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Amplitude-squared squeezing (ASS), defined recently by Hillery, is extended to atomic dipole operators and considered for
resonance fluorescence from two interacting atoms. It is shown that amplitude-squared squeezing, which does not appear in the
one-atom case, can occur in two-atom resonance fluorescence. A considerable amount of ASS is obtained for small detuning and
large interatomic separations. As interatomic separation decreases, dipole-dipole interaction between the atoms increases and
ASS shifts to the region of larger detuning but its value strongly decreases. For very strong dipole-dipole interaction or for very
large detuning, the ASS tends to zero. Moreover, it is found that the ASS is directly connected with photon antibunching and can
be measured by correlation techniques. The connection between ASS in the atomic variables and ASS in a fluorescent field is also

discussed.

1. Introduction

The nonclassical nature of squeezed states in an
electromagnetic field is now well understood theo-
retically [1] and their successful experimental ob-
servation is a fact [2—5]. Squeezed states exhibit
reduced fluctuations in one of the two quadrature
components; the in-phase E,=E(*’+E‘) or the
out-of-phase component E,=—i(E*)—E()) of
the electromagnetic field, below the vacuum limit, or
below that achievable in completely coherent field.

With the development of techniques for the mea-
surement of higher-order correlation functions it is
possible to define higher-order squeezing effect. Hong
and Mandel [6] defined a state to be squeezed to
2Nth order if the expectation value of the 2Nth power
of the difference between a field quadrature com-
ponent and its average value is less than it would be
in a coherent state. Braunstein and McLachlan [7]
defined generalized squeezed states which are higher-
order analogs of the squeezing operator [8]. Hillery
[9] defined amplitude-squared squeezing, which
corresponds to the squeezing of the variables which
describe the real and imaginary parts of the square
of the complex amplitude of the electromagnetic field.
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He found that this type of squeezing is a relatively
common feature of two-photon processes and ap-
pears in a number of nonlinear optical processes.
The idea of amplitude-squared squeezing (ASS)
may be extended to other quantum systems. In par-
ticular, to atomic two-level systems, where radiation
properties are described by atomic dipole operators.
However, ASS cannot be formed for a single atom
because the square of the dipole raising and lowering
operators is zero. Physically, this is a consequence of
the fact that one two-level atom cannot emit two
photons simultaneously. For a multiatom system the
square of the dipole raising and lowering operators
is different from zero and squared amplitudes of
atomic operators can be defined. As stated by Hil-
lery, the squared amplitude of the operators in a given
system describes two-photon processes. Therefore,
such a process should occur in multi-atom systems,
and has been found in two-atom resonance fluores-
cence power spectra [10,11]. This is easy to explain
within the framework of collective states of a two-
level system [12]. The hamiltonian for a two-atom
system can be diagonalized including the dipole-di-
pole interaction, giving the  eigenstates
10>=110:11)5  12>=(1/4/2)  (12)111),%
I1>,12%,)and |2 = |2),]|2), with energies E,=0,
+=h(wetR2,,) and E,=2hw, where w, is the
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transition frequency between the lower state | 1), and
the excited state [2); of the ith atom (i=1,2) and
£y, is the dipole-dipole interaction potential. In fact,
the two-atom system is equivalent to a single four-
level system with one upper state |2), one ground
state |0> and two intermediate states | = >. The
population of the upper state |2 can be transferred
to the states |+, |—> and |0> of frequencies
(energies) wo—£2,, wo+2,, and 2w,, respectively.
This means that the transition |2>—]0) with fre-
quency 2w is allowed in two-photon process.

In the present paper we consider the possibility of
obtaining amplitude-squared squeezing in steady-
state resonance fluorescence from two interacting at-
oms. We define the amplitude-squared atomic di-
pole operators and, from Lehmberg’s [13] master
equation, we obtain analytical expressions for fluc-
tuations in the amplitude-squared operators. We dis-
cuss the conditions for the appearence and the
possibility of measuring such squeezing.

2. Amplitude-squared squeezing in the atomic
operators.

In order to discuss ASS in multi-atom resonance
fluorescence we define operators which represent the
real and imaginary parts of the square of the collec-
tive atomic dipole raising and lowering operators

Si=4(5*2+57),

S, =(1/2i)(§**=85-2), (1)

where
N

S*t= Y S7 exp(zikr),
i=1

with the operators S;* and S; = (S;")' which raise
and lower the energy of the ith atom. These opera-
tors satisfy the well-known commutation relations
for Pauli spin-half operators:

[S?-9Sj_]=2Stg§ij, [Slz’Sji]=iSli5

ijs
[S*, 87 1+=4;, (2)
with S7 describing the energy of the ith atom.

From the commutation relations (2), the corre-
sponding commutator of S| and S, is given by
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[Si, 8, ]=2(S*S~+S-S*-1) 57, (3)

which vanishes for one-atom resonance fluores-
cence. For two atoms (N=2), the commutator (3)
has the simple form

[S19S2]=iSza (4)

with $,=S7ST7+S7S7 and S,=—-i(S;7S5 -
ST S7). Squeezing in one of the components S, or
S, of the square of the atomic operators may by ob-
served if one of the quantities p, ,, defined as

P12=((AS12)*> = I<S*> D)/ IKS? |, (5)

is negative, in other words, if the ASS variance of
one of the two noncommuting observables (.S, or S,)
is less than one-half of the absolute value of their
commutator, i.e., { (AS;,)?> <| <S> |. The param-
eter p; describes the degree of squeezing [14] and
takes its maximum negative values —1 for perfect
squeezing. It is obvious from (5) that the parame-
ters p, and p, are dependent on the expectation val-
ues of the atomic operators which, on the other hand,
are readily obtained from Lehmberg’s [13] master
equation. This master equation for the slowly vary-
ing parts of the operators S;* and S7 reads

(d/d7)SF =—4(1F14)S7

+[£2ip+ (aFib)S7F 1Sz, (6a)
(d/d7)S7=—(3+S7)+ip(Si —-S17)
—3[(a+ib)S}S; +he.], i#j, (6b)
where
=2y, B=QR/4y, a=y./7,
b=Q.:/y, d=(wo—wp)/7. (6¢)

In egs. (6), Q2 is the Rabi frequency, 4 the detun-
ing of the driving laser field frequency w; from the
atomic transition frequency w,, and 2y the Einstein
A coefficient for spontaneous emission. The collec-
tive parameters Q,, and y,, are dependent on the in-
teratomic distance r,, and reflect the retarded dipole-
dipole and radiative interaction between the atoms
[12,13]. When deriving egs. (6) we choose the ref-
erence frame so that the atoms are at the positions
ri=(—14r3,0,0) and r,= (415, 0, 0), the phase of.
the field is choosen as zero, and the Rabi frequency
£ is real and the same for both atoms. In this case,
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our model is similar to that of one atom in a reso-
nant field in the presence of a conducting metallic
surface [15,16]. Such a model has been realized ex-
perimentally [17]. Eqs. (6) enable us to obtain an-
alytical solutions for the parameters p,,. For two
atoms they lead to a closed system of fifteen equa-
tions describing the evolution of the atomic vari-
ables [18]. By setting the left-hand side of egs. (6)
equal to zero this system of equations gives the
steady-state solution. For the correlation functions
needed to calculate p;, we have the following
solutions

(ST ST +87 87 >=8p[(1+a)—-4(4+b)1/D,
(ST 83 —ST87>=0, (STS3S87Sr)=168%/D,
(87> =—(1+4?)[88%+ (1+a)*+ (4+b)*]1/D,
(7)
with
D=64B+16(1+4%) 8>
+(1+4*)[(1+a)>+ (4+b)?].

The above steady-state solutions, which include the
collective damping parameter a, the dipole-dipole
interaction parameter b, and the detuning 4, permit
the calculation of the parameters p, , describing the
amplitude-squared fluctuations in steady-state two-
atom resonance fluorescence.

Insertion of (7) into (5) leads to

3284D—-2[(1+a)—-4(4+b)]*}
= DO+ 8+ (1+ay s @by &)

_ 3284

D= ¥ ) 882+ (1+a)°+ (4+b)7]

(9)

Our solutions (8) and (9) describe the amplitude-
squared fluctuations in steady-state resonance flu-
orescence from two atoms coherently driven by a co-
herent laser field. Egs. (8), (9) are valid for any
values of the field strength and interatomic distances
ri». It is obvious from eq. (9) that p, is always po-
sitive, independently of B8, 4 and b. Amplitude-
squared squeezing occurs only in p,. This parameter
(p,) is illustrated graphically in fig. 1 as a function
of the detuning 4 for $=0.2, and for different values
of the interatomic separations r,, normalized to the
resonant wavelength A. This graph shows that p,
strongly depends on the detuning 4 and a pro-
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Fig. 1. Degree of amplitude-squeezing p, versus 4 for field strength
B=0.2 and different interatomic separations r,,. Curve (a) r;,/
A>1; curve (b) r,,/A=0.5; curve (c) r»/A=0.125. For curve
(c), the parameter p; has been multiplied by a factor of 10.

nounced ASS (p, <0) can be obtained in such a two-
atom system for certain values of 4. For large inter-
atomic separations r,, this occurs for small A
(4] < 1) with a maximum at 4=0. As the intera-
tomic separation r,, decreases, ASS shifts to the re-
gion of larger 4 but its values are very small compared
to the case of large r,,. The largest values of ASS are
obtained for large r;, and 4 near zero. In fig. 2, p, is
plotted for a fixed atomic distance and different laser
field intensities. For small 8 squeezing first increases
with # and next decreases for larger § and does not
appear for > 0.25. Here, it is interesting to compare
the behaviour of the ASS with the standard squeez-
ing discussed for two-atom resonance fluorescence
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Fig. 2. p, versus 4 for the separation r;,=A/2 and for different
field strengths S.
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inref. [18]. As it has been shown [18], the standard
squeezing is very sensitive to the dipole-dipole in-
teraction between the atoms. As the latter increases,
squeezing shifts to the region of finite 4, and max-
imum squeezing appears for 4= —b, i.e., when the
dipole-dipole interaction & and the detuning 4 can-
cel out mutually. This takes place for the one-photon
transitions

[+>—10> or [=>—[0).

Here however, ASS is also sensitive to the dipole-
dipole interaction but its maximum appears for 4
considerably smaller than b. This means that ASS is
now connected with the two-photon transition
[2>—]0>. This can be explained within the frame-
work of collective atomic states. For not too strong
laser field (f<1) and large r,, (i.e., for small di-
pole—dipole interaction values b), the atomic levels
are not shifted and the two-photon transition
|2>—|0) is not modified. As r,, decreases (dipole—
dipole interaction increases) the atomic levels be-
come shifted and the transition [2)> —|0) becomes
destroyed leading to a decrease in ASS. As r,, be-
comes very small, a particular pair of energy levels
of the two-atom system are strongly shifted by the
dipol-dipole interaction, the laser field can be tuned
to resonance with the respective pair of levels (greater
4), and ASS appears again. This is shown in fig. 3,
where p, is plotted versus r,,/A for =0.2 and dif-
ferent detunings 4. It is evident that for larger 4
squeezing appears only for small r,,. According to
eqs. (8) and (9), for a not too strong field, p, and
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Fig. 3. p, versus interatomic separation for #=0.2 and for differ-
ent detunings 4.
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D, tend to zero as |b| — oo (see fig. 3) or as | 4| —» oo,
1.e., when we have atomic transitions far from the
resonance.

Now let us discuss a possible experimental con-
figuration for the detection of ASS in two-atom res-
onance fluorescence. For this we use the one-time
normalized intensity correlation function

gD (R, Ry, 1)

=GR, R, 1) /G (R, 1) GV (R, 1),
which, for R,=R, Lr,, and two atoms, reads
g (R, LRy 1)

=4(SHST ST ST H/(STS™H2. (10)
Inserting (10) into (5) we obtain
Pi=({STS7H%/21{8%> 1) {gP (R, R, 1)

—[(1+a)—4(4+b)]2/2[ (1+4%) +442]%} .
(11)

This equation shows that ASS is related with the
photon correlations. For 4=0 and an extremely weak
field (f< 1) the condition required for ASS is

gV (R, LR 1) <i(1+a)*. (12)

Since |a| <1, photon antibunching implies ASS for
large interatomic separations (ax~0), whereas for
small interatomic separations (a~ 1) the condition
2@ (R, t, R, 1) <2 is required for ASS. However, for
|4] =1 the second term in eq. (11) is always smaller
than unity, meaning that p, is negative only if the
proton antibunching is present. These calculations
show that the techniques used for measuring photon
antibunching [19,20] can be used to obtain infor-
mation about ASS.

Finally, we shall show that the ASS calculated
above for the atomic dipole operators can be easily
generalized to the field operators. On defining the in-
phase component E; and out-of-phase component
E, of the amplitude-squared electromagnetic field
with the squared positive (negative) frequency parts
E(+)2 (E(—)Z)

E =E24E(-)2,
Ey=—i(E"*?-E(?), (13)

we have the commutation rule

23



Volume 69, number 1

[E\, E;]=8iC(ETE+4C), (14)

where C is a positive c-number. Amplitude-squared
squeezing of the fluorescent field is defined by the
requirement that the variance of one of the two non-
commuting observables (E, or E,) shall be less than
4C(CECEM)> +4C). Since the following rela-
tions hold for the field operators:

((AE,3)*>=4C(KETE™) Yy +4C)
+(:(AE )%y, (15)

where the colon stands for normal ordering of the
operators, the squeezing conditions imply negative
values of the normally ordered variance of the
squeezed amplitude-squared field component. The
normally ordered variance of the fluorescent field can
be derived using the following relation between the
radiation field and the atomic operators in the far
field limit [12,13]:

EXYNR, t)=E§T (R, 1)

2
+i¥(R) ¥ ST (t—=R/c), (16)
i=1
where E§*)(R, t) is the amplitude of the incident
field and ¥(R) is the geometrical factor. According
to eq. (16), the normally ordered variance of the
amplitude-squared fluorescent field in any direction
other than that of the incident beam is given by

CH(AE )%
=iPUR) [C(AS)*)+<(S5]. (17)

In the steady-state ¢.S*)> is negative (see eqs. (7))
1e., {(S% =—]{S%)|, and ASS in atomic variables
implies a negative value of the normally ordered var-
iance of the corresponding component of the am-
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plitude-squared fluorescence field. This means that
ASS in atomic dipoles for steady-state resonance flu-
orescence leads directly to ASS in the fluorescence
field.
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