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We consider a system in a state of non-equilibrium due to the introduction of a temperature
gradient. The essential problem of this paper is to determine, in their most general form, the
fluctuation correlation functions for hydrodynamical fields. We use a notation which enables
us to distinguish the contributions from the individual mechanisms: contributions from
fluctuations in number density, momentum and energy; contributions appearing due to having
taken into account fluctuations in sound velocity and the heat conductivity coefficient; and
ones related with the presence of the temperature gradient.

1. Introduction

One of the essential problems of the theory of irreversible processes
concerns the influence of various perturbations on the thermodynamical
equilibrium of systems. Two kinds of perturbations — mechanical and thermal —
are generally distinguished in the statistical thermodynamics of irreversible
processes [1]. According to Kubo’s terminology [2, 3], mechanical perturba-
tions originate in the influence of external (e.g., electric) fields, an action that
can be accounted for by including a term describing the interaction of the
external field and the system into the Hamiltonian.

However, there exists a vast class of “thermal” perturbations, related with
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spatial inhomogeneities in the system. Their influence on the system is not
directly accessible to an interpretation within the framework of Kubo’s theory.
The spatial inhomogeneities lead to the emergence of fluxes of matter,
momentum and energy, tending to make the system homogeneous. Transport
coefficients, such as the viscosity, diffusion and heat conductivity coefficients,
are the result of perturbations of this kind.

On the microscopic level, processes involving mechanical perturbations
differ essentially from processes due to thermal perturbations. On the macros-
copic level, this distinction becomes inessential since all the transport coeffici-
ents irrespective of the type of perturbation can be expressed as integrals of the
correlation functions of the microscopic fluxes (by the Green~Kubo formulae).
Within the same framework, the fluctuational-dissipative theorem strictly
related with the Onsager hypothesis [4] concerning the shape of fluctuation
decay has successfully been extended to thermal perturbations. The hypothesis
states that the behaviour of the system (or a part thereof) at non-equilibrium
(albeit sufficiently close to equilibrium) is the same irrespective of whether its
momentary state is due to the action of external forces or to a spontaneous
fluctuation. This is of essential significance when it comes to establishing
equations describing the evolution of systems with local inhomogeneities due to
fluctuations. On the macroscopic level, non-equilibrium systems consisting of
great numbers of identical atoms or molecules are described in terms of
equations of motion of several macroscopic quantities. The form of these
equations depends on what kind of system we are dealing with and on the
conditions of its existence. It is at this point that Bogolubov’s hierarchisation
concept of relaxation times in non-equilibrium statistical thermodynamics
becomes essential [5]. According to Bogolubov, a non-equilibrium system in its
initial stage requires, in general, a great number of many-body distribution
functions for its description. After a short time 7, (of the order of intermolecu-
lar collisions), it attains a kinetical stage, characterized by a single-body
distribution function. At this stage of description, kinetic equations related
with the processes occurring during the time 7, (of the order of the time of the
free motion of a molecule between successive collisions) are established.
Whereas the inhomogeneities arising due to fluctuations concern a system that
is in the hydrodynamical stage (governed by the relaxation time 7, ). In simple
fluids, within the Bogolyubov framework, the relaxation times fulfil the
inequality 7, <7, <7,. Moreover, no processes of energy transfer between the
translational and internal degrees of freedom are assumed to take place. In this
way we neglect relaxation effects dependent on the microscopic structure of
molecular fluids.

The system is moreover assumed to be sufficiently remote from its critical
point for effects typical of near-criticality to be absent, The fundamentals of
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the theory of effects occurring in fluids near the critical point have been
proposed by Smoluchowski [6]. In recent years the theory has been consider-
ably developed by Kocinski [7]. With the above assumptions on the system, the
hydrodynamical stage is characterized by the so-called normal distribution
function of the number density of molecules, the momentum density, and the
energy density. The preceding quantities are functions of the time and posi-
tions, and determine respectively the following hydrodynamical fields: the
scalar fields of the number density of molecules and of the energy (temperature
field), as well as the vector field of momentum density.

In simple liquids the fluctuations of the hydrodynamical fields are typically of
the order of 10°A in size and thus greatly in excess of the intermolecular
distances. They give rise to collective motions of great numbers of molecules
setting free dissipative fluxes connected with viscosity and Joule-Lenz heat.
The regions of inhomogeneity in the medium (determined by the size of the
fluctuations) are very small compared with the size of the system as a whole,
but are sufficiently large to admit of a description in terms of the laws of
macroscopic physics: hydrodynamics and thermodynamics.

With regard to their size in space and the time-scale of their existence, the
hydrodynamical field fluctuations are connected with a variety of phenomena
occurring in the medium. Thus, studies of these fluctuations are a source of
highly essential data concerning the system and especially the transport pro-
cesses in the latter. Especial attention is given to fluctuations in number density
[8] because the spectral density of their correlation function is proportional to
the structural factor directly related with quantities that are measurable (light
and neutron scattering). There are many ways of calculating the fluctuation
correlation functions of the hydrodynamical fields leading to results of a form
permitting their experimental verification. These methods are based on equa-
tions of motion, from simple phenomenological equations up to the equations
of generalized statistical thermodynamics comprising effects of ‘“memory” as
well as renormalization of the transport coefficients. Reviews of the theoretical
methods and respective experiments are due, e.g., to Berne and Pecora [9],
Crosignani, Di Porto and Bertolotti [10], Laliemand [11] and Kielich [12].

Some years ago, a number of papers have appeared, dealing with the
spectrum of hydrodynamical fluctuations in fluids at non-equilibrium stationary
state. The results are discussed within the framework of light scattering theory.
The state of non-equilibrium is obtained by imposing a temperature gradient,
or a flow velocity gradient. In most cases, the authors apply methods of
fluctuation hydrodynamics based on determining the equations of motion for
the mean value of the respective variable [13-15], whereas others use the
method involving an intermediate linear reaction [16, 17] or that of kinetic
equation theory [18]. All these publications fall in two groups: in one, the
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equations of motion are established first whereas the fluctuation correlation
functions are calculated next, as well as the experimental consequences. In the
other, a precise form of the equations of motion is assumed at the very start,
and the procedure is restricted to the last two steps; this is justified inasmuch as
in either case relationships derivable from the phenomenological hydrodynami-
cal equations are used for calculating the correlation function. This, in fact, is
the Landau-Lifshitz method, involving linearization of the hydrodynamical
equations with respect to the steady state and supplementing the relationships
thus obtained with stochastic terms, containing the stress tensor and heat flow
vector. Finally, this leads to equations of the Langevin type.

It is our present aim to determine, in the most general manner, the
fluctuation correlation functions for hydrodynamical fields in simple fluids. In
section 2 we introduce the generalized Langevin equation of Grabert [19] using
the method of projection operators. Next, on making certain assumptions, we
obtain a set of equations of motion for the fluctuations of the hydrodynamical
fields in atomic fluids. We use a notation (underlining certain expressions)
which enables us to distinguish the contributions from the individual mechan-
isms. In section 3 we go over to variables k, o in our formulae and calculate the
respective fluctuation correlation functions of the hydrodynamical fields. Sec-
tion 3, moreover, contains a description of the path followed by us when
deriving the stochastic terms of the correlation functions for the equations of
motion. Since the functional coefficients obtained are rather bulky in form,
appendix A gives an appropriate tabulation aimed at abridging their notation.
The results obtained with an accuracy to terms in g> when deriving the
frequency dispersion equation are written out explicitly in appendix B.

2. Stochastic functions describing the hydrodynamical field fluctuations

The possibility of applying Langevin-like equations to the treatment of
non-equilibrium fluctuations (non-equilibrium with respect to local
equilibrium) was first considered by Keizer [20]. Subsequently, their ap-
plicability has been considered from different standpoints by Hinton [21],
Onuki [22] and Ueyama [23]. Grabert [19], on the other hand, starts from
Liouville’s equation and applies the operator projection method to derive a
generalized Langevin equation for fluctuations of macroscopic quantities on the
level of generalized statistical thermodynamics. In the case of a simple atomic
fluid of interest to us the equations take the following form:

d 1 9 Y
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with: n the number density of atoms, g” the momentum density coordinate, e
the energy density, p the pressure, v” the velocity coordinate, T the tempera-
ture, ¢ the coefficient of the bulk viscosity (also referred to as second viscosity),
n the dynamical viscosity coefficient (dynamical viscosity), « the heat conduc-
tion coefficient, £ the coordinate of stress tensor fluctuation, £ the coordi-
nate of the fluctuation vector of the thermal energy flux, and m the atomic
mass. The superscripts », u denote Cartesian variables.

The above are linear equations of motion for the fluctuations in number
density of atoms 8x, in momentum density 8¢ and in energy density Se. The
fluctuations occur in a fluid in motion with the velocity v, at non-equilibrium
stationary state.

Let us consider a quiescent atomic fluid (v = @) in a weakly non-equilibrium,
quasi-stationary state caused by a temperature gradient. Earlier, we had
assumed the system to evolve towards the state of complete thermodynamical



94 W. Chmielowski et al. | Hydrodynamical field fluctuations

equilibrium during a time much longer than all the relaxation times of
fluctuations about the steady state. This enables us to deal with the quantities
of interest as fulfilling, in the steady state, relations of the form specific for the
state of equilibrium. It is our aim to derive the fluctuation spectrum of the
hydrodynamical fields taking into account the greatest possible number of
contributions, due to the effect of the temperature gradient on the viscosity
coefficients, the heat conductivity coefficient, as well as the isothermal sound
velocity (pressure). Moreover, we shall take into account the fluctuations of
these quantities expressed in terms of fluctuations in number density and
temperature. Within the above framework and for the sake of maximal
generality we shall not restrict ourselves to the isothermal approximation but
shall solve the set of all the five equations (1)~(3). In order to distinguish the
individual contributions more easily, we have introduced the following under-
linings:

terms related with the temperature gradient,

terms related with fluctuations of the transport coefficients and
isothermal sound velocity expressed via fluctuations in number
density and temperature,

________________ cross terms,

non-underlined are terms related with the basic fluctuations of the hydro-
dynamical fields.

To make eqs. (1)—(3) solvable we apply certain simple thermodynamical
relations enabling us to express the fluctuations in energy density and pressure
by way of fluctuations in temperature and number density of atoms [9]:

_ess+pss — (7—1 _ )
de —”o dn = —mnyc, pr on — 8T}, (4)
dp = mci(dn + an, dT) ®)]

where « is the volume coefficient of thermal dilatation, and y the Poisson
coefficient (the ratio ¢,/c, of the specific heat at constant pressure and at
constant volume). The subscripts “ss” and “0” denote respectively steady state
values and ones taken at complete thermodynamical equilibrium. Moreover,
we express the fluctuations in momentum density in terms of fluctuations in the
rate of flow dv:

3g"=mn,dv” . (6)

The assumptions made when deriving eqs. (1)-(3) enable us to write the
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transport coefficients, the temperature, the isothermal sound velocity ¢, and
the rate of flow in a given point of space r as follows:

f(n=f+ (af)VT +<;;)8T+(af)8n (7

for f respectively equalling 7, ¢,  and c5. Whereas for the temperature and
velocity we have

T(r)=T,+VT-r+38T, (8)

v (rN=20. 9

For brevity, we introduce the following notation:

_{+3m o L
D, = poo (longitudinal kinematic viscosity) , (10)
0

K . . . X

D,= mngc, (heat diffusion coefficient) , (11)

V=V-dv, (12)

.

&= mn,’ (13)
+3n

D;=2 S Ly (14)
mn,

g = m_no £, (15)

£ b (16)

With regard to (4)-(16) and on introducing the operator nabla V eqgs. (1)-(3)
become

o+ n,¥=0, (17)
c 1 (ach

¥=--IVon+D, V¥ —aci V28T - n—( )g_V_T___)__vf_é}rg,
0 0
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Egs. (17)—(19) form a set of three equations of the Langevin type of the
hydrodynamical fluctuations occurring in the atomic fluid. The system is in a
weakly non-equilibrium quasi-stationary state due to the presence of the
temperature gradient. The latter has the meaning of an external generalized
thermodynamical force.

3. Correlation functions of the hydrodynamical field fluctuations

The expressions (17)-(19) are linear equations, derivable from the
phenomenological equations of hydrodynamics for momentary values of the
hydrodynamical variables. Quite obviously, these equations differ from those
describing equilibrium fluctuations in that they contain terms which take into
account the influence of the temperature gradient and hydrodynamical fluctua-
tions on the transport and sound velocity coefficients. One notes that, in
contradistinction to the terms expressing the dependence on the temperature
gradient, those related with the influence of the fluctuations on the transport
and sound velocity coefficients do not occur as mutually independent quan-
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tities. One morcover notes that eq. (18) contains no terms describing the
influence of fluctuations in the transport coefficients. This is due to our
assumption that the fluid does not flow as a whole, and the expressions in
question always occur as products of the flow rate in the initial equation (2).

The set (17)-(19) will serve to determine the correlation function of
hydrodynamical field fluctuations. To this aim, we rewrite the equations in
matrix form:

dn 0
M v |=-|VE&-V|+N, (20)
8T V- &

involving the matrices M and N:

M=A+B(VT-r)V:+CVXVT-r)+DV(VT-r) V+E[WVT- P,

(21)
N=FVXVT-r)+G(VT-r) VA(VT-r) + H[V(VT-r)]*, (22)
where
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Prior to applying the Fourier transformation to eq. (20) we make an assump-
tion, often used in quantum perturbation calculus. In order to ensure a slow
evolution of the system towards equilibrium via quasi-stationary states we
assume the temperature gradient to be an appropriately small quantity. Thus,
the difference in temperature AT between the boundary region of the medium
distant by L of the order of 1cm is a quantity of the order of 1K fulfilling the
inequality A7/T < 1. Thus, we are justified in writing

T (r)=T,(r=0)+3Tsing-r, (24)

where ¢8T=VT , g=1/L.

We consider a sample the dimensions L of which are much greater than the
correlation range r and the free path of the hydrodynamical modes due to the
fluctuations. We thus obtain non-zero contributions to the correlation function
for |r| < L only. For r-values satisfying this condition, the product ¢ - r takes
small values and (24) becomes a good approximation in (8). In addition, the
above condition enables us to neglect the influence of boundary effects on the
processes under consideration and permits the integration of (20) in the limits
(—, +®). We now obtain the Fourier transform of (20) in the following
general, compact form:

on, 1 0
% =% E E i 2R SR 4 (25)
8T, ( 9 ik’ &r i
To obtain the correlation function for the hydrodynamical fields we write the
conjugate of the matrix (25):

20 KBk =ik £ (M
(26)

* E3 *
[dny Wi 3T¢]= *(k 2 =
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Next, multiplying (25) and (26) and taking the statistical average, we arrive at
the correlation functions. Qur results, when tabulated, assume the general
form:
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The terms a:j, a',fj are functions of the transport coefficients and their deriva-
tives. On restricting ourselves to terms quadratic in ¢ we get the respective
functions in the form shown in appendix A.
The By 4, Bri i are functions of the stochastic correlation terms of the
equations which describe, respectively, the fluctuation in velocity ¥, and in
temperature 87,:

Besw ={k & Kk K Ee-K'), (28)
Bryx = (k- Erwérp: k") . (29)

Let us assume that there are no correlations between the fluctuations of the
stress tensor and thermal energy density flux vector. Thus, the cross correlation
functions vanish. The correlation functions 8. ,., By, ., determined in ref.
[24], - similarly to the elements ai.j, a';j — are functions of the transport coeffici-
ents and their derivatives, dependent on ¢ and the temperature. In ref. [24],
the wave vectors k', k" are shown to take the values

T 3 {0, 1,2, for B, ., 30
K =kxng,  m=101,2,3, for Bry . (30)
Thus, the above correlation functions can now be written as

Bk’,k” = Bk+n'q,k+n”q = Bn',l

Bruw = Brxingiing = Brai

} for I=n"—n'. (31)

With an accuracy to terms quadratic in ¢ we obtain [24]
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In order to write [| D(k, ¢)|°] " in the generally accepted form we have to solve
the frequency dispersion equation

D(k, ¢q,5)=0, (33)

where D(k, ¢, s) is the value of the determinant of the Fourier transform of the
matrix M of eq. (20).

The solutions of (33) take one form or another for different values of k. This
is so because, according to the order of accuracy assumed, certain terms do or
do not occur in the solution depending on the value of k. The strict solution of
this equation for the case under consideration is to be found in ref. [24]. For &
in the optical range, i.e., for k = 10° cm ™, and for an accuracy restricted to the
first terms in ¢°, we obtain (see appendix B):
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The corrections G,, i=1,2,...,8, are given in appendix B (egs. (B.13)-

(B.20)).

The essential result of our work resides in the relation (27), which summar-
izes the set all possible cases of the hydrodynamical field correlation functions.

A similar calculation procedure has been applied in refs. [13-15]. However,
their authors have not performed systematical calculations taking into account
the greatest possible number of contributions to the hydrodynamical field
correlation function, restricting themselves to a discussion of the influence of
the temperature gradient on the velocity of sound, the coefficients of viscosity,
and the heat conductivity coefficient, and neglecting the fluctuations of these
quantities. Also, they do not go beyond solving the dispersion equation with
accuracy to the second order of perturbation calculus. Applying the isothermal
approximation, they omit the changes in entropy; this leads to a set of initial
equations containing no equation of motion for the fluctuations in temperature.
Also, the correlation functions of the stochastic terms of the hydrodynamical
equations used there are given a presentation more intuitive than resulting
from thorough calculations. All this leads to the circumvention of certain
conditions which amount to specific selection rules on the values of n’ and »n"
and eliminate arbitrariness in the construction of final expressions based on
strict premissae.

4. Conclusion

We have considered a system in a state of non-equilibrium due to the
introduction of a temperature gradient. We have assumed that all the condi-
tions for this state to be stationary are satisfied. A system like this can be
realized with a high degree of accuracy by surrounding the medium on either
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side with reservoirs at two different temperatures giving a slight gradient,
decaying slowly compared with the lifetimes of the processes taking place in
the system.

We make use of hydrodynamical equations of the most general form:

(i) taking into account the influence of the temperature gradient on the
viscosity coefficients 7 and £, the heat conductivity coefficient «, and the sound
velocity c;

(ii) including the fluctuations in sound velocity and heat conductivity coef-
ficient expressed via fluctuations of the fundamental hydrodynamical fields —
those of temperature and number density; and

(iii) not restricting ourselves to the isothermal approximation, and taking
into consideration all three hydrodynamical fields; and

(iv) performing our calculations up to terms in g°.

We have transformed the set of five equations to variables k, @ and have
solved it analytically. We have expressed the hydrodynamical field fluctuations
by way of stochastic functions with various wave vectors, resulting from our
calculations. The functional coefficients that occur are dependent on the
parameters characterizing the medium and on their derivatives with respect to
temperature, density and pressure. The determination of the correlation
function consisted primarily in solving the frequency dispersion equation and
calculating the correlation functions for the stochastic terms of the initial
equations. It is necessary to stress, as highly important in all cases, the
dependence on the concrete value of the wave vectors, of the general form
k' = k + n'q (for the conjugate part, k" = k + n"q). It is essential that the values
taken by n’ and n” are a consequence of the form derived by us for the initial
equations and are by no means but an attempt at generalizing the expressions
indexated by the k. Similarly, the set of n’ and n” values occurring as indices at
the correlation functions of the stochastic terms of the initial equations is the
result of strict, mathematical operations and thus derives from a mathematical
and physical necessity rather than from a bare possibility.

We have introduced distinctions between terms related with contributions of
different types:

1. contributions from fluctuations in number density, momentum and
energy;

2. contributions appearing due to having taken into account fluctuations in
sound velocity and heat conductivity coefficient; and

3. contributions related with the presence of the temperature gradient.

Only contributions of the type 1, specific to equilibrium fluctuations, are
found to occur independently. Thus cross terms, being products of contribu-
tions of the types 1, 3, and 2, 3 appear as well.

In part II, now in preparation, we shall discuss the influence of the above
derived contributions on the spectrum of scattered light.
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Appendix A

In tabulated form (see table I), we give the terms o ; occurring in eq. (27)
The elements o/;j are derived from the a ; by the 1nterchange a —>a,] ,
k' k". Each of the functions a . is the sum of products of the terms in the
corresponding row and the approprlate expressions of the first row. For
example,

a1 2k2 7

ahy = —actk®s(k' — k) + as(l*-l-(%> 5
kg (q)°

{2+ (3) Jote - e o

- [1 -2 kl;z" + (%ﬂsw — (k- q)]} :

)

Appendix B
The frequency dispersion equation has the form [23]

D(k, ,5)=s* + [Dk* + yD7k* +i(a; — a;) + ag + ag]s’
+ [ycik> + D k*yDk* + D Kag + yDk’a, + asas + asa;,
—i(a, + (y — 1)a, — yDk’a; — D k*a, — aay + a,a,ls
+ anycik’a, + G*k*yDk* — cik*ag — a,a, + anga,a,

: 212 272 2
+i(anycrk’ay — crka, — yDika, — a,a5 — anga,a,) =0,

(B.1)

with:
a, = 25T[(a§27;f 2) + ano(ai#)] % : (B.2)
—28T(_1_:+__1_)_< C2Tk2> kk'zq , (B.3)
e (28 1 (5]
o= 2 (S2)(Y) ®3)



W. Chmielowski et al. | Hydrodynamical field fluctuations

104

ANMMM_.U vqm| 0 ? N«Mmmvéa - AN«&%@V B AN%WQV N Aﬂ«mwm v# (@assprae  op
(Frase)e- () (Faw)" =
0 0 AN«WM: Lﬁﬂm.:g Apo— o
(Face) (Fawkeni (Famp- ety
0 0 AN «mm )T+ Duo Ao~ o
TF e e
(B —1) - yle- ?TSEAN@Y mwT ?TSJ:AN@Y — -1l - )¢
_@NIVL%+QJ5§N@Nw|ﬂw EZTE%@Ymwﬁmm_ EZTQEN@TM\m?%%_
191981



W. Chmielowski et al. /| Hydrodynamical field fluctuations 105

(D) B ar() g T ()4} g

T PE oT / Kk*
~< ) (1)’
Loy
—<—><> ®9

In ref. [23], eq. (B.1) is solved by well known methods of perturbation
calculus. On restricting ourselves to an accuracy determined by the order of the

first terms quadratic in g we get, for k= 10°cm™,

s, =—D kK [1+ G, +iG,], (B.10)

. ) . o
s,=(ick+ Tk )[1 + m (1iGg+ G, + G5 +iG + 1G7)] , (B.11)

. 1
=(—ick + Fk2)|:1 - m (iGy — G, + G5 +iG, —iG7):| ,
(B.12)
where
G =(y- ) pETEs (D k* = DK%, (B.13)
1 sf dck dck\1 k- q
‘. -4<1—->a[< £)-on228)] 1.
~ 1 dck dck\| k-
Gy =27 ~ [_1__15_(1:_;_).][( = >+an0<—an )] kz" , (B.15)

G, =5 2k2 [b,(D k%Y + by(DK*)'D K + b, DK (DK + (D,k*)],
(B.16)

o,-stli+ (1) [[(Fr)+ 5 (G)] 5 .1
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Gs = 23—1]? [b4(DTk2)4 - bs(DTkz)stk2 + bs(DTkzkaz)2

- b7DTk2(ka2)3 - (ka4)4] s

5T dck
G, =— [(bSDTkz - bgkaZ)(a—T)

dck\1 k- g
—(b,ODTk2+b11ka2)an0< = )} =

1
Gg= ck [b12(DTk2)2 + b13DTka4 + %(kaz)zl .

(B.18)

(B.19)

(B.20)

The coefficients b;, i =1,2, ... 13, occurring in (B.13)-(B.20) are functions of

the Poisson coefficient y and have the form
b, = L4y’ —19y* +19y + 4),
b, = 1(46y* — T2y +19),
by=3§(12y-19),
b,= & (—v*—1348y> — 2350y* — 1156y +279) ,
by = 5(1006y° — 4142y> + 3450y — 578) ,
b= %(2126y° + 4142y — 1175) ,

b, = £(503y —337),

b8=—[3y—(7—3—1)—4(1——1)%],
oni+(1-3)]

1
pomi1-1),

b, =14y* - 26y +7,

b, =3(16y - 15).

(B.21)
(B.22)
(B.23)
(B.24)
(B.25)
(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)
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The underlinings are in accordance with the convention introduced by us in
section 2.
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