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Abstract. The part played by higher-order optical nonlinearities in self-squeezing of
intense light propagating in a nonlinear Kerr medium is discussed. An analytical formula
for the normally ordered variances of the field is derived under the assumption that the
nonlinearity parameters of the medium are small and the number of photons is very great.
The saddle-point approach is used to evaluate the sums over large numbers of photons.
The analytical formula is illustrated graphically for several sets of nonlinearity coefficients.
It is shown that, for large numbers of photons, the higher-order contributions are substan-
tial and can modify the magnitude of squeezing as well as the range of the parameters over
which squeezing can be observed.

1. Introduction

The problem of squeezing of quantum fluctuations in optical fields is a subject of
intensive research in recent years and the number of publications on the subject is
growing at a high rate (see, for example, two special issues [1] of optical journals).
Several experiments have successfully verified the existence of squeezed states of light
[2-8]. Some time ago, we have shown [9] that intense strong light propagating through
a nonlinear Kerr medium can squeeze itself, and we referred to this effect as self-
squeezing. We have proved the possibility of as much as 98% of squeezing in the
above process. The one-mode version of the self-squeezing effect has been dealt with
~ by Tana$ [10] in terms of the anharmonic oscillator model with interaction Hamilto-
nian ~ka*?a?. This very simple and strictly solvable model is in fact highly instructive
and many aspects of squeezing obtainable from this model have been discussed
recently [11-17]. The squeezed states to which it leads are not minimum-uncertainty
and differ essentially from the two-photon coherent states [18] that are most often
used as models for squeezed states. Kitagawa and Yamamoto [19], who considered
the quasiprobability distribution Q for such states, refer to the squeezing obtained in
such a model as ‘crescent’ squeezing (in contrast to elliptic squeezing) because of the
crescent shape of the quasiprobability distribution. Our ‘self-squeezing’ and their
‘crescent squeezing’ are but different terms for what is virtually the same mechanism
of squeezing. Some aspects of third- [20] and second- [21] harmonic generation by
self-squeezed light have also been discussed. The feasibility of controlling the self-
squeezing process by means of an external magnetic field has been predicted [22].
Recently, Gerry [23] has generalised the model to the k-photon anharmonic oscilla-
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tor, with the interaction Hamiltonian ~ka**a¥, showing that squeezing can also be
obtained for higher values of k (k=3,4). In this case, however, closed form express-
ions for the field variances cannot be found and the results are expressed in the form
of infinite sums difficult to evaluate numerically for the most interesting case (from
the experimental point of view) of a small nonlinearity parameter and a large number
of photons.

The k-photon anharmonic oscillator has been earlier considered by Yurke and
Stoler [24] in their discussion of the generation of macroscopically distinguishable
quantum states.

In this paper we derive approximate analytical formulae describing the variances
of the field for the case of small nonlinearities and large number of photons using the
saddle-point technique to evaluate the integrals that are used to replace the sums.
Moreover, we consider the higher-order nonlinearities not as separate terms but add
their contributions to the lowest optical Kerr nonlinearity contribution. This approach
is more closely related to the real physical situation and allows us to discuss the role of
higher nonlinearities in self-squeezing.

2. The model

We consider a system the dynamics of which is governed by the following Hamiltonian
A +2 +3.3 fi +4 4
H= hwaa+?xa a2+3|<a a+—4—K3a a M

where a and a™ are the annihilation and creation operators and k;, k,, ks are the
coupling constants describing the successive nonlinearities of the system. Without the
higher-order nonlinearities k, and k3 we have the anharmonic oscillator model consi-
dered by Tanas$ [10], whereas taking separately one of the higher-order terms together
with the free-field term we have the k-photon (k=3,4) anharmonic oscillator consi-
dered by Gerry [23]. In practice, the model described by (1) can be realised when
intense circularly polarised laser light propagates through a nonlinear, isotropic Kerr
medium. The coupling constants k;, k, and k3 are then related to the nonlinear
susceptibilities of the medium x®, x® and x(”. The lowest-order nonlinearity «; is
that related to the optical Kerr effect [25, 26] and it always differs from zero, although
its numerical value is dependent on the medium and is usually very small. The values
of the successive nonlinearity parameters decrease by many orders of magnitude with
growing order of the nonlinearity. Thus, the physical effects related to these non-
linearities can manifest themselves only if the light intensity is sufficiently high. The .
higher-order nonlinearities, however, are known to play a crucial role, e.g., in the
laser beam autocollimation process [27]. ‘

Here, we are interested in the role played by the higher-order terms of (1) in the
self-squeezing process. Accordmg to the Hamlltoman (1), the equation of motion for
the annihilation operator is given by

—_—= - % [a, H] = ~i(0 + xja*a + ka*%a® + ksa™a’)a ¥))

and, since the terms a** a* are all constants of motion, the solution is
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a(t) = exp[—it(w + k1a*(0)a(0) + k2a*%(0)a*(0) + wk3a*3(0)a*(0)a(0) .  (3)

In the case of light propagating through a nonlinear medium with refractive index n
(instead of a field in a cavity), we can replace ¢ by —(n/c)z (on neglecting the
dispersion of the medium) and, on discarding the free evolution, we arrive at the
equation

a(z) = expli(ria* (0)a(0) + m2a**(0)a*(0) + 1:a73(0)a*(0))la(0)  (4)

where we have used the notation
n
= — —2K; . (5)
c

Equation (4) is the exact operator equation describing the evolution of the field
propagating through the nonlinear medium. With the solution (4) and knowing the
initial state of the field, one can calculate all characteristics of the field after its
traversal of the path z in the medium.

Since we are interested in squeezing, we define the hermitian operator

Q, = ae™® + a¥e'® , (6)

which for ¢ = 0 corresponds to the in-phase quadrature component of the field and for
¢ = 7/2 to the out-of-phase component.
The variance of such an operator is given by

Var [Qq;] = <Q ) - (Q(p)z
= 2Re {(a®e~3® — (a)%e %%} + 2{(a*a) — @Xa}+1. ()

For the vacuum state as well as coherent states this variance is'equal to unity. If it
becomes smaller than unity the state of the field for which this occurs is referred to as
squeezed [28]. Perfect squeezing is obtained if Var [Q,] = 0. Later on, we will use the
normally ordered variance

Ve(2) = (:QX2)) — (Q‘p(z))2
= 2 Re {(a°(2))e~2*—(a(2))’e 2%} + 2{(a*(2)a(z)) — (a*(2))a(2))} . ®

Negative values of this variance mean squeezing and its value equal to —1 means
perfect squeezing.

From equation (4) we immediately see that (a*(z)a(z)) = (a*(0)a(0)) = N is the
mean number of photons in the beam. Their number is constant. What we thus need
in order to calculate the variance (8) are the quantities (a(z)) and (a*(z)). Assuming
that the initial state of the field is a coherent state

oy = o2 i |y )

n=0 V!
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with the mean number of photons N = |a|?, we obtain from (4)

i 2n
(ala(z)|a) = aele’ z I_O"}'___ eid (10)
n=0 ’
i 2n
(Otlaz(z)la) = OLZC—!alz 2 _|_a_|_'_el(ﬁ,,+ﬁ,.+1) 1)
n=0 n.
where
ﬁn = TN + Tzn(n“— 1) + T3n(n _ 1)(n _ 2) . . (12)

The formulae (10)-(12) are generalisations of those obtained by Gerry [23] for
k-photon anharmonic oscillators. The generalisation is somewhat trivial because we
study the joint effect of all the nonlinearities rather than the effect of each term
separately. However, this approach is closer to the real physical situation when strong
light propagates in a Kerr nonlinear medium. The lowest-order Kerr nonlinearity is
always different from zero and certainly plays the most important role in the process.

The influence of the higher-order terms can be essential, however, if the field is very
strong. We shall discuss this situation here. Unfortunately, for very great numbers of
photons, the numerical calculation of the sums in (10) and (11) is by no means
feasible. For numerical reasons, Gerry [23] assumed for 1, and 73 values of 1072,

Albeit estimates based on real values of the nonlinear susceptibilities [25, 26] give for-
71 values ~107% and the corresponding values for 7, and 75 at ~10712 and ~107'8,

This means that the number of photons N = |«|?> must be of the order of ~10° if
considerable effects are to be expected. This, however, makes direct numerical

evaluation of the sums (10) and (11) very difficult. Only in the case T, = 13 = 0 can the

sums be performed giving closed analytical formulae for {(a(z)), (a*(z) and the variance

V,(2), leading to the result obtained by Tana$ [10]. But even in this case numerical

calculations are not easy to perform for the parameter values under discussion. To

overcome the difficulties some approximations are needed. Since the sums involve the

Poisson weight factor, which is peaked at # = N, the sums for N>>1 can be replaced

by integrals accessible to evaluation using the saddle-point technique. This is the

subject of the next section. ‘

3. The saddle-point approach in calculations of self-squeezing

To calculate the sums (10) and (11) we use the technique applied in calculations of the
collapses and- revivals [29, 30] in the Jaynes—Cummings model. The sums to be
calculated have the form

5= S pecos k). (=12 (13)

n=0

where
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pn = e‘N-I':—,: (14)
is the Poisson weight factor, and
() = — & + TNy + Ny (Ny? — 1) + HNYA(NY? — )(NY? -~ 2) (15)
ba(y) = =20 + 1y + 2nNy? + 2m(Ny?)? + 3[2(Ny?)? — 3(Ny?)? + Ny?] (16)

where we have introduced the notation y*> = n/N. To evaluate the sums (13) we
rewrite them as the integrals

5, ~ (%71!)"2 Re f "expINF()] dy a7
where
ﬁ(y)=y2(1~21ny)—1+i“‘—;§,¥)—. (18)

In obtaining (18) we have used Stirling’s formula for n!.
The saddle points y; of f(y) are given by

O |~ (19)
y  ly=y,
which leads us to the following set of equations:

=4 In y; + 2i(1; — 7o) + 4iT.Ny? + 6iTsN2yf — 12itsNy? + 4it; = 0

—4In y, + 4it; + 8imNy3 + 12imsN?y3 — 12im;Ny? + 2ir; = 0. (20)

On introducing y; = pe'® (i=1,2) we have

In py + 7Np? sin 2¢, + %Tssz;‘ sin 4y — 37sNp2 sin 24, = 0,

1
- ¢ + ? (T] - Tz) + T3 + 72Np12 cos 2(P1 + —:2)"— 1'3sz14 Cos 4(P1

— 373Np? cos 2¢; = 0 . (21)
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In p, + 27,Np3 sin 2¢, + 313N%p3 sin 4¢, — 373Np3 sin 2¢, = 0
—gr+ T+ -%— 3 + 2712Np3 cos 2, + 31;N%p2 cos 4y, — 373Np3 cos 24, = 0. (22)

In the case 7, = 73 = 0 the solutions of (21) and (22) are p; = p, = 1 and ¥, = 2§ = 7;.
They are solutions periodic in 7, which suggest the possibility of revivals with growing
71. In practice, as already mentioned, 7, is very small and will never approach the
successive saddle points except for the first one. The smallness of the nonlinearity
parameters 7, allows us to find approximate solutions for (21) and (22). Assuming
T; << 1, N >> 1, we get in a first approximation

pr=1—"Nsint — —;— 73N? sin 27,

. (23)
P = %(Tl hnd ‘Tz) + TzN cos T + *;—T:;Nz COos 21'1
p2 = 1 — 21,N sin 27; — 373N? sin 47,
¢z = T + 21N cos 27, + 3t3N? cos 47 . 24)

In the same approximation the values of the second derivatives at the saddle point are
given by

ﬁz)()’I) = —4[1 - 2i‘erei"" —_ 6i‘r3N2e2i'”]
(25)
() = —4[1 — 4im,Ne¥™ — 12ir,N%e*™] |

The integrals (17) can thus be evaluated according to the formula

S: = 20| expINi(:) — - arg f200)] (26)

where — arg ff2(y;) is the angle of steepest descent.
The results are

Sl = exp[Nfl(yl) + iTzN + 31T3N2]
SZ = eXp[Nfz()@) + 2i1'2N + 6iT3N2] . (27)

Again, taking advantage of the inequalities N >> 1, 7; << 1 to evaluate Nf(y,), we
finally arrive at the following approximate expressions for S; and S,:
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S = exp{—[—; TN + 27,7,N? + 2t3N° + 31,TaN? + 61N + %’r%NS]

+ il:—(p + TlN + "I'zIV2 + T3N3]} (28)

S, = exp{—[27IN + 87 oN? + 87N° + 121;13N° + 247,7N* + 1873N7]

+ i[—2¢ + 7y + 21N + 215N + 25N? + 31N? + 21,N°)) . (29)

Equations (28) and (29) are the approximate expressions for the sums (13), allowing
us to calculate the expectation values (10) and (11) and subsequently to calculate the
normally ordered variance defined by (8). The approximation is the better, the
smaller the nonlinearity parameters 7; << 1 and the greater the number of photons N
>> 1. The results based on this approximation should thus satisfactorily reproduce
the real physical situation in the nonlinear propagation process.

4. Results

To make our discussion of the results more transparent, we introduce a new variable
n

x=mN=——zKyN (30)
c

which, in the case 7, << 1and N >> 1, is in fact the variable that properly describes
the scale on which the essential changes in the expectation values take place, in
contradistinction to the path z in the medium or the number of photons N in the beam
taken separately. We have used the above variable in our earlier papers [9, 10].
Moreover, we introduce the coefficients

Ky K2 K3
C = Cr = —=_ C3 = 31
ST TR T TGP GD)

which properly scale the nonlinearity parameters. Their absolute values are numbers

of the order of unity.
On assuming

a=VNe®, (32)

the normally ordered variance (8) for the strong field on traversing a path z in the
Kerr medium can be written as

Vo(x) = 2N{Re(S,65%) — Re(S7e%* + 1 — 5;8;} (33)

and on insertion of (28) and (29) into (33) we obtain after retaining leading terms
only, the following simple formula for the variance (33):
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Vo(x) = —2[A sin 28 — A*(1 — cos 20)] (34)
where

A = cx + 20%% + 3c3x® (35)

0=9p— ¢+ cx + cx* + ¢’ . (36)

On choosing in (36) ¢y — ¢ = 0, we obtain the variance for the in-phase component of
the field — and for ¢20 — ¢ = /2, that for the out-of-phase component. Here, we
apply a notion of the in-phase and the out-of-phase components slightly different from
that used in (6). Both definitions are identical if the initial phase of the field ¢y = 0;
however, the words in-phase and out-of-phase are now better understood. The local
oscillator field is in-phase or out-of-phase with the input field. ; :

The expressions (35) and (36) for A and 0 have a strikingly simple structure, and
one is tempted to write down their next higher terms. This is, however, but a
conjecture still unproven in the general case. Nevertheless, the expression (34) for the
normally ordered variance in the self-squeezing effect appears to us to possess a quite
universal structure, and higher-order terms would only modify the form (and values)
of A and 6 leaving the form of (34) unaffected.

To illustrate our formula (34), we give several graphs in which the variance Vo(x)
for the in-phase component of the field is plotted against x for various sets of the
coefficients cy, ¢, and c;. Depending on the medium, the coefficients c¢; can be positive
or negative. It is obvious from (34) that the variance exhibits oscillatory behaviour and
a sequence of minima will appear in V,(x) with values of squeezing approaching closer

Figure 1. The normally ordered variance for the in-phase component of the field
versus x for the parameters: ¢; = 1, ¢, = ¢; = 0 (curve 1);c; =1,¢;=¢3=0
(curve 2); c3 = 1, ¢; = ¢, = 0 (curve 3).
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and closer the perfect squeezing for which the variance V,(x) = —1. However, the
subsequent minima become narrower and narrower. In the case of ¢; = 1,¢c; = ¢3 =0,
the self-squeezing for the second minimum approaches 98 per cent, and corresponding
graphs are to be found in [10]. Here, we restrict our discussion to the first minimum
only and show how it is affected by the presence of the higher nonlinear terms.

First, to compare our results to those of Gerry [23], we plot in figure 1 the
variances for each nonlinear term separately. To make comparisons, however, one
has to keep in mind that we use our variable x defined in (30) instead of the number of
photons N, so that the minimum for the higher-order terms does not shift towards
lower N. After the proper change of the variables our results reproduce the positions
of the minima obtained by Gerry [23]. Our results, however, show that the higher the
nonlinearity, the greater is the squeezing obtained. This means that the value 1072
used, for numerical reasons, by Gerry is not small enough to obtain quantitative
agreement between our formula (34) and his direct numerical calculations.

In figure 2, we show the influence of the c, nonlinearity on the self-squeezing
effect (assuming c; = 0). The change in the sign of ¢, has a dramatic effect on the
values of squeezing.

In figure 3, we illustrate the effect of the c; non-linearity, assuming ¢; = ¢; = 1.
Especially interesting is the curve 3, which shows that due to counteraction of the
individual nonlinear terms it is posible to get considerable squeezing over a wide range
of x.

Our graphs are but examples illustrating our analytical formula (34), and many
more combinations of the parameters ¢, ¢, and c3 could be considered. Whatever the
combination, our formula gives us the immediate answer to the question of squeezing
in such a system.

-1 :
0 0S5 ' 1
’ X
Figure 2. The same as in figure 1, but for the choice of parameters: ¢; = 1,¢; =
¢3=0(urve 1);c;=1,¢c,=1,¢c3 =0 (curve 2);¢; = 1, ¢; = —1, ¢3 = 0 (curve

3).
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-1 ‘ l
0 0S5 1
X

Figure 3. The same as in figure 1, but for the parameters: ¢; = ¢, = 1,¢; = 0
(curve 1); ¢; = ¢; = 1, ¢3 = —2 (curve 2 — this curve is broken into two pieces by
the frame of the picture); ¢; = ¢; = 1, ¢; = —1 (curve 3).

5. Conclusions

In this paper we have considered the role played by higher-order nonlinearities in the
self-squeezing of light propagating through a Kerr medium. The self-squeezing effect
can be remarkable if the light intensity is sufficiently high [9]. So, this is a quantum
effect which becomes more and more pronounced for greater numbers of photons.
We have calculated the normally ordered variances of strong light propagating in a
Kerr medium including higher-order Kerr nonlinearities. We have used the saddle-
point technique to get rid of the difficulties besetting numerical evaluations of summa-
tions over a large number of photons. Our calculations are based on the assumption of
small values for the nonlinear parameters 7; << 1 and large values for the number of
photons N >> 1. This assumption allowed us to obtain a very simple analytical
formula describing the variances of the field. Our formula appears to be quite
universal in form and indicates a way of including arbitrary higher-order Kerr non-
linearities. Some of the consequences of the higher-order terms are illustrated in
figures 1-3. Our results are briefly compared to the recent results of Gerry [23]; taking
into account the differences in parameter values, agreement is quite satisfactory.
There is a gap between the parameter values that can be used in direct numerical
calculations so as to make them reliable and the parameter values for which our
formula works well. Estimates based on realistic values of the nonlinear susceptibili-
ties give values for which our formula yields precise answers.

Since the interest in Kerr media is growing in the context of so-called quantum
nondemolition measurements [31, 32] we believe our results can be useful in this
context also.
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