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Within the general theory of hydrodynamical field fluctuations in a system at non-
equilibrium due to a temperature gradient, the problem of light scattering on fluctuations in
number density is discussed. The effect of the gradient as well as fluctuations in sound velocity
and heat conductivity on the Rayleigh-Brillouin spectrum is analyzed. The presence of the
temperature gradient and fluctuations modifies the scattered-light spectrum leading to asym-
metry in the heights of the Brillouin lines.

1. Introduction

Rayleigh’s theory of light scattering can be formulated with sufficient
accuracy within the framework of classical field theory: the electromagnetic
field of the light wave, on entering the medium, interacts with the electric
charges of the atoms (in the case of atomic systems) or with those of the
constituent atoms of the molecules (in that of molecular systems). As a result
of this interaction the atomic (molecular) systems become secondary sources of
light. The electromagnetic waves thus generated in the atoms (molecules)
interfere mutually giving rise to scattered light, emerging from the medium in
all directions. Maxwell’s equations show that if all the regions of the medium
possessed the same optical properties, only forward-scattered light would
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emerge since all the other components would cancel out mutually. In reality,
however, light scattering systems are dynamical systems, with properties
determining those of the scattered light that vary with time differently through-
out various regions of the medium. In a sample at thermodynamical equilib-
rium, the differences are due to spontaneous fluctuations — quite random
phenomena of the nature of local perturbations affecting the momentary and
local magnitudes of the physical quantities describing the system.

Smoluchowski [1] and Einstein [2] were the first to proceed to an interpreta-
tion of light scattering on the basis of thermal fluctuations in continuous media.
They succeeded in expressing the scattered light intensity in terms of averages
of the squared fluctuations in density and concentration — measures of the local
optical inhomogeneities of the medium — which, in turn, can be expressed in
terms of macroscopic thermodynamical functions, such as isothermal com-
pressibility and osmotic pressure. This provided the foundations of the fluctua-
tional theory of light scattering. The phenomenological approach proved to be
very fruitful, especially when it comes to explaining the frequency distribution
of the scattered light. On the basis of spectral analysis Brillouin [3] and
Mandelshtam [4] predicted the existence of two lines in the scattered spectrum
disposed symmetrically with respect to the Rayleigh line (unshifted in fre-
quency compared with the frequency of the incident light beam). The presence
of the Brillouin doublet is due to light scattering on density fluctuations,
propagating throughout the medium in the form of acoustic waves. These
theoretical considerations were confirmed by Gross in 1930 [5].

The further development of the fluctuational theory of light scattering was
fundamentally influenced by Onsager’s hypothesis [6], stating that, as the
system returns to thermodynamical equilibrium, the fluctuations of the dynami-
cal quantities vanish in accordance with the same relaxational equations as
those obeyed by macroscopic processes.

The central role in the phenomenon of light scattering belongs to fluctuations
in electric permittivity. These fluctuations are affected by various processes,
the evolution of which occurs on various time and space scales. Obviously, they
are also dependent on parameters of a thermodynamical nature, like tempera-
ture and pressure. This permits the separate experimental investigation of
individual processes by applying the appropriate technique in each case. In
atomic systems, the predominant contribution comes from fluctuations in
density of the order of 1000 A in size, thus considerably bigger than the
distances separating the atoms. They cause collective motions of great numbers
of atoms accessible to a description in terms of macroscopic equations in
accordance with the hypothesis of Onsager. These collective motions en-
compass intervals of time and regions of space much greater than those typical
for microscopic (atomic, molecular) processes. Hence, the variations of the
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quantities characterizing the collective motion of the atoms occur in times
much longer than the times between successive collisions of the atoms. Landau
and Placzek [7] were the first to propose a description of light scattering
involving quantities specific to hydrodynamics and thermodynamics. Because
of the imperfection of the light sources then available, spectral analysis
investigations of light scattering by atomic (gaseous) systems were by no means
a popular line of research. It was only the coming of lasers that gave a new
impulse to experiments of this type. New spectroscopic techniques were
evolved [8, 9]. Also, numerous theoretical papers appeared on light scattering
from liquid systems in the hydrodynamical range [10-14].

Rapid developments took place, moreover, in the molecular approach to
light scattering in liquids. The work of Born [15], Yvon [16], Fixman [17] and
others (see ref. [18]) made light scattering a highly effective method for
studying the parameters characterizing atoms and molecules as well as their
interactions.

At the same time, attempts were made to fill the gap between the studies of
microscopic phenomena by methods of neutron scattering and studies in the
hydrodynamical range involving light scattering. This led to the arisal of
generalized hydrodynamics, dealing with the thermodynamical coefficients as
functions of the wave vector k and the transport coefficients as functions of k
and frequency w [19-21]. At the intersection of these two levels, in molecular
liquids, there can occur an exchange of energy between the internal degrees of
freedom and those related with translational motion. This leads to the presence
of an additional line ~ the Mountain peak [21] —in the spectrum of scattered
light. In comparison with the Rayleigh line, it is much broader and its height is
lower, making it observable as a continuous background extending between the
‘Rayleigh line and the Brillouin doublet. This additional component causes
divergences from the Lorentzian shape of the lines; moreover, the Landau —
Placzek formula [7]

C

21B=7—1, (1)

expressing the relation between the intensity of the central line I, that of the
doublet Iy, and the Poisson coefficient y = C,/Cy, ceases to be valid.

In recent years, papers have appeared bearing on light scattering by media in
a state of stationary non-equilibrium due to a temperature gradient or a flow
velocity gradient [22-26]. In these cases the mechanism of the effect is related
with fluctuations about stationarity as the latter evolves slowly towards com-
plete thermodynamical equilibrium.

The earliest research in this field made use of the linear response method
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[22-24]. Nonetheless, most papers apply the traditional method of hydro-
dynamical fluctuations [25,26]; a few are based on kinetic theory, or the
Kadanoff-Swift theory of bonded modes [27-29]. Grabert [30] applies the
Fokker—Planck equation, which, with certain additional assumptions concern-
ing the stochastic forces, leads to the method of Langevin.

The aim of the present paper is to derive the correlation function of
fluctuations in number density within the framework of our earlier [31] general
theory of the correlation theory of hydrodynamic fields in simple systems and
to apply the function thus derived to the phenomenon of light scattering. The
system under consideration is in a state of non-equilibrium caused by the
application of a temperature gradient. The system is assumed to evolve slowly
to the state of equilibrium so that we are justified in dealing with the
momentary intermediate states as quasi-stationary.

2. The intensity of light scattered on density fluctuations

We consider a non-magnetic, non-conducting and non-absorbing medium.
The electric field of the incident plane wave is of the form

E(r,t) = E,expli(k, - r — wyt)}, (2)

with E, the amplitude, k, the wave vector, and w, the frequency. The
momentary electric permittivity is

e(r,t)=¢,+de(r, t), 3)

where 8&(r, t) is a fluctuation of the permittivity in the point r at the moment
of time #. The time-dependent form of the scattered light intensity at the point
of observation, distant by R from the medium (we are interested in the
isotropic part only, cf. refs. [18, 32]) is

1,(¢) wg

Ik, )= —=553
(k. ) 16m°R%elc*

(3g,(0) 8e:(1))(1 + cos’@) , (4)

where (8¢g,(0)de}(¢)) is the stochastic correlation function of fluctuations in
permittivity of the medium, /,(¢) the incident light intensity, @ the scattering
angle, whereas k is now the difference in wave vectors between the incident
and the scattered wave. In simple atomic fluids at thermodynamical equilib-
rium, the electric permittivity is in general a function of the density p, (or the
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number of atoms n,) and temperature T, i.e., g,(n,, T,,). The local values of
the number density and the temperature are

n(r,t)=n, +dn(r, t), T(r,t)=T,+3T(r, 1) . 5

On expanding the electric permittivity fluctuations in series in the fluctuations
dn(r, t) and 8T(r, t) and rejecting all but the first-order terms, we obtain

Se(r, 1) = (%)T sn(r, t) + (j—;) ST(r. 1) (6)

Experiment shows that in most cases (de/d7T), =0, so that only the fluctua-
tions in number density remain. On insertion of (6) into (4) we have

I(k, 1) = #}12“;;’5 (Z—Z)T(Bnk(O) 8n, (1)) (1 + cos’®) . (7)

For the integral (total) scattering into a given direction, eq. (7) leads to the
Einstein—Smoluchowski expression [32]

Lo ae )\’
1= m}%—“zﬂ/ (a—n-)T) kg Tonox(1+cos’@) . (8)
0 G

Here V is the scattering volume and

__1 (i’)
Xr= 1% ap 7, (9)
the isothermal compressibility of the medium. For a perfect gas x,=
VikgTong.

It will be remembered [8] that the spectrum of light scattered on fluctuations
in number density expressed within the framework of classical hydrodynamics
is the sum of three Lorentzians: the central component is referred to as the
Rayleigh line whereas the two others constitute the Brillouin doublet (often
referred to as the Stokes line and anti-Stokes line in accordance with Raman
terminology). The central line is concentrated at w =0 and has a half width of
DTkZ. The two Brillouin lines are disposed symmetrically with respect to w =0
and are concentrated at +c_k with half widths I'k’, where D, is the thermal
diffusion coefficient, ¢, the adiabatic velocity of sound, and I' the damping
coefficient of acoustic waves.

The form in general use for the description of the spectral distribution of
fluctuations in number density (i.e., by way of (7)) of scattered light (cf. ref.
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Fig. 1. The spectrum of light scattered by liquid argon (T =84.97 K, @ =90°14', A = 5145 A),
[32]) is

<8nk 8”:> =R,(0)+ B, (0) + B_,(w),
2D,k
o’ +(DK*)
, 1 Ik’
n, — .
X1l 2y (@ tcsk)z-f-(%[‘kz)z

1
Ry (w)= kBT()XTn(2)<1 - _>

y (10)

B:k(“’) =kgT,

For the integral intensity, egs. (10) go over into the Landau—Placzek formula
(1).

The spectrum of isotropic light scattering resulting from the above expres-
sions is, in principle, in good agreement with experiment. Fig. 1 shows the
Rayleigh line and Brillouin doublet for liquid argon as recorded by Benedek et
al. [33].

3. The correlation function of fluctuations in number density in the
hydrodynamical range in the presence of a temperature gradient

In an earlier paper [31] we considered an immobile ({v) =0) atomic fluid
consisting of a great number of identical elements — atoms. No exchange of
energy is assumed to occur between the internal and translational degrees of
freedom (cf. ref. [30]). We now produce a temperature gradient in the system
imposing conditions in which the temperature changes linearly from point to
point and the gradient is so weak that the system at every moment of time is in
a weakly non-equilibrium quasi-stationary state. The system tends to complete
equilibrium, but this requires a time much longer than all the microscopic
relaxation times. It thus fulfils the conditions for Bogoliubov hierarchisation of
relaxation times and lies within the hydrodynamical region where it can be
described in terms of a normal distribution function. It is now dependent on
time by way of functions defining the hydrodynamic fields, namely, the scalar
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fields of number density » and energy density e and the vectorial field of
momentum density g. We assume these hydrodynamical quantities to fluctuate
throughout the medium giving rise to local momentary inhomogeneities in
regions of the order of 1000 A involving transport and dissipation. This motion
of great numbers of atoms is accessible to a description in terms of the
macroscopic laws of hydrodynamics and thermodynamics. To determine the
scattered-light spectrum, one has to calculate the fluctuation correlation func-
tions of hydrodynamic fields. In our earlier paper [31] we have proposed these
correlation functions in a form taking into account the greatest possible
number of contributions:

i) the effect of a temperature gradient on the viscosity coefficients 7 and ¢ as
well as on the heat conductivity coefficient x and sound velocity c;

ii) fluctuations of the velocity of sound and the coefficient of heat conduc-
tivity;

iii) calculating the contributions with an accuracy up to terms quadratic in ¢
(the quantity providing a measure of the gradient).

As stated above, the correlation function of fluctuations in number density
plays the chief role in the study of light scattering by systems of atoms. In our
case it is of the following form (where the notation is that of ref. [31]):

1
dn, dnf)= ——m
) (e g, P
X N kE ’l[aIZ(k,) 0‘1*2("”) Bn’,l —ap,(k) aTa(k") :BT,n',/] , (11)
where

ap,(k')=—ny(s + 'YDTkZ)‘S(k, — k)

g {2 e (8 o
+1i 5 Mo\ 57 1+2 2 + X 8(k' — (k + q))

i P2 (2 s

[ () -

(3T) (3 yDk*\[q\?
AT ”°< aT? )(E)
X [28(k' — k) + 6(k’ — (k +2¢)) — 8(k' — (k- 29))] , (12)
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a, (k') = —an,cik’s(k' — k) +1i S_T an“@i’ﬁ( G?Tk2>
{[ kk (%) ]5(k'“(k+q))
_[1_ 2 <%> ]5("'"(k—q))}, (13)

whereas B,., and B; ., are correlation functions of the stochastic parts of the
equations of motion of the fluctuations in velocity (momentum) and tempera-
ture (energy),

B, o =2kyTemn,Dy(k+ n'q)*s(w — ')

+ kB(ST)zmn(,( a(ﬁv)(k +n'g)'8(w — o), (14)

T )k -+ n'g [k + (n" = DT’

X aln(¢{—3n)
w1 )

By o=k ar[zn<1+

X (k+ gl [+ (n' = DaP 30" - o), (15)
Buer= O k|22 )k + wiayti + 0 22307
+ (a(ga—_Tinz)(k+n’q)2[k+(n’i2)q]2]8(w’ ~w), (16)

Brao= 2k Tor(k+ ”,q)25(wl - w)
+ k(3T (1 +2 ———)(k +n'q)d(w’ — w), (17)

6ln

Bra1 [+1k TOKST(2 + )(k +n'g)k+(n' =1)q]

(6T) <aan

T, \dln T>(k+ ‘g)(k + (0’ +1)‘I)]5(w - w),

(18)

+
-~
Sl

kg

Broer =~ e T (142 208 )k + gk + (n' = gl -~ w).
(19)
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To determine D(k, s, q), one has to solve the dispersion relation D(k, s, g) =0
with respect to s = —iw and factorize the polynomial. On restricting ourselves
to terms in ¢°, we get

|D(k, w, g)| 7 = |D(k, 0)| *[1 = F(, k)], (20)
where

|D(k, w)|* =[w” + (D)’ ][0 + ck)* + (FK*)][(w = k)’ + (TK°)] .
(21)

The function F(w, k) occurring in (20) is moreover dependent on the thermo-
dynamical parameters D,,, D, and c, of the medium. Since we are interested in
how the function F(w, k) affects the scattered light spectrum, the only values of
relevance to us are those for the frequencies corresponding to the individual
lines:

w=0 Rayleigh line F(w, k)— f .
w*ck Stokes and anti-Stokes Brillouin lines, (22)
Flo, k)= fy or fy .

On transforming (20) appropriately and using the preceding notation, we
obtain

-2 _ 1 _fR 1- fB
D e Dl = 0+ (D] el o — k) + (TR

N 1-f,
4c k) [(w+ c.k)’ + (Tk*)]’

(23)

on neglecting the insignificant terms that appear in calculating (20) for « =0
and o = *c_k, respectively. Each of the functions f;, f; and f; can be
expressed as the sum of components, independent of the parameter ¢, depen-
dent linearly (k- g/k*) on ¢, and quadratically (k- g/k*)* on g:

fi=lotfiitf,. (24)

Their explicit form is rather bulky and is to be found in appendix B of our
paper [31], whereas the significant part of the spectrum comes from the
greatest components:
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Dyk\? D\ (DK (DK
R L SR Ly LTS mEr S

(25)
e 3 3 e (15 w1825 2y 226 (2

e s 5 () A2 [GRs) e e
hom 3 (F) B2 aieey-a(dns)

+ 24(T(,a)2(_‘;112;_)2](kk'zq)z : (27)
PTRTSHINT Y NTRINTYS .Y

a % <ivkk>2’ (28)
foro= oo (29)
o= 3 [y 0(58)

=Dy 22y 41k 73y _T_3_Y.‘..1.)< % )(%)

e <3_y_ :_1_2_‘%7_&_f..?-:??.%--???’)( _kz)

+<1_+__v__—__1_>(%)}(3123’4)

o)+ (5) vaer-n(2)

~ -0 (22 o 2 ) o 2 -3 B) )
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o= [s0 0 (25)

Dk
+7—(3y 129y + y* — 4> =137y — 639)( )

rasy-o(Z)(ERs)
a5 () -s-n(5ep)
2(7—1)[<Fk )+2<lzsk )](7 +2y - 3)(%)}

x ta(&)) “1, (31)

dlnn k2

B 8T>21 [ s s (alncs)2
fB,z_(TO 72 6(y +vy 1) oIn T

dln c, )(aln cs>
n g%
12(7-?.7.’___1.)71 a(aln T/\olnn

+6(T0a)2<m) ](" ")2, (32)

dlnn k*
fe2=/fs2- (33)

One sees that the corrections to the Brillouin lines differ just slightly as to
their absolute values, and this only in the linear parts of the respective
expressions. The underlinings applied above have the following meaning in
accordance with ref. [31]:

....... terms related with the temperature gradient;

terms related with fluctuations of the transport coefficients and isother-
mal sound velocity;

------- cross-terms; whereas terms due to the fundamental hydrodynamic field
fluctuations are not underlined.

With regard to eq. (2) et seq., the correlation function (11) takes the form

(dn, dny) = R (@) + B, (@) + B_i (o), (34)

the Rayleigh component being
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1 2D k*
R =kyT 2(1 — —) —
(@) B L oX1o w2+(DTk2)2

Y
X[1—A-B(k-§)+ Clk-§)+D(§- 9],

and the Brillouin components

, 1 rk*
"
02y (w+ c k) + (ATK?)

B+k(“’) = kBToX
x[1— A +B'(k-§)+ C'(k- 4’ +D'(4- 9],

2L re’
Xl 2y (w-—csk)2+(%rk2)2

B_(0)=kyT,

X[1- A +B'(k-§)+C'(k-§’+D'(§- 9.

635

(35)

(36)

(37)

The vectors k and § are unit vectors. In (35)—(37) we have made use of the

following notation:
A=(1+adfro,
B=(1+a)fg A,
C=[(f3 - af)(1— fao) = (1 = O)fp,]N°,
D =(fy=af)(1 = fro)A’,
A'=(1+b)fg,,
B'=(1+b)fy A,

C'={(hfy + [ = fo2) + [Afo(b = ) = f3d)(1 = fa.0) = bfs 2} A7,

D' =[Rf1+b—c)+ (1= D)1 - f4)A*,
and
B"=(1- b)fB,l)\ >

whereas

(38)

(39)

(40)

(41)
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and the functions f,, f5, f4 and f7 of eqs. (38)—(41) are as follows:

8T> . (alnD> . <a1nD )(alnDT)
= + 32
£= (T(, GG ) T E I\ G

dln D )2
343 39 T
(---f“.--)< ol T
af>2 s (alnD )(alnDV)(alnDT>2
— + 3
+<T0 o\t )\ Gnr N\ amr /) (42)

T\*[ (olnD I'\(dIn D;\?
fé=(?’—T> S T)—(l—z—g)( )
T,/ ==\ dIn T T,/\dlnT

+§j<alnDT 3+5_T<a1nDV><alnD )3+(621nDT)
T, \.olnT To\oInT /\ 9In T, o(In T)’

dln D, )(a In D, )_5_T<a1nDV)(alnDT><a21nDT)]
dInT /\g(nT)*/) T, \alnT /N alnT /\g(InT)*/ 1’

o
T() ___________________
(43)
., af[ <6lncs)2 <61ncs)
=— |+
2=, L3NG r) P2 N G
<8T> (alnDT><alncs)2
(43 olnT /\oInT
dln D, ><alncg>]
+ S
12(}-—t-1-)<¢3lnT dlnT/1’ (44)
. ST)[ ~ (alnc>_ - (alnD ><6lncs>]
3—4<T(, LN G727 Namr /) (43)
In most cases a, b <1 and one is justified in simplifying the expressions:
A=fro> Bsz,ll\z (46)
Cz[(f’2,+af2)_fk,2]/\ > D= (fm afzr))‘za
A'=fg,, B'=fy A, B"=fg A (47)

C'= (hfy + f}— hfyc — fd)A* ., D'=~fir*.
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The preceding simplification is well founded physically and will be essential to

our further considerations enabling us to write the expressions in compact form
with a view to detailed analysis.

4. Discussion and conclusions

For a detailed analysis of the expressions (34) et seq., derived above, it is
convenient to rewrite eqs. (35)—(37) as follows:

1 2D. k*
Ry@) = ke Toxmi{(1 = ) 20 (1 4,0) ~ Ax(TT) o
+[A,(VT) + A ,(VT)]cos’B + A(VT)}, (48)
1 Ik’

B, (0)= kBT()XTnO 2y (o +c k) +( sz)

X {1—3A,(0)£[A(VT)+ A,(VT)]cos B
+[AL(VT) + A, (VT)]cos’B + A(VT)}, (49)

where cos B = k- § is the cosine of the angle between the temperature gradient
VT and the scattering vector (the latter is the difference between the wave
vectors of the incident wave and scattered wave observed). The terms A,

i=1,2,...,7, have the form
PE) s (25 (BE) -5 (%)
A a(y—1 o N\ )i\ )

s S

4,0 =3 +2y-3)(

A,(VT) =ci [1+(1+ at)z](‘;—;—i><%) VT,

aon =2 2 (5 “)(9) oy
AJVT)—?_%( )(%) (VT)?, (50)
avn =gtz (5l 5 (N o

Tyc,
A (VT)= % (yil) (%%i)[l+(l+at)z]<%)VT
i d

A(VT) =

6CTS>[1 +(1+ at)2]<%>VT



638 W. Chmielowski et al. | Hydrodynamical field fluctuations 11
By eq. (50), we have

A(VT)=2A4(VT), (51)

A(VT) = (1 - %)A7(VT).

Egs. (50) are contributions to the scattered light spectrum due to the tempera-
ture gradient and the fluctuations in sound velocity and thermal conductivity
coefficient. One readily notes that on omission of the temperature gradient
egs. (48) and (49) go over into (10) provided that we moreover neglect
A(0) —a very small term resulting from the inclusion of higher-order solu-
tions of the dispersion equation. The latter correlation, however, modifies the
Landau~Placzek expressions (eq. (10)) and the total scattered intensity, which
takes the form

R _A-1y)A-A,O)] _ 4y-1-4,0)(y-1)]

2B, (Iy)1-14A,0)] 14,0 ’ (52)
, 11
Rk+2Bk=kBT0XTn0[1~A1(O)<1— o 47)]' (53)

A comparison of (48), (49) with expressions (10) leads to the conclusion that
the line shapes are unaffected by these corrections; they remain Lorent-
zian, and only their heights undergo modifications in each point of the
spectrum. The corrections A,(VT), A((VT) and A,(VT) are linearly depen-
dent on VT, whereas A,(VT), A,(VT) and A (VT) are quadratic in VT. The
latter three corrections affect all three lines identically by way of the factor
[AL(VT)+ A,(VT)]cos’8 + A,(VT). Thus the whole spectrum undergoes a
modification by this factor albeit with no differences between the modifications
experienced by the individual lines.

Table I gives a detailed discussion of the expressions (48) and (49) in
relation to the angle B8 between the temperature gradient and the scattering
vector (the difference between the wave vectors of the incident and scattered
light waves).

The most essential corrections seem to be A,(VT) and A,(VT). Being
functions of the temperature gradient vector, they are direction dependent and
lead to asymmetry in the heights of the Brillouin components. The matter has
first been discussed in 1979 by Procaccia et al. [22] and independently by
Kirkpatrick et al. [26] and dealt with from different points of view (see the
review article of Schmitz [34]). In our approach, based on the general
fluctuation theory of hydrodynamical fields in systems involving a temperature
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Table I
Dependence of the Rayleigh and Brillouin lines on the angle between the temperature gradient
and the scattering vector.

cos B3 The expressions for R, () and B,,(w)

T, Ry(@)= Ry() [1 = 4,(0) = A(VT) + A,(VT) + A(VT) + A(VT)],
T Bu@)= Boy@) (1= 1A,0) X A(TT) £ A(VT) + A,(VT) + A,(VT) + A(VT)],
0 e, BRI A0 AT,
7 Bui(@) = Buy(@)[1-44,0) + A(VT)],
T R (w)= I'ét(w) [1-A4,(0)+A,(VT)+ A(VT)+ A (VT) + A(VT)],
£ B, (w)= Blk(w) 1-3A0)FA(T)F A (VT)+ A (VT) + A, (VT) + A(VT)].

* For simplicity, we use the following notation:

(2D.k%)
[w® + (Dck*)]"

re’

étk(w) = kBTUXTn(Z)(l/ZY) (w=ec k)z n (%I‘kz)z] .

Rvk(“’) = kBT()XTn(Z](l —1/y)

gradient [31], we distinguish two mechanisms of the asymmetry: one related
with the temperature gradient only, A,(VT), and the other related with the
gradient as well as the fluctuations in transport coefficients and sound velocity,
A,(VT). The asymmetry of the Brillouin lines is shown schematically in fig. 2
(for the sake of clarity, we have omitted A,(0), the terms A;, A, and A,
related with the square of the gradient, as well as the term A, of no effect on
the Brillouin lines, in this way rendering more strongly the role of A, and A,
responsible for the asymmetry).

By analogy with eqs. (52) and (53) we can write Landau-Placzek type
formulae that hold as well when a temperature gradient exists in the system.
Let us put cos 8 =1 and restrict ourselves to a linear dependence on VT. We

0

Fig. 2. The scattered light spectrum from atomic systems. Continuous graph standard
Brillouin spectrum, dashed graph _______ Brillouin spectrum with temperature gradient imposed on
the system.




640 W. Chmielowski et al. | Hydrodynamical field fluctuations 11

thus obtain

R, _ (1-1/y)[1 - A,(0) - A,(VT)]
B (1/2y)[1- 3A,(0) £ A(VT) = A,(VT)]’
B

_1-1A,(0)+ A(YT) + A(VT)
B, 1-5A,(0)— A(VT) - A,(VT)’

(54)

R, +B,,+B_,
kyT, 2[1 A,(0) (1 L] ) A,(VT) <1 1)]
= n - - = - ! - = .
BLoXro 1 y 4y 2 y

Obviously, egs. (54) reduce to (52), (53) in the absence of the gradient. The
above equations show that the corrections A, and A, causing asymmetry of the
Brillouin lines (the ratio B, ,/B_, provides a measure of the asymmetry) have
no effect on the Rayleigh line (dependent on VT by A,) or the integral
scattering (for a given direction of observation).

The expression

B, — B, _ A (VT) + A7(VT)
B+k+B—k —%AI(O)

os B (55)

is sometimes used as a measure of the Brillouin lines asymmetry (in (55), we
have omitted terms quadratic in V7). Beysens et al. [35, 36] and Kiefte et al.
[37] have carried out experimental studies of eq. (55) versus VT for various
values of the angle 8. Similar measurements have also been performed by
Schmitz and Cohen [38] on the basis of their theory, which comprises effects of
absorption and reflection of acoustic waves as well as spatial inhomogeneities
caused by the temperature gradient.

All in all, the temperature dependence of the parameters characterizing the
medium, as well as the very presence of a temperature gradient, act in a
manner to modify perceptibly the spectrum of scattered light giving rise to
asymmetry in the Brillouin lines due to correlations between the fluctuations in
density and the dissipative flow of Joule heat caused by the temperature
gradient. A method of calculation similar to ours has been applied in refs.
[25,26], and especially in ref. [23], albeit on a much more modest scale. The
authors of refs. [25,26] apply the method of fluctuational hydrodynamics and
arrive at the correlation function of density fluctuations. They restrict them-
selves, however, to the influence of the temperature gradient on the sound
velocity, viscosity coefficient, and heat conductivity coefficient, but neglect the
fluctuations of these quantities. Moreover, they restrict themselves to solving
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the equation of dispersion to the second order of perturbation calculus. Also,
the correlation functions of the stochastic parts of their hydrodynamical
equations are presented more intuitively than it would result strictly from
calculation. Tremblay et al. [23] have applied a calculation technique resem-
bling ours involving Langevin’s formalism; however, like the authors of refs.
[25,26], they fail to take into consideration fluctuations in sound velocity and
heat conductivity coefficient. Our approach [31], in fact, appears to be more
thorough and of a higher degree of generality.

A suggestion put forward in certain papers [22-26] concerning the interpre-
tation of the asymmetry in the Brillouin lines seems to be of interest. The
mechanism invoked is that of a flow of Joule heat caused by the gradient of
temperature: thus, a given point of the medium receives more phonons from
warmer regions than from colder ones. Hence, depending on the geometry
chosen in experiment, one of the Brillouin lines is taller than the other.

Recently, the number of papers dealing with various aspects of hydro-
dynamical fluctuations and heat conductivity in simple atomic systems also
involving the presence of a temperature gradient has increased notably [39-
43], proving the importance of the problems under consideration and the
growing interest in the subject.

References

[1] M. Smoluchowski, Bull. Int. Acad. Sci. Cracovie A 47 (1907) 179; Ann. Phys. (Leipzig) 25
(1908) 20s.

[2} A. Einstein, Ann. Phys. (Leipzig) 33 (1910) 1275.

[3] L. Brillouin, Ann. Phys. (Paris) 17 (1922) 88.

[4] L.I. Mandelshtam, Zh. Russ. Fiz. Khim. Cb. 58 (1926) 381.

[5] E. Gross, Nature 126 (1930) 201, 400, 603.

[6] L. Onsager, Phys. Rev. 37 (1931) 405; 38 (1931) 2265.

[7] L.D. Landau and G. Placzek, Phys. Z. Soviet. 5 (1934) 172.

[8] F.L. Fabielinskii, Molecular Scattering of Light (Plenum, New York, 1968).

[9] H.Z. Cummins and H.L. Swinney, in: Progress in Optics, vol. VIII, E. Wolf, ed. (North-
Holland, Amsterdam, 1969).

[10] R.D. Mountain, J. Chem. Phys. 44 (1966) 832.

[11] S. Rytov, Z. Eksp. Teor. Fiz. 33 (1957) 514; 58 (1970) 2154; 59 (1970) 12.

[12] P.A. Fleury and J.P. Boon, Phys. Rev. 186 (1969) 244; Adv. Chem. Phys. 24 (1973) 1.

[13] E.R. Pike, in: Photon Correlation and Light Beating Spectroscopy, H.Z. Cummins and E.R.
Pike, eds. (Plenum, New York, 1974).

{14] P. Lallemand, in: Photon Correlation and Light Beating Spectroscopy, H.Z. Cummins and
E.R. Pike, eds. (Plenum, New York, 1974).

[15] M. Born, Verh. Dtsch. Phys. Ges. (1917) 243; (1918) 16.

[16] 1. Yvon, Actualités Sci. Ind. Nos. 542,. 543 (Hermann, Paris, 1937).

[17] M. Fixman, J. Chem. Phys. 23 (1955) 2074.

[18] S. Kielich, Nonlinear Molecular Optics (Nauka, Moscow, 1981).

[19] J.P. Boon and P. Deguent, Phys. Rev. A 2 (1970) 2542.



642 W. Chmielowski et al. | Hydrodynamical field fluctuations 11

[20] N.K. Ailawadi, A. Rahman and R. Zwanzig, Phys. Rev. A 4 (1971) 1616.

[21] R.D. Mountain, Res. Nat. Bur. Std. 72 (1968) 95.

[22] L. Procaccia, D. Ronis, M.A. Collins, I. Ross and 1. Oppenheim, Phys. Rev. A 19 (1979)
1290.
D. Ronis, I. Procaccia and 1. Oppenheim, Phys. Rev. A 19 (1979) 1307.
1. Procaccia, D. Ronis, I. Oppenheim, Phys. Rev. A 19 (1979) 1324; Phys. Rev. Lett. 42
(1979) 287, 614 (E).

[23] A. Tremblay, E. Siggia and M. Arai, Phys. Rev. A 23 (1981) 1451; Phys. Lett. A 76 (1980)
57.

[24] D. Ronis and S. Putterman, Phys. Rev. A 22 (1980) 733.

[25] G. van der Zwan, D. Bedeaux and P. Mazur, Physica A 107 (1981) 491.

[26] T.R. Kirkpatrick, E.G.D. Cohen and J.R. Dorfman, Phys. Rev. Lett. 42 (1979) 862; Phys.
Rev. A 26 (1982) 950, 972, 995.

[27] F.L. Hinton, Phys. Fluids 13 (1970) 857.

[28] A. Onuki, J. Stat. Phys. 18 (1978) 475.

{29] H. Ueyama, J. Stat. Phys. 22 (1980) 1.

[30] H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Spring-
er, Berlin, 1982).

{31] W. Chmielowski, K. Knast and S. Kielich, Physica A 154 (1988) 89.

{32] B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

[33] G.B. Benedek, J.B. Lastovka, K. Fritsch and T.J. Graytak, J. Opt. Soc. Am. 54 (1964) 1284.

[34] R. Schmitz, Phys. Rep. 171 (1988) 1.

[35] D. Beysens, Y. Garrabos and G. Zelczer, Phys. Rev. Lett. 45 (1980) 403.

[36] D. Beysens, Physica A 118 (1983) 250.

[37] H. Kiefte, M.J. Clouter and R. Penney, Phys. Rev. B 30 (1984) 4017.

[38] R. Schmitz and E.D.G. Cohen, Phys. Rev. A 35 (1987) 2602.

[39] M. Malek Mansour, JW. Turner and A.L. Garcia, J. Stat. Phys. 48 (1987) 1157.

[40] M. Malek Mansour, A.L. Garcia, J.W. Turner and M. Mareschal, J. Stat. Phys. 52 (1988)
295.

[41] A.J.C. Ladd, J. Chem. Phys. 88 (1988) 5051.

[42] A. Pérez-Madrid and J.M. Rubi, Phys. Rev. A 33 (1986) 2716.

[43] D. Jou, J. Casas-Vazquez and G. Lebon, Rep. Progr. Phys. 51 (1988) 1105, and references
therein. :



