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Second Spectral Moment of Vibrational
Hyper-Raman and Hyper-Rayleigh Spectra

T. Bancewicz and S. Kielich*

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 60780 Poznan, Poland

Equations for the second spectral moment of vibrational hyper-Raman and hyper-Rayleigh spectra are derived. It is
shown that owing to the simultaneous dependence of the hyper-Raman and hyper-Rayleigh intensities on the irre-
ducible spherical first- and third-rank hyperpolarizability tensors, both the unnormalized and the normalized second
moments of both the above types of scattering are geometry dependent. However, for some molecular symmetries
and for some molecular vibrations, the irreducible first-rank hyperpolarizability tensor vanishes; then the normal-
ized second spectral moment of the second-harmonically scattered radiation is independent of the scattering

geometry, as in the linear case.

INTRODUCTION

When an intense light beam interacts with matter,
numerous non-linear processes take place, including
multi-harmonic scattering.! If the frequency of the scat-
tered light is about twice that of the incident beam, we
are dealing with hyper-Rayleigh scattering.'* This type
of scattering is described by the third-rank Rayleigh
hyperpolarizability tensor b(—2w, w, w) of a molecule.
Internal molecular vibrations can shift the observable
spectral lines by hundreds or even thousands of cm™!
with respect to the hyper-Rayleigh line. This type of
scattering is referred to as vibrational hyper-Raman
scattering and is governed by the vibrationally modu-
lated hyperpolarizability tensor b(—2w + w,, ®, ®).
Obviously, the rotational and translational motions of
the scatterer molecules modulate the frequency of both
above types of scattering.!->~'® The determination of
the spectral distribution of the scattered radiation is,
however, very difficult. It is,in fact a many-body
problem, solvable in practice only with the help of high-
efficiency computers. Nonetheless, some information on
the spectral distribution can be gleaned from the spec-
tral moments of the types of scattered light discussed
above. This work was devoted to the calculation of the
second spectral moments of hyper-Rayleigh and vibra-
tional hyper-Raman scattering. To our knowledge, this
problem has not previously been considered for these
types of scattering. We show how, in some cases, the
symmetry of the molecules can be determined from
studies of both the hyper-Rayleigh and the hyper-
Raman spectral moment.

THEORY AND CONCLUSIONS

Consider a system of N molecules in a volume V. The
origin of coordinates is in the centre of V. An intense

* Author to whom correspondence should be addressed.

0377-0486/90/030207-04 $05.00
© 1990 by John Wiley & Sons, Ltd.

linearly polarized coherent light wave E = eE, exp
[i(wt —k - r)] is incident on the system. The second-
harmonically scattered wave with the vector k, is
observed at the point R with the analyser set to trans-
mit waves with polarization n. We neglect the fine struc-
ture of the spectral line, disregarding the translational
coordinates of the molecules. Moreover, we neglect
coupling between the orientational motion of the mol-
ecule and its normal vibration Q,, as well as coupling
between normal vibrations of different molecules.** The
rotational part of the correlation function of the vibra-
tional hyper-Raman light wave measured in the vicinity
of 2w + w, is then given by the expression

I() = A%**([n - b'(i, 0):ee][n - b'(i, t):ee]> (1)
with

Ny, + 2\*(n, + 2\* Iz (20 + 0, \*
o= N(T kDY (Rt 2 K (2o 2oy o
(1a)

where b'(i, t) is the Raman hyperpolarizability tensor of
the molecule i at time t; the brackets ¢ > represent
the equilibrium average over the orientations of all the
molecules; and f.(T) is a function of temperature
similar to that for linear scattering.*®

If we consider the hyper-Rayleigh scattering mea-
sured in the vicinity of 2w:

I(t) = A2‘°< > [n- b 0):ee]n - b(j, t):ee]> 2
j=i i

where b(i, t) or b(—2w, w, w) denotes the Rayleigh
hyperpolarizability tensor of the molecule i, f,(T) = 1
and moreover in Eqn 2 there appears a coherent part,
i # j, of hyper-Rayleigh scattering, a part absent in Eqn
1 owing to the lack of correlations between the normal
vibrations of different molecules.

For simplicity, at this stage, we restrict our consider-
ations to totally polarized hyper-Raman scattering, We
assume that the incident radiation is polarized along the
z-axis of the laboratory frame. The correlation function

Received 3 August 1989
Accepted 5 December 1989



208 T. BANCEWICZ AND S. KIELICH

1 of the vibrational hyper-Raman scattered light is then
described by!-1°
Iy(t) = A2*b, (i, 0.0, 1)) &)

zzz zzz

where b;_.(i, 0) and b._(i, ¢) are the laboratory zzz com-
ponents of the Raman hyperpolarizability tensor at time
t = 0 and ¢, respectively. The stationary property of the
correlation function (3) allows us to calculate its second
spectral moment, M,!, as the negative second time
derivative of Eqn (3) '! at time ¢ = O (sum rule). This

derivative can be transformed to

d d
I — 2ot oy ’ . ’ > 4
M2 A <dl bzzz(l’ 0) dt bzzz(lﬁ 0)> ( )

We start by calculating the totally symmetric Raman
hyperpolarizability tensor and then extend our results
to the case when the hyperpolarizability tensor is sym-
metric in its last two indices only, and also to the case
of hyper-Rayleigh scattering. We start from linear mol-
ecules. Taking into account the Cartesian—spherical
transformation coefficients for the b}, component of the
hyperpolarizability tensor, we have’:6:12:13

b.li, 1) = —iy/3D3(Q)BY + iy/ED3Q)BS  (5)

where Dy,(€) is the Wigner function'*! and B! is the
mth component of the irreducible spherical hyperpolar-
izability tensor of Ith rank in the molecular frame.® The
relationship between the irreducible spherical molecular
parameters | B,'|? and the Cartesian Raman hyperpo-
larizability components b,;, has been given previously
for all molecular point group and all normal vibra-
tions.'® Since the hyperpolarizability tensor (5) does not
depend explicitly on time we can calculate the time
derivative in Eqn (4) by means of the Poisson bracket

sp(@a may
dt =) \0px 0q, 0qy, Ip,

where the sum extends over all degrees of freedom of
the system [over all molecules (i) and over the trans-
lational coordinates x, y, z and rotational coordinates
¢, 6 within the molecule].

Taking into account the properties of the canonical
distribution, we easily find!7-#

<aH aH>_ kT 5. for n=06

20 35D 0

for n=0,xy,z2

where I denotes the moment of inertia of a linear mol-
ecule, k is Boltzmann’s constant and T is the tem-
perature of the system. We calculate the derivatives of
the Wigner functions in Eqn (7) as

0

5@: Dgo(;) = — sin 6, (8a)
—Q-D:’ (Q)—ésin 01 — 5 cos? g)) (8b}
a6, 0034) =5 i Ccos™ U;

Averaging isotropically over 6; in Eqn (4) we have'-
{sin? 6,>
<[3 sin 6(1 — 5 cos? 612>

3 (9a)
=% ()

iso

iso

The isotropic averages of the cross terms between Eqns
(8a) and (8b) are zero. Therefore, for the non-normalized
second moment of the hyper-Raman spectral line, we
obtain

kT |2 < 24 o
(Mg = 42 = [nga‘V + 3—51353@ (10

The second spectral moment of a Raman line normal-
ized to the integral intensity is 6kT/I.'° Normalizing
Eqn (10) in a similar manner, we obtain

2 o 24
o 31 B+ I B
(M2“)HR =0 ) (11)
1B+ I BY

The second spectral moment and the integral inten-
sity of the hyper-Raman line are dependent simulta-
neously on the first- and third-rank hyperpolarizability
tensors. In the case of linear Raman scattering, this
dependence is restricted to the second-rank polarizabil-
ity tensor only. If one component in Eqn (11) predomi-
nates, the situation is similar to the case of linear
scattering. If By » By, then (M) = 2kT/I (as in
infrared spectroscopy), whereas if By < B, then
(M)ur = 12kT/I. From Eqn (7), the second spectral
moment of the coherent part of hyper-Rayleigh is zero.
Hence the general form of the non-normalized second
moment of the hyper-Rayleigh line is formally the same
as in hyper-Raman scattering; however, the molecular
parameters B,' have different meanings in each case.
From these considerations, both the non-normalized
and the normalized second moment of the hyper-
Raman line are dependent on the geometry of observa-
tion. For the depolarized component, we have

2

kT ~ 16 .
(M, g = A% — [—IB’o‘ I* + EIB"O3 Iz] (12

I [45

We now proceed to examine the influence of non-
total symmetrical nature of the hyperpolarizability
tensor b;; on the second moment. The irreducible
spherical tensors describing the hyper-Raman scattered
intensity now depend on the supplementary index s
related to the symmetry of the Ith-rank tensor element
B" 9 with respect to an interchange of the indices i, j, k.
We denote'® by s = 1 the irreducible spherical molecu-
lar parameters originating in the totally symmetric part
of b;; and by s = 2 those originating in its asymmetric
part (corresponding to * and [, respectively, in the nota-
tion in Ref. 10). Therefore, in addition to the totally
symmetric molecular parameters Bj!'" and By D
(s=1), two additional asymmetric molecular para-
meters, B{"? and B{*?, appear. For the depolarized
second spectral moment, we have

kT
(le)}-lk =A% T

2 . o 16 .
= B’(I, 1) B’(ly 2))2 — | B3, 1) 2
X [45| 0 + \/g o "+ 35|Bo |

2 5
+ ng&‘z' z’lz] (13)
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Obviously, the situation is now more complicated than
in Eqn (12) and there is less chance of a simple universal
equation for the second spectral moment of the hyper-
Raman line.

We now proceed to discuss the hyper-Raman second
spectral moment for symmetric top molecules. In this
case it is more convenient to calculate the time deriv-
ative in Eqn (4) in a different way. For the orientational
degrees of freedom, the time derivative in Eqn (4) trans-
forms to2°

d N

it kgl o, 1, (14)
where o, denotes the vector of orientational velocity of
a molecule k and |, its angular momentum operator.
Again, we restrict ourselves to the totally symmetric
tensor b,; . Using Eqn (14), after some algebra,®2! we
obtain the following expression for the polarized non-
normalized hyper-Raman second moment valid for
symmetric and spherical top molecules [the gener-
alization of Eqn (15) to a non-totally symmetric hyper-
polarizability tensor is straightforward]:

kT

(M2”)HR =A% T

1 ~
[g @+ v B P

2 &
35 2 (124 <) BY |2] (15)

where n =1,,/I denotes the ratio of the moment of
mertia I, of the molecule calculated for its principal
axis and its moment of inertia I calculated for an axis
perpendicular thereto. In Eqn (15), as with linear mol-
ecules, the second spectral moment (15) is dependent on
the first- and third-rank hyperpolarizability tensors.

However, for certain molecular symmetries and selec-
ted normal vibrations (as is given in the Table in our
earlier paper!®), only the components of the irreducible
third-rank tensor B;? differ from zero. These are the
parameters | B’2,]? in the case of the molecular sym-
metries C,, C,, and S, and normal vibrations respec-
tively B, B,, A; and the molecular symmetries C,,, D,,
D, and D,, and normal vibrations respectively B, and
B,; B, and B,; B,, and B,,; A, and 4,. The non-
normalized polarized second spectral moment of these
bands is now

16 kT ~
(M, )y = 35 A T 6+ n)| By |? (16)
On normalizing Eqn (16) to the integral intensity, we
obtain

(M =4 (3 + 1) a7

Clearly, the value of Eqn (17) is geometry independent.

In a different case, the non-zero parameters can be
| B3> = B3,|% This is the situation we deal with for
the molecular symmetries Dy, D,;, C;, and the normal
vibrations A, A,,, 4,; for C¢, C,,, C¢; and the normal
vibrations B, 4', B,; as well as for Dy, Dg,, Ds,, Ce,
and normal vibrations respectively B, and B,; B,, and
B,,; Ay and A,’; B, and B,. Here, in accordance with
Eqn (15), the non-normalized polarized second spectral
moment of these bands is

12 kT ~
(M, )yg = BT A*°4 + 3n)| BY (18)
On normalizing Eqn (18) to the integral intensity of the
polarized component of hyper-Raman-scattered radi-
ation, we obtain

(T = 35 (44 30 (19

Four of the above vibrations, S,: 4, D,,: 4;, C;,: A’
and D,,: A/, are totally symmetric. Hence, for the first
two the second spectral moment of the hyper-Rayleigh
line is given by Eqn (16), whereas for the latter two by
Eqn (18). Obviously, the molecular parameters | B, |2
are now determined by way of the Rayleigh hyperpolar-
izability tensor. Hyper-Rayleigh, as distinct from hyper-
Raman scattering, contains a coherent part.!'??? For
the integral intensity, it is determined by the static func-
tion of orientational molecular correlations g'® of third
degree (the third-degree Kirkwood factor®22). For this
reason, on normalization to the integral intensity, the
second moment of hyper-Rayleigh light scattered by
molecules with the symmetries S, and D, is

kT
47(34—11)

(M Z)HRay = (20)

1+ g™
whereas for the symmetries C,, and D;, we have

kT
3—1—(4+ 371)

(M Z)HRay = (21)

1+ g®

Among other applications of our hyper-Raman and
hyper-Rayleigh second-moment equations, the specific
forms of the second spectral moments for certain well
defined normal vibrations and molecular symmetries
suggest that the as yet unknown symmetry of unstudied
molecules can be accessible to approximate determi-
nation by investigations bearing on the second spectral
moments of hyper-Raman and hyper-Rayleigh scat-
tering.
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