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Sum-frequency generation by incoherent nonlinear optical mixing of one coherent and one
chaotic, mutually uncorrelated input radiations in a dispersive medium is treated in this paper.
The efficiency of the process is calculated in the second approximation of the iterative method.
It is shown that for perfect phase matching or small phase mismatch of interacting waves and
small spectral width of chaotic input radiation the efficiency of incoherent sum-frequency genera-
tion can be enhanced compared with the coherent interaction due to the difference between group
velocities of sub-frequency radiations. On the other hand, for greater spectral width the efficiency
of the process decreases with increasing spectral width of chaotic input radiation. In the case
of considerable phase mismatch the efficiency of sum-frequency generation first decreases, but
then increases with increasing spectral width of chaotic input radiation. The spectral distribution
of the resulting sum-frequency radiation is calculated in the first approximation of the iterative
method. There is a general tendency to narrowing the spectral distribution of generated radiation
in the course of the process. Moreover, when there is phase mismatch present, a spectral shift
of the maximum of generated radiation towards blue or red region, according to the signs of the
phase mismatch and the typical dispersion coefficient, appears in the later phases of the sum-
frequency generation.

1. INTRODUCTION

In the first part of this investigation [ 1] we introduced the general classical solution
for non-degenerate sum-frequency generation by incoherent nonlinear optical mixing
of one coherent and the other chaotic sub-frequency input radiations; both sub-
frequency generating radiations were assumed to be mutually uncorrelated at the
beginning of the process. The second-step approximation of the iterative method
was used when calculating the efficiency of the process and the first-step iterative
solution was used for the description of spectral distribution of generated sum-
frequency radiation.

In this part we shall deal particularly with the dependence of the efficiency of sum-
frequency generation and the spectral distribution of generated radiation upon the

*) This work was partially supported by Research Project C.P.B.P. 01. 07.
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coherence and statistical properties of the chaotic sub-frequency input radiation
and the characteristic coefficients of the nonlinear medium.
As the efficiency of the process depends upon four parameters [1], we have to
make certain simplifications and special cases must be considered in the next treatment.
Concerning the spectral distribution of generated sum-frequency radiation, its
form is relatively simple so that we can discuss it more generally.

2. DEFINITIONS AND CALCULATIONS OF INTEGRALS

For further use we define and calculate the following integrals.

(I1.1)  F(n, 4,7) = [5dx, [§dx, exp[—id(x, — x2) — #|x; — x,[] =
= 21 T+ 2
(’12 + AZ) (112 -+ AZ)Z
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~ 8[(n* — 414> + 4*) cos (4r) — 3nd(n* — 4?)sin (47)] exp (—n7)} ,
(11.4) FEM(, 4,7) =
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3. EFFICIENCY OF THE PROCESS

The second approximation iterative solution for the mean photon flux of sum-
frequency radiation at w; = w,; + w, generated by the incoherent nonlinear optical
mixing of one coherent (w,) and the other chaotic (w,) sub-frequency input radi-
ations has been found to be (see equations (1.25) in [1])

(116) <N3(T)>cohchaot = <N1,0>1/2 <N2,0>1/2 f(’?z, Aa T) -
- <N1,0> ép(lc'ch)(rIZ: A, T) - <N2,0> [éa(Zc.Ch)(rh’ A; T) + g%c'ch)(ﬂz’ %2’ A’ T)] .
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The following notation has been used (see [1]): <N, o>, (N o) are the mean photon
fluxes of sub-frequency input radiations, t = {N; o>*/* (N, o>*/* uz is the reduced
normal distance from the first boundary of nonlinear medium, 4 = Ak/{N, o>'/*.
.{N3,o>'* pu is the reduced phase mismatch, u denotes the nonlinear coupling
constant, 1, = Ij gles3|[<Ny o>"/* (N2 o> * 1 is the reduced spectral half width
of the chaotic sub-frequency input radiation, e = (1/ug — cos ay/u,,;)/cos By
being the typical dispersion coefficients, u,,; are group velocities in ray directions,
oy are the divergence angles between two ray directions f; and f;, B; are refractive
angles of the ray directions and %, = &,,/6,;. The functions S(,, 4, ), &
(2, 4,7) and &5*Y(n,, 4, 7) are given by equations (IL.1), (IL.2) and (IL3), re-
spectively, and

’(117) f{f’cb)(ﬂz, Ha, A, T) =
= 2§ dxy [§ dx, [52 dxh 52 dx cos [A(x; — x; + x5 — x3)]
X exp {—’12“”2] (x2 — x3) + |x1 = (1 = %) (%2 — x3) = x3[1}

the explicit calculation of #§™(1,, %,, 4, 7) being given by equations (1.29) in [1].
For perfect phase matching of interacting waves, if 4 = 0, equation (IL.6) is
reduced to simpler forms:

forx, >0
2 1/2 N 1/2 1
(IL62) N5 eanenaon = 02— N20) {r—;?—[l—exp(—m]}
2

M2
2N 3 2 4
_ XN, {_ -5 [ +exp(—mo)] + 5 [1- exp(—nzr)]}
2 3 m 2
_ AN 0> {2(1 + %) 2 _ 4(L + 2x3) T — 4(1 — 2,)
'lg Ha %3’12 ’12(1 - 2742)
4(12%% ~ 13x%, + 4 exp(—2 4 _
_ 4« 22 2 )exp(_w) L oxp - ny7)  4exp (3 ;‘2’127)
'lz(l - 2“2) nz *al2
exp (—2sx,m,7) | (1133 — 55 + 4)
2 2 + 3.2 ’
woma(1 — 23¢;) a3

7 exp (—1,7)

for %, <0

1/2 1/2
(II 63.”) <N3(T)>cohchaot = 2<N1,0> " <N2,0> {T - ;1}- [1 - exp(-—nzr)]}
2 2

2N P2
- _Sﬂ{r_ - —-; [1+ exp(—n,1)] + —45 [1- exp(—nzr)]}
1, 3 n; 2

3 2
~ <N22,0> {2(1 + |xea]) 2 2(8|x,| 2+ 5%3 + 4lx,| + 2) 2. exp (= 1y7)
n2 J5¢2] x312(1 + 2)oez)) 12
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(12pe] + 1) exp (=2n,7) _ 4exp (—|#z) 157)

exp (—1n,7) +
palat o2 7 ol 12
exp [~ (1 + 2pep|) mat] | 4(1 + 3],)*) (3 — 4x3)
+ 2 2 + 3.2 2 2(°
[pea| m3(1 + 2z bolPnd n3(1+ 2e))

The numerical calculations of (II.6a) have shown that for great absolute values
%3, ;| & 1, and small 7,1, S 1, the dependence of efficiency of sum-frequency
generation upon ‘%zl is practically the same for both positive and negative x,.

For small spectral width of the chaotic input radiation or small group velocity
dispersion, or for the beginning of the process, if 7,7 < 1, equation (IL.6) is simplified
as follows:

(IL6b) V() eamepsor = M2 N0V 2o

A2

— (N> + 2UN,.0)) fi [Aiz sin? (41/2) — i- sin (Ar):l .

In order to determine realistically the values of %, for numerical calculations,
we shall consider two types of nonlinear interaction, for which the phase matching
in an anisotropic medium is possible, namely yii + y\> — y{) and Y& + YD
-y or yID + 9y - y{) [2—4]. By I and II two polarization modes of light are
denoted that correspond to certain wave propagation direction s; in the anisotropic
medium, provided it holds for corresponding indices of refraction that n{)(s;) <
< n{)(s;) (see e.g. [5]). Considering the almost transparent frequency region of the
nonlinear medium, in which the group velocities of interaction waves do not differ
much from the phase velocities [6], we can roughly estimate the values of %, for
different ratios of sub-frequencies: w; ~ w, and w; > w, or w; € w,, and different
types of nonlinear interaction. The efficiency of the process will then be computed
for perfect phase matching (4 = 0) and great phase mismatch (|4] = 10), and
for various values of #,. As the reduced spectral half width #, involves the typical
dispersion coefficient &, and also the reduced phase mismatch 4 is not independent
of %, this procedure can represent a rough approach to the real cases only. An exact
description would be possible barely for concrete nonlinear materials.

In the next treatise we introduce the expressions for mean photon fluxes (N5(7)»
in some special cases corresponding to general expression (I1.6) for different values
of x,. The used functions #(n, 4, 7), &P (n, 4, 1), €5 ((n, 4,7), FEP(n, 4, 1)
and F$M(n, 4, 1) are defined by equations (I1.1) —(IL5), respectively. As to the
computations of the efficiency of sum-frequency generation, we assume that the
mean photon fluxes of input radiations are equal: (N; ;> = (N, o> = {NypD.

Note that a special case of incoherent sum-frequency generation with one strong
coherent pump and the other weak chaotic input radiation (parametric up-conversion)

was considered in [7].
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In order to get an opinion about the accuracy of the used approximation we also
introduce the evolution of relative mean photon flux <{N3(7)>oncnaot/<No) that
corresponds to the closed solution of coherent sum-frequency generation (4 = 0,
72 = 0) [8] in those figures that represent the evolution of relative mean photon
fluxes in the phase matched (4 = 0) process.

The following special cases are considered.

1. 0, = w,.
a) Type of interaction: Y01 + y00 — 9, |ae,| < 1.

(H'S) <N3(T)>cohchaot = (N, ,o>1/2 <N2,o>1/2 f(ﬂz, 4, T) -
—(Ny,0» é&(f'cm(’?z, 4, T) — (N3,0» [@@(10’&)(’12, 4, ’C) + Cg(zc’Ch)(ﬂz, 4, T)] .

The evolution of relative mean photon flux {N3()con chaot/ Noy ((Nop = Ny 0> =
= (N, ) in the course of incoherent sum-frequency generation for perfect phase
matching (4 = 0) and great phase mismatch (|4| = 10) and for various values of 7,
is shown in fig. 1 in this case. It follows that for perfect phase matching (or for small
values of |4|) the efficiency of the process decreases with increasing coefficient #,
(with increasing spectral half width I', , and with increasing absolute value of
typical dispersion coefficient |e,5]) (see fig. 1a). However, for great phase mismatch
a reverse effect occurs, namely, the efficiency of sum-frequency generation first
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:é \‘5 e, = B
5016 £0032 14l =10 2 -
T 5 )
- o N\ T
=2 o
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0.12 = 0024 o -
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0 0 J 1 ! I
0 0 04 02 03 04 . 05
b)

Fig. (. Evolution of the relative mean photon flux of sum-frequency radiation {N3(t)>conchaot *
T{NoD ({No> = Ny 00> =Ny o>, tT={NgdP2 pz) in the incoherent sum-frequency
generation with one coherent and the other chaotic sub-frequency input radiations for the ratio
of typical dispersion coefficients [x,| = |e5,|/]¢23] = 0, for perfect phase matching (A = 0 — a)
and great phase mismatch (4] = JAk|/{N;>!/? u= 10— b), and for several values of the
reduced spectral half width of chaotic input radiation 7, = I' gle53]/{ Ny »*/? . The dashed
line in fig. a) represents the exact solution for coherent interaction (4 = 0, 7, = 0) with coherent
and chaotic input radiations after [6].
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Fig. 2. The same as in fig. 1 for |x,|— co.

decreases, but later on increases with increasing 7, in the advancing process (see
fig. 1b).

b) Type of interaction: y5) + vy — ¥5) or y5P + 95 ~ 10, %, & 2.

(119) <N3(T)>cohchaot = <N1,0>1/2 <N2,0>1/2 f(”lz, A5 T) -
) - <N1,0> ép(lc,cm(n29 Aa T) - <N2,0> [é’(zc'm(ﬂz, A’ T) + 'g;(lc’d‘)(rll: A, T)] .
Our computations have shown that the behaviour of {N3(7)>conchaor/<No) is
rather similar to that for |x,| < 1 in this case (see fig. 1). Only the efficiency of sum-

frequency generation is somewhat enhanced compared to the previous case. We do
not introduce special figures for this case.

2. One sub-frequency is very large in comparison with the other one. Arbitrary
type of interaction.
a) 0, > W,
®y & 1.
(H-IO) <N3(T)>cohchaot = <N1,o>1/2 <N2,o>1/2 f(’lz, 4, T) -
— Ny,o» éa(f'cm(ﬂza 4, T) — 2{N3,0» éa(zc'cm(ﬂz, 4, T) .

Similarly as in the previous case (%, ~ 2), the course of {N3(t)>conchaot/<NoD
does not differ much from that for |x,| < 1 (see fig. 1). Computations of equation
(I1.10) show that for perfect phase matching the course of <N 3(1)Dcon cnaot/ (No» is
an intermediate one between those for |x2| <1 and %, ~ 2, and for great phase
mismatch the evolution of {N3(t)Yconcnaot/<No» is nearly the same as for », ~ 2,
for all n,. ‘
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Special figures for this case are not introduced either.
b) v, < w,,
Ile > 1.
(11.11) CNS(T > concnaor = N1,0p 2 (N3 oD% F(n2, 4, 7) —
— (N10)> 67 (12, 4, 7) = (N2 0> [65(n, 4, 7) + F5M(n2, 4, 7)] -

The behaviour of {N3(7)Dconenaot/<Nop is shown in fig. 2. An interesting effect
appears for perfect phase matching and small values of n,(n, S 1) (see fig. 2a),
namely, the efficiency of the process exceeds that for coherent interaction in this
case. For greater values of n, and perfect phase matching, as well as for great phase
mismatch, the behaviour of {N3(T)>concnaot/<Noy is qualitatively similar as in the
previous cases. However, the efficiency of sum-frequency generation is conspicuously
enhanced in advancing process compared to that for small [le (compare figs. 1 and 2).

In order to get better insight into the dependence of the efficiency of sum-frequency
generation on the reduced spectral half width 7, and the ratio of typical dispersion
coefficients %, (the difference between the group velocities of generating sub-fre-
quency waves), we have plotted the relative mean photon flux <{N3>conchaot/ <No)
versus parameter lx2| for several values of 7, in fig. 3, and versus parameter 7,

0.20 T T T T T T T T T

0.18

(NB(BeZ”):oh chaot I(NO)

0.16

0.14F

0.12

0.10 -

0.08 L I 1 1 1 ! 1 1 t
0 10 20 30 40 50 60 70 80 90 100

13,1
Fig. 3. Relative mean photon flux of sum-frequency radiation {N3(|%3!Dcop chaot/{No) versus
ratio of typical dispersion coefficients |x,| at normalized distance from the nonlinear medium
boundary 7 == 0-4 in the phase matched (4 = 0) incoherent nonlinear optical interaction for
several values of the reduced spectral half width of chaotic input radiation #,. The dashed line
marks the value of { N3(t == 0°4)D } chaot/{ No » for coherent (7, = 0) sum-frequency generation
with one coherent and the other chaotic input radiations and the dot-dashed line stands for the
interaction of coherent radiations.
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<N3(n2)>coh chaot K 0)

0.12

0.10

0.08

5

Fig. 4. Relative mean photon flux of sum-frequency radiation {N3(7)Yconcnaot/{No D> versus
the reduced spectral half width of chaotic input radiation 17, at the normalized distance from the
nonlinear medium boundary r = 0-4 in the phase matched (4 = 0) incoherent nonlinear optical
interaction, for several values of the ratio of typical dispersion coefficients [#,]|. The dashed line
marks the value of {N3(z = 0:4)) .oy cnaot/{ Vo » for coherent (7, = 0) sum-frequency generation
with one coherent and the other chaotic input radiations and the dot-dashed line stands for the

interaction of coherent radiations.

for several values of ]x2| in fig. 4, at normalized distance from the nonlinear medium
boundary t = 0-4, for the phase matched process. It is obvious from figs. 3 and 4
that the efficiency of incoherent sum-frequency generation with one coherent and

'?2 coh

0.4
0

1.6

1 1 i H

01

0.2 03 0.4 05 0.6

T

Fig. 5. Ultimate reduced spectral half width of chaotic input radiation 7,4, for which the
effect of incoherent sum-frequency generation efficiency enhancement disappears, versus the
reduced normal thickness of nonlinear medium v, for three different values of [x,].
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the other chaotic input radiations can be enhanced compared to the coherent inter-
action with one coherent and the other chaotic input radiations, and even it can
exceed the efficiency of sum-frequency generation with both coherent sub-frequency
input radiations, for small #, and great |x,|. This effect has already been noticed
in [9]. A considerable enhancement of the efficiency can be reached for very great
values of |x,| only. The values of 7, for which the maximum efficiency enhance-
ment occurs, as well as the ultimate values #,.,,, for which the effect of efficiency
enhancement disappears, are dependent on |x,| (see fig. 4) and they vary with the
normal thickness of nonlinear medium. For illustration we have plotted the ultimate
reduced spectral half width #,,, versus the reduced normal thickness of nonlinear
medium 7 for three different values of [x,| in fig. 5. It follows from fig. 5. that 7,
increases linearly with increasing  for all |x2| in the initial stage of the process.
Generally, for small values of the coefficient n, (small spectral half width of
chaotic input radiation I', , and small typical dispersion coefficient ]323|) the process
of incoherent sum-frequency generation is rather sensitive to the reduced phase
mismatch IA[ and the difference between the group velocities of generating radiations
characterized here by Ile, and a marked angular or frequency cutoff appears. On
the other hand, for greater values of 7, the process is less sensitive to.|4| and |x,]
and, consequently, broad-angular or broad-band beams of chaotic sub-frequency
radiation can be converted with approximately the same, even if low, efficiency.

4. SPECTRAL DISTRIBUTION OF GENERATED SUM-FREQUENCY RADIATION

The spectral distribution of sum-frequency radiation at w; = w; + ®,, generated
in the incoherent nonlinear optical interaction with one coherent (a)l) and the other
chaotic (w, ) input radiations, has been found in the first approximation of the iterative
solution to be (see equation (1.30) in [1])

1I.12 coh chao 'Q’T = |823I cohchao .Q, ’

( ) 9 3conch :( ) <N1,0>1/4 <N2,0>1/4,uf h ch t( ‘C)

where

11.13 Q= b23 -

( ) (N o> AN o4 ﬂ(w 20)

and

(IL14)  fonenaod @ 7) = nat* {Sin [(4 + @) <2])*
n S 4, 1) (n; + Q) | (4 + Q) )2

#(12, 4, 7) being given by equation (IL.1) and W30 = W3 + 0y, Where w, 4 is
the mean frequency of chaotic input radiation with Lorentzian spectral distribution,
gZ,Ochaot(w) = Fz,o/“[rg,o - (w - (02,0)2] (see ¢.g. [10])-

The expression for g3.en cpao 2, 7) can be simplified in some special cases.
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1. For perfect phase matching (4 = 0) we obtain

(IIIS) g3cohchaot(‘Q’ T) =
B 2|e,3] 73 sin® (Q1/2)
(N o)1 * (N2 0> iy + %) Q{1 — (1n;) [L = exp(—no7)]}
a) In the case of #,7 < 1, i.e. for a high degree if coherence in the chaotic input

radiation or for a small dispersion of the medium, or at the beginning of the process,
equation (I1.15) is reduced to

in (Q¢/2)
I1.15a ohehaotl @, T) = leas] sin (
( ) G3conchao 2, T) TN o> (N, o4 p(n? + Q%) Q2

and in the original variables

(Ilflsa’) g3cohchaot(w, Z) =

R T i e e o &

For a dispersionless medium (e;3 — 0, I', o == 0) equation (IL.15a") provides the
Lorentzian spectral distribution, gseenchaot(®@) = I,0/n[I3,0 — (@ — w3,0)?], and
for the second-order coherent input radiation (g3 + 0, I o — 0) we have
F3conchaot(@) = 8(® — w;,0). Thus the generated sum-frequency radiation simply
copies the spectral distribution of the chaotic sub-frequency radiation in this case.

b) In the case when 7,7 » 1, i.e. for a small degree of coherence of the chaotic
input radiation and great dispersion of the medium, and also for greater values of z,
we have from equations (I1.12) and (IL.14)

|'°‘23| 3 sin (Q21/2) 21
27'C<N1,0>1/4 (N M4 p(n§ + Q%) Q12
It follows from equation (I1.15b) that the central maximum of sum-frequency radia-

tion becomes narrower with respect to the spectral distribution of the chaotic input
radiation and side maxima with decreasing intensity appear at 2 = +3n/r, 57/, ...

(IIle) g3cohchaot(‘Q’ T) =

2. For considerable phase mismatch (]4| R 1) the following cases are discussed.

a) If 7,7 < 1 we have for the spectral density of sum-frequency radiation

(IL.16) sin[(4 + @) «/2])"
|323| N2 (4+9)7)2
aotl 2, 7) =
g3 cohchaot( T) 11:<N1,0>1/4 <N2’0>1/4- #(’7% + QZ) sin (A'L‘/Z)
At[2

The discussion of equation (I1.16) is similar to that for equation (II.15a). The generat-
ed sum-frequency radiation approximately copies the spectral distribution of the
chaotic input radiation. However, the spectral density gjconcnaor(2) is slightly asym-
metric in this case.
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b) For 1,7 > 1 equation (12) is simplified to

IL17 Q,7) = le2s| (4% + n3) sin [(4 + Q) 1/2]}2
( ) gScohchaot( T) 2TI<N1,0>1/4 <N2’0>1/4 ﬂ(?]% + 92) (A + Q) 1,'/2 T

The spectral distribution of generated sum-frequency radiation is conspicuously
asymmetric in this case and its maximum is shifted towards positive or negative
values of Q according to the sign of the phase mismatch 4.

Fig. 6 shows the spectral distribution function f o, cnaot(2) at two different distances
from the nonlinear medium boundary 7 and for three values of 4 and two values
of n,. The evolution of spectral half width of the generated sum-frequency radiation
was shown in [7].

From fig. 6 it is seen that, generally, there is a tendency to narrowing the spectral
width of the generated sum-frequency radiation in the course of sum-frequency
generation process.

Moreower, if the phase mismatch is not equal to zero, there is a shift of the central
maximum of generated sum-frequency radiation in the following sense. For sgn(Ak)=
= sgn (g,3) the central maximum is shifted towards the lower frequencies and a red
shift occurs. For sgn (Ak) = —sgn (¢,3) the central maximum is shifted towards
the higher frequencies and a blue shift occurs.

& 0.4 T I I T T
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5 ’r‘,____ T=0.4
< 4 =
o8
03 n, = ]
0.2k _
0 B
0 ' — e
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a)
Fig. 6. Reduced spectral distribution of generated sum-frequency radiation fiop chao($2) (£2 =
= 833(0 — w3 0}/ { N, 0>1/4 (N,, o>Y* u) for three different values of the reduced phase
mismatch 4 = Ak/(Nl oD% (N, o >4 4 and two values of the reduced spectral half width
of chaotic input radiation 7, = I'y, 0]323[ J{Ny oD * (N, o >1/* uat two reduced normal distances
from the nonlinear medium boundary v = (N ¢>!/# (N, ¢>*/* 4z in the incoherent sum-
frequency generation. The dot-dashed lines represent the spectral distribution of the chaotic
input radiation f; 4(Q) (2 = &;;3(w — wzyo)/<N1,0>1/4 <N2’0>1/4 ). For negative values of 4
the corresponding curves are symmetric with respect to those given above, with Q = 0.
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Czech. J. Phys. B 39 (1989) 653



654

& 0.2

A L T T T T T T T T
Eo.0r 4 =0 -
n, =10 T=0.4
- 7N
0.08 /N :
/ \
/ \
0,06} / T=02 \ -
// \
/ \
0.04F / d -
7 TSN
0.02- o /.~ \\\\ _
. v/ NS
""""""" ot 4 \\ \\'*~_
0 [l 1 1 1 LS~y —
-25 -20 -15 -10 ~5 0 5 10 15 20 0 25
b)
£0.3 .
0.2 7
0.1 1
0 15 10
2

c)

fCGh Chdot(Q)
o
=
T

0.08f

0.06p

0.04

0.02

Czech. J. Phys. B 39 (1989)



P. Chmela et al.: Nonlinear incoherent sum-frequency generation II. . .

f:ah :nca(‘Q)

10 15 20 25

fcoh chaot(Q)

o
o
™

0.06

0.04

f}
Fig. 6 (continued).

5. DISCUSSION

The above described behaviour of incoherent sum-frequency generation with one
coherent and the other chaotic sub-frequency input radiation can be discussed
in connection with the fulfilment of phase matching condition, the coherence phenom-
ena, the evolution of light statistics of interacting radiations in the course of nonlinear
interaction and the dispersion of nonlinear medium.

It has been shown that for the phase matching or for small phase mismatch
(|4] < 1) and small values of #,(, < #,c.s) the efficiency of incoherent sum-fre-
quency generation increases with increasing |x2| and it can exceed that for coherent

Czech. J. Phys. B 39 (1989) 655



P. Chmela et al.: Nonlinear incoherent sum-frequency generation II. . .

interaction (see figs. 3 and 4). This enhancement of efficiency of the process can be
explained within the framework of light statistics. In [8] it has been shown that
during the coherent (4 = 0, 1, = 0) sum-frequency generation with one coherent
and the other chaotic sub-frequency input radiations the anticorrelation is generated
between sub-frequency radiations. This effect leads to a decrease of efficiency of the
process with respect to the interaction of coherent radiations. If there is a difference
between the group velocities of sub-frequency waves (x, = 0) in the nonlinear
medium, the generating radiations become spatially (time) shifted, so that the gener-
ated anticorrelation is compressed or it can be converted into the correlation between
sub-frequency radiations. This gives an increase of the efficiency of sum-frequency
generation. However, if the reduced spectral halfwidth of the chaotic sub-frequency
input radiation is considerable (17, > 7,..), the efficiency of the process decreases
with increasing 1, (see fig. 4). This is firstly a consequence of the phase mismatch
effect. In fact, the phase matching can be exactly adjusted for the central maximum
frequences w,  and ws , only, for which the phase matching k,,, , — k,,,— k,, , = 0
is satisfied. If the spectral distribution in the sub-frequency radiation at w, (and
consequently also in the sum-frequency radiation at w;) is considerably extensive,
only relatively small intervals of the frequencies at w, and wj satisfy the approximate
phase matching condition for the effective sum-frequency generation: (K, ,+a0 —
— ky, — ko, o1a0)z 2 S T (see e.g. [2,4]). The remaining satellite frequencies are
phase mismatched, meaning that a considerable amount of the sub-frequency radia-
tion energy is converted into the sum-frequency radiation energy with a variously
small efficiency and spatial period according to the frequency difference dw =
= |w2,0 - wzl. However, for greater 1,(1, > 12.qn) the effect of spatial incoherency
of the chaotic sub-frequency and sum-frequency radiations, which prevents the
further stimulation of the nonlinear process by the sum-frequency radiation that
is generated at former phases of the process, is manifested in the advancing sum-
frequency generation [7].

Of course, both the favourable group-velocity dispersion effect and the quenching
effects of phase mismatch and spatial incoherency manifest themselves simultaneously.
The ultimate value #,.,;, represents the situation at which these effects cancel out
mutually. For 7, < #,.0n, the accelerating group-velocity dispersion effect pre-
dominates over the damping phase mismatch and spatial incoherency effects, and
vice versa for 9, > #f3c0n-

The narrowing of the spectral distribution of generated sum-frequency radiation
in the course of nonlinear process, which is demonstrated in figs. 6a and 6b, is due
to the phase mismatch that limits the effective conversion of satellite frequencies
of the chaotic sub-frequency radiation. As the spectral distribution of sum-frequency
radiation was described in the first approximation of the iterative solution only,
the light statistical (group-velocity mismatch) effects are not included in our de-
scription in this case.

In the case of considerable phase mismatch (|4| > 1) the efficiency of sum-frequency
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generation first decreases, but later on increases with increasing 7, in the advancing
process (see figs. 1b and 2b), and it is very little dependent on ,. This is predominantly
a consequence of the phase matching effect. At the beginning of the process the phase
mismatch does not markedly affect the nonlinear process and the frequency maximum
of generated sum-frequency radiation appears at W30 = W1 + @, 9. However,
in the further course of sum-frequency generation a narrow band of sum-frequencies
around the frequency w; .,

¢ Ak cos B

:]
rg3 — nrgz COS 033

(IIIS) W3 max = W3,0 —

n

is systematically amplified [7], n,,; being group indices of refraction in ray directions
and c is the velocity of light in vacuum. Taking into account the definition of group
index (group velocity) [6], it is easy to see that equation (IL18) represents merely
the selection rule for such combination of sub-frequency @, px = 3,0 + A®y,, and
sum-frequency @z, = w3, * Aw,,, that satisfies the phase matching condition,
keyne = Ko, — ko, = 0. The frequencies which do not satisfy the approximate
phase matching condition, (k,, — k,,, — k,,,), z $ =, are damped due to the phase
mismatch effect, which is a consequence of destructive interference of radiations that
are generated at different distances from the nonlinear medium boundary. The broad-
er is the frequency band (spectral halfwidth I'y ) of chaotic input radiations, the
more relative energy belongs to the frequency band which can be effectively converted.

The above described mechanism explains also the shift of the central maximum
of resulting radiation in the course of sum-frequency generation for considerable
phase mismatch (see figs. 6c, 6d and 6f ). In the advancing process the broadening
or doubling of the central maximum of sum-frequency radiation can appear (see figs.
6d, 6e and 6f and also [7]), which represents a transient phenomenon only. This is
a consequence of competition of the frequency maximum at w, o, generated at
the beginning of the process, and the later established maximum at w,,,.. In the
further course of sum-frequency generation the only one conspicuous maximum at
W3 max is assumed to be stabilized. Of course, inasmuch as our discussion is based
on the first-step approximate solution only, other phenomena, like the influence
of light statistics of interacting radiations and group-velocity dispersion, can be
expected in the far advanced sum-frequency generation process as well.

The statistical properties of generated sum-frequency radiation were not considered
here because their mathematical treatment is really too much exacting. We expect that in
the case, if the efficiency of incoherent sum-frequency generation is enhanced due
to the difference between group velocities of sub-frequency waves, the fluctuation
level in generated sum-frequency radiation exceeds that for coherent interaction (8],
inasmuch as the sum-frequency radiation is preferably generated in the spatial
(temporal) regions with greater instantaneous intensities (photon clusters) of the
initially chaotic sub-frequency radiation, and the spatial (temporal) shift of sub-
frequency radiations enables the continuation of this tendency in the advancing
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process. This leads to an increase of the instantaneous intensities in the photon-
cluster regions of sum-frequency radiation and, consequently, to an enhancement
of the chaos in generated radiation.

Received 19 April 1988
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