition are damped due to the phase
mismatch effect, which is a consequence of destructive interference of radiations that are
generated at different distances from the non-linear medium boundary. If the spectral width
of the input beams is small (4 < 1), at the beginning of the SFG process practically all of
the energy is converted into the resultant field at Q = 0, and only a small part of the energy
remains for the further course of SFG and is converted with the condition of Equation 12
giving a small peak at Q = — A (see Fig. 1). Conversely, for large #, at the beginning of
the SFG process a relatively small part of the input energy is converted into SFG and the
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Figure 2 Spectral distribution of SFG for A = 0, ¢ = 0.4, 4 = 0.5 and different group velocities of the input
beams: (—— )k =0, (---)k=05and (——) x = 1.
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Figure 3 The same as Fig. 2, but for greater phase mismatch (A = 20).

remaining, considerably great part of the energy is later converted with approximate phase
matching (Equation 12). As # increases, the greater part of the input energy is converted
into the resultant beam, leading to the increase of the peak at Q@ = —A.

The effect of group velocity difference between the input beams on the spectrum of SFG
given by the general solution (Equations 9) is shown in Figs 2 to 5, where ®(Q) is plotted
for ¢ = 0.4 and different 5, A and . It is obvious from Figs 2 and 3 that for small spectral
width # of the input beams, irrespective of A, the group velocity difference does not affect
the spectrum of SFG. However, for large n the group velocity difference broadens the
resultant field considerably, as shown in Figs 4 and 5. This can be explained as follows. For
small spectral widths # of the input beams the coherence times or lengths of all of the
interacting beams are relatively large, which explains why the behaviour of SFG spectra is
very weakly sensitive to the group velocity difference x. On the other hand, if the spectral
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Figure 4 Spectral distribution of SFG for A = 0, ¢ = 0.4, larger spectral width  (n = 10) and different group
velocities of the input beams.
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Figure 5 The same as Fig. 4, but for greater phase mismatch (A = 20).

widths of the input beams are large (y > 1), then the interacting beams possess relatively
very short coherence times or lengths. Consequently, the sub-frequency beams generated,
which are considerably time- or spatial-shifted due to the group velocity difference,
are mutually incoherent. Therefore, the effects of phase matching or phase mismatch
connected with the interference phenomena cannot assert themselves. This explains the
generation of relatively broadened sum-frequency spectra for large # and k, as is seen
in Figs 4 and 5.

To conclude, we would point out that sometimes it is useful to calculate the degree of
coherence [5, 15] instead of the spectral distribution of the resultant field. For SFG, the
degree of coherence can be defined as

'))3(” T) = <A3(l‘, t)A;‘(l’, t + ‘C)>/<A3(", [)A;k(i‘, t)>
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Obviously, on dividing the spectral distribution (Equations 9) by the intensity of the
resultant field {A;(r, 1) A¥(r, ), we obtain the spectral distribution of the degree of
coherence. In the same way we can define the degree of coherence of the input beams. For
chaotic input beams the degree of coherence of the individual beams is simply given by the
function y, ,(t) = exp(—I't). The maximum possible spectral width of the sum-frequency
radiation generated by incoherent non-linear optical mixing of two chaotic beams is 2T
Therefore, we can refer our discussion on the degree of coherence of the generated sum-
frequency radiation y,(r, 7) to the degree of coherence of the individual input beams. From
our solution we find that for k = 0 the resultant field in the process of incoherent SFG is
more coherent than the input fields, and for small 5 the group velocity difference between
the input beams does not affect this high degree of coherence. However, for large » the
group velocity difference lowers the degree of coherence. For very large differences between
the group velocities, the degree of coherence of the resultant field is the same as that of the
input fields.
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