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A novel effect, the magnetic analog of the transverse Pockels effect (MATPE), is calculated
theoretically in a phenomenological approach for transparent crystals. The linearly polarized probe
beam on traversal of the crystal under the action of a magnetic field B exhibits elliptical polariza-
tion, proportional to the first power of B® and also to the axial third-rank tensor {"al{};; () of
linear magnetic variations in the electric permeability antisymmetric with respect to time inversion
and symmetric in its first two indices. Applying group-theoretical methods involving time-inversion
arguments, we show that the effect occurs only in magnetic-symmetry classes and is most easily ob-
servable in the Voigt setup (B? at right angles to the propagation direction of the probe beam) in
transparent centrosymmetric antiferromagnetic crystals. The most suitable setup for experimental
observations of MATPE is that with the linearly polarized beam propagating along the optical axis
of antiferromagnetic crystals with the symmetries 3m, 6/m, and 6/mmm.

I. INTRODUCTION

One of the classical methods for the study of the physi-
cal properties of matter in the region of optical frequen-
cies is provided by traditional polarization optics (ellip-
sometry)."?> The method permits their determination
from measurements of the angle ¥ of rotation of the po-
larization plane and the ellipticity ® of the light wave. It
moreover permits the study of changes in the optical
properties of matter acted on by a static magnetic field;**
in this situation, depending on the conditions of observa-
tion, we deal with the following linear magnetooptical
effects: the Zeeman, Faraday, Voigt or Cotton-Mouton,
and magnetooptical Kerr effects, magnetic circular di-
chroism, and linear magnetic dichroism. Their theoreti-
cal foundations have been expounded in numerous mono-
graphs.’ 12

Here, we draw attention to the possible existence of
magnetooptical birefringence dependent on the first
power of the static magnetic field in the Voigt
configuration (B perpendicular to the light propagation
direction).

In a transparent crystal, a magnetic field B® applied at
right angles to the propagation direction of linearly po-
larized light modifies the polarization from linear to ellip-
tic, with ellipticity proportional to the first power of B°.
With regard to its geometry, the ellipticity linearly
dependent on B°, and the electric susceptibility tensor
symmetric in its first two indices, the effect is analogous
to the electrooptic Pockels effect. We thus propose to
refer to it as the magnetic analog of the transverse Pock-
els effect (MATPE). In the phenomenological approach,
it is found that MATPE can take place in magnetic crys-
tals, with the best observability in centrosymmetric,
transparent crystals.

The MATPE calculated by us differs essentially from
Voigt’s effect. The Voigt (or Cotton-Mouton) effect arises
when a medium is made birefringent with an applied
transverse dc magnetic field. The change in refractive in-
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dex is proportional to the square of the magnetic field,
and hence this phenomenon resembles the electrooptic
Kerr effect. More strictly, Voigt’s effect is characterized
by the fact that the magnetic field B°, acting perpendicu-
larly to the propagation direction of the linearly polar-
ized light wave and the direction of oscillation of its elec-
tric vector E(r,?), changes the state of polarization of the
light wave from linear to elliptic, the ellipticity being pro-
portional to the second power of B°.

Our primary aim is to enumerate those antiferromag-
netic symmetry classes where MATPE will not be per-
turbed by other optical effects like natural birefringence
and optical activity,'> natural gyroscopic rotation and
birefringence,'*!> or their variations dependent on the
first and second power of the magnetic field'®~2! (among
which the best known are the Faraday, Voigt, and
Cotton-Mouton effects). In order to determine those an-
tiferromagnetic symmetry classes for which the above
MATPE-perturbing effects cannot occur, we have to cal-
culate the variation in birefringence coefficient due to the
ﬁeldOBo with accuracy to terms proportional to the square
of B".

II. CLASSICAL MAGNETOOPTICS
IN A PHENOMENOLOGICAL TREATMENT

The optical properties of a transparent antiferromagnet
in the region of optical frequencies under the action of a
static magnetic field B in the case of weak excitation®? by
a monochromatic light wave with electric field vector

E(r,t)=E(w,k)exp | —iw t—%’s‘-r t+cc., (1)

and the similarly expressed magnetic vector H(r,?) oscil-
lating with the circular frequency w, are described by the
vectors of electric induction D(r,?) and magnetic induc-
tion B(r,?). These, in SI, have the well-known form!%??
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D(r,t)=¢,E(r,t)+P,(1,1), (2)
B(r,t)=p[H(r,t)+P, (1,1)] . (3)

The amplitudes P,(w,k) and P,,(w,k) of the electric po-
larization vector P,(r,?) and magnetic polarization vector
P, (r,t) are

P, (w,k)= 4X,(w,k,B%)-E(w,k)

+1g 4 X @,k B%)-H(w,k) , )

with 4 =e or m. § is the unit vector of propagation of
the light wave, n the light refractive index of the medium
in the absence of absorption, ¢ the velocity of light in vac-
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uum, k the wave vector of length kK =wn /c, €, and pu, the
electric and magnetic permittivity of vacuum, and c.c.
stands for complex conjugate.

_The polar tensors of second rank X (w,k,B% and
X m(@,k,B% describe the linear electroelectrlc and mag-
netomagnetic susceptibilities of the antiferromagnet un-
der the action of the static magnetic field of induction B°.
The axial tensors )( (w,k,B% and X ,k, B describe
its linear electromagnetic and magnetoelectrlc suscepti-
bilities.

In the case of crystals, where spatial dispersion is not
excessively great,* and in a moderately strong magnetic
field B?, the linear tensor susceptibilities can be written in
expansion form?’ as follows (we apply the Einstein sum-
mation convention):

X, ij(0,k,B) =) (0 )+’§””[ X @) — DX ()]s
+ @)+ X, (0)— PH R ()]s, |BE
L”X‘e‘,}m)(w)+ ion [(I)XLZl)r;lIr)r(luw)(w) el()'rlr;ln(luw) co)]sl B,?BS+ cee (5)
X ij(0,k,BO)=XD () + X7 (0)B)+ X T, (0)BIBY + - -+, (6)
mXeij(0,k, B =X (0)+ X (@) B+ VX Tm (0)BIBY + - - v)

mX m ij(wyk,Bo)=(”1,)X("11)’.j(w)+ cee

with {! X‘,,E),](a)) 0 in the optical region.?> The tensor
components indices i, j, k, and [ refer to the laboratory
coordinates and take the values x,y,z. Above, (Q"(m
describes the linear electric-multipole (A —e) or
magnetic-multipole (4 =m) susceptibility of order a
related with electric multipole (Q =e) and magnetic
multlpole (Q =m) transitions of order q. 1325 The tensors
")X g”)m(w and "’X Q‘”’""’ ) represent the changes in
(”)X )(a)) induced by the static magnetic field in a linear
(ﬁrst order stationary perturbation calculus) and quadra-
tic approximation (second-order stationary perturbation
calculus).

In a transparent loss-less medium, the relation®*2¢

(divS(r,t)) =0, 9)

has to be fulfilled, with S(r,?) denoting Poynting’s vector
in the medium, and ( - - - ) standing for the time average.

With regard to the condition (9) and the expansions
(5)—(8) it can be shown that in loss-less medium the mul-
tipole susceptibilities in the absence as well as in the pres-
ence of B fulfil the following relations:'* !>

WX P 0)=[gX P)]*,
GX Pmw) =[x P™()]* (10)
(:)Y(é)mrn(w)____[(g)}’(;)mm(m)]t ,

and, consequently, are Hermitian. Moreover, in magnet-
ic materials, the multipole susceptibilities are conju-

gate” 101415 5o that each of them can be expressed in the
form
WX Q(0)='98 P () +i'97 §lw) . (11)

Equations (10) and (11) lead to the following transposi-
tion relations:

0)=97% (o) ,

5)‘—'(0)

(a)‘&*((g)(

(a)‘-’(é ()= —

Ve Pm(w) =g " ‘”’”(a)) ,

(j)‘,}—;Qq M) = (5)‘—’(a)m(w) (12)
(a)*d’(g)mm @ =Qq)a’(a)mm(w) ,
(a)‘-’(é)mm(w)__ (3)“’(0)mm ) .

Making use of the relations (10)-(12) we can express the
electric polarization vector P,(r,t) and magnetic polar-
ization vector P, (r,f) in a form involving the electric
and magnetic field strength vectors E(r,¢) and H(r,?) as
well as their time derivatives E(r,?) and H(r,?). With the
r.espective expressions, and keeping in mind that E(r,?),
H(r,t) and P,(r,?) are invariant with respect to time in-
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version, whereas E(r,t), H(r,t), B(r,t), P, (r,t), B, and
k undergo a change in sign if t — —¢, we are 1mmed1ate1y
in a position to determine how the linear multipole sus-
ceptibilities transform on time inversion. In this way we
find that

(ea)‘d’(eq)(w)’ (a)‘&'(’g)M(w), ga)a* q)mm(w) ,
(

~

(ayer(q) (13
Y m (@),

¢ (a)‘,)';(eq)m(w)’

{ ay=( q)mm(w) ,

er

are invariant under time inversion (after Birss’ we shall
be referring to them as i tensors), whereas

(a)e (
La}:}-;gq)(a))’ a,y”z{)rn(m)’

(arsr(q) (a)‘-'( (@)Y (gimm
WD), Y7 I™w), Y7IP"(w),

(a)sr
ea ¥ (eq)mM(a)) ,

(14)

undergo a change in sign (c tensors) for arbitrary @ and gq.

It follows from Neumann’s principle”’ that i tensors
can exist both in magnetic and nonmagnetic crystals,
whereas ¢ tensors can exist in magnetic crystals only.
Hence, the expressions (5)-(8) determining the linear
electroelectric and, respectively, electro-magnetic suscep-
tibilities of nonmagnetic crystals will involve only i ten-
sors. For this case these susceptibilities will fulfill the re-
lations

0
eXe ij(w’k’B )=eXeji(
eXm ij((l),k,BO)z

o, —k,—B°%), (15)
mXe jilo,—k,—B°), (16)

in complete agreement with the result of Onsager’s sym-
metry principle for kinetic coefficients>® which is con-
sidered in the literature as the selection rule for the ex-
istence of linear magnetooptical effects in crystals.
Kleiner?’ has shown that the relations (15) and (16) are

J

12
Ko

€o

2 2
n=(8;si —s;s;)+n

+i(, e,Ju(a))+ X' (co)B0

e ijup

[Siuwmxe wj(wyk’BO)‘f‘eXm ,»p(w,k,Bo)S

valid only for nonmagnetic crystals. For the magnetic
crystals whose directional symmetry is described by 32
magnetic point groups’ not comprising time inversion
among their elements of symmetry, no Onsager principle
can be enunciated, whereas for the remaining 58 magnet-
ic groups a generalized Onsager principle can be formu-
lated. From what has been said we draw the conclusion
that with regard to magnetic crystals one has to drop the
Onsager principle as a selection rule for the existence of
linear magnetooptical effects. Here, the Neumann princi-
ple imposes itself as a more adequate selection rule: It is
applicable to nonmagnetic as well as magnetic crystals
provided that the transformation properties of the ten-
sors under time inversion are known. In other words, the
expansions (5)—(8) in the case of magnetic crystals will in-
volve i tensors as well as ¢ tensors, the latter leading to
new magnetooptical effects, forbidden by Onsager’s prin-
ciple with regard to nonmagnetic crystals, Egs. (15) and
(16), one of which is MATPE.

III. THE REFRACTIVE INDICES

For magnetic insulators, on replacing D(r,z) and
B(r,?) in the Maxwell equations24

9dB(r,?)
a )
curlH(r, )= P51 (18)
at
by the expressions (2) and (3), and taking into account (1),
(4), and (5)-(8), we get the equation for the light refrac-
tive index

curlE(r,t)= — (17)

pju

XImm (@)BIBD)]s, —8;

—= [“xg‘,j( )+ X ()B4 X i (e )B°B°]+—- Xmip(@,k,BY), X, ,(0,k,B%) | E;(0,k)=0, (19)
0
with
eXZiju(w): 3 [e )X(ezt)(/u)( )_(ez)X(el()iu)j(w)] ’ (20)
X0 ()= Z[OX 20, ()= 2X0m . (o) @D
e ijup - 3 [ el(ju)p e(m_;p (@ ]
eXcYF;'l:':pr)( ——_[ l)Xet(_/u pr( w)— (ZXLI()ITT(pr)( )] . 21)

Here §,; and §,;, denote, respectively, the Kronecker and Levi-Civita unit tensors.
Makmg use of the tabulated polar and axial i and ¢ tensors of the second, third, fourth and fifth rank’ one easily
checks that for centrosymmetric magnetic crystals the following conditions hold additionally:

X (@

e ijup

eXeV,-j,,(a))=0, )=0,

Vmm
eXe iju(pr)(w)zo

X ij(0,k,B)=0, X, (0,kB%=0

(22)

Let the light wave propagate in the crystal along the z axis taken as parallel to the highest of its axes of symmetry. We
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accordingly have

s, =s,=0, s,=1,

y (23)

E,(0,k)=0

By (22) and (23), the set of equations (19) reduces to
1
{(n%2—1 )8 — 6—[1,”)(‘8’,»}( o)+ “’X‘el,}’,:'( )B? + “’Xel,}'(’,f’,",)(w)B,?B,?, + - JEj(0,k)=0, (24)

0

for i,j =x,y.
On equating to zero the determinant of the coefficients at E;(w,k) in (24) we obtain an equation of the fourth degree
in n. On solving it, we arrive at two solutions of the form

n,=ny+n(B%)+8(B° , (25)
where we have introduced the notations
no=[(n,f—f-ny2)/2]l/2 , (26)
1
n(B°)=;Ei[Z” ain (@) + a0 1B+ [V W)+ iy (0) BBy + - ], 27)
8(B°)=Z’11—[[nyz—n3+h(B°)]2+4[g(B°)2+f(B°)2]}1/2 , (28)
0
with
n2=1+-Vall) (@),
€o
1 (29)
n}=1+—Val) (o),
€
1
BBO)= [0l (0) — 0l (@) BE-+ [ el )~ ol 1B+ - G0
1
g(BO) € [el)ae xy( )+ a“)x';)u(w)Bz?+(e”a£31();:1v;7uw)(w)B3B2+ to } ’ (31
1 m
f(Bo) 60[ l)y(el[)xy](w)+(l)y(el[)xy]u(w)BO+(1)7/21[);;i'(luw)(w)B1?B8+ e ] . (32)
f
On insertion of n_ and n_, respectively, into the first . 1 .
and second equation of the set (24) we get the following E\(z,t)=E(wo,k ) &+t %
relations: *
- n,z
Ex(w,k+)—a+Ey(w,k+ )= (33) X exp —iw |t— : +c.c. , (36)
a_E,(o,k_)+E,(0,k_)=0, (34)
E)(z,t)=E(0,k _)(€,—a_§))
where
0 0 n_z
a,= 2g (B )+if(B)] , (35) xXexp | —iw [t— +c.c. (36’)
T n2—n24h(B%)+4n,8(B°) L ¢
where obviously a _ =(a_ )*. It is more convenient to have recourse to the resultant

Thus, two waves propagate in the medium along the z
axis with velocities, respectively, equal to V, =c/n
and V_=c/n_

By (33) and (34), the electric field strength vectors
E (z,t) and E,(z,t) in a point z of the light waves propa-
gating in the crystal with the velocities ¥, and V' _ take
the form

field [E(z,t)=E,(z,t)+E,(z,t)] which can be written in
the form

E(z,t)=€,E,(z,t)+€,E,(z,t)+c.c. , (37)

where



3508
Ex(z,t)] P_ Q. ] [E.0,1)
E (z,t) |~ |Q_ P, | |E,(0,0)
io[ng+n(B%]z
xXexp | —— |, (38)
¢
with
wz8B%) | . 1—a a_ 0z8(B°)
P =cos )
c l4+a a_ c
2ia 0
0. £ gin wz8(B") ’ (39)
l4+a,a_ c

whereas E,(0,7) and E,(0,¢) are the components of the
J
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electric field vector oscillating along the x and y axis in
the point z =0, i.e., at the input to the crystal

E (0,t)=E,(w)exp(—iwt) ,
(40)
Ey(O,t)=Ey(w)exp(—iwt) .

IV. THE STOKES PARAMETERS

Complete information regarding the state of polariza-
tion of the field E(z,t) is best gained by determining the
Stokes’ parameters2 S0, S1, S5, and §;. With regard to
our formula (38), S, S,, S,, and S; particularize to the
form

So 1 0 0 0 | E((0,0)]*
S, A, —A, A, (A,)* |E,(0,0) |2
Sy|T |4y —Ay A, (4,0 | |EJ0,DE, (0,0 |’ “h
S5 As —As idy, —i(A4)* | |E(0,0)*E,(0,)
where we have introduced the parameters
8la, |2 0

A =1— la, | 225in2 «0z8(B") ’ 42)

(I+]a,|* c

2i(a  )* 0 1—|a, |? 0
dy=—— 2 i |p @288 | +|2tan 08B || 43)

I+ a, | c I+ a, | ¢

2[a, +(a )*J(1—|a, |?) 0 a,—(a,)* 0
A= — la, )] 21 + sin? wz8(B”) | .94 + —sin |2 wz8(B") , (44)

(I+1]a, [7) ¢ 1+ |a, | ¢

s wz8(BY | (I=1la, |P? | wz8(B%)

A4=cos - 55 sin
¢ 1+ |a, |9 c
0 0
i(1—|a, |*sin |2 —“’2523 L1 Fala, ) Psin? “’2523 )
) (45)
(14 |a, |??
a, +(a )* 0 2ila, —(a )*)(1—a, |?) 0
= + +zsin ) wz8B7) || la, )] 22| + | sin? wz8(B") . 46)
1+ |a, | ¢ (I+|a,[%) ¢

Obviously, (S+S3+S3)!/2=S,, stating that the light
wave E(z,¢) within the medium is totally polarized. For a
totally polarized light wave, the azimuth ¥ and the ellip-
ticity ® are equal to?

S

1
S

W =larctan , 47)

® =larcsin R (48)

0

[

where W is the angle between the major axis of the ellipse
and the x axis, and ® is the ratio of the minor and major
axes.

V. APPLICATION AND DISCUSSION

Assume the light wave to be linearly polarized along
the x axis at the input to the crystal (z=0). Putting
E,(0,t)=0in (41) we get
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1

¥ = larctan

’

(49)
®=1larcsinA; .

From (35), the coefficients @, and a _ are in general com-
plex quantities. Let us assume that, moreover, the fol-
lowing two extreme cases are possible:

a,=ib, (a )*=—ib, (50)
a,=(a, )=a, (51
where
2g (B?)
= , (52)
O WZ—n2+h(B%)+4nyd(BO)
0
b= 2f(B7) , (53)

n}—n2+h(B°)+4n,8(B°)

a and b being real.

A. Circular birefringence

The first case, given by the relation (50), takes place if
g(B%= (54)

Two elliptically polarized waves propagate in the medi-
um with polarization versors € + and €_, respectively,
equal to €, =€, —i/b€, and €_ =€, +ib€,. Their super-
position is also an elliptically polarized wave since the pa-
rameters As and 4,/ A, are nonzero, amounting to

2

As=f(B%)[n}—nl+h(B°)]

nyc
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wz © k[ZU(h f)]Zk
A, nocf kz (2k + 1)
Lo, wzf (B°) °° (—1) U(hf
2n, 1 (2k +1)
(56)
where
Uh,f)= 4“’zc ([n2—n2+h(BOP+[2f(BOP}2,
0

(57

as a result of which ¥ and ® too are nonzero.

The last two expressions are obtained from (42), (44),
and (46) with the condition (54) and on expanding the
functions sin{2[wz8(B°)/c]} and sin*[wz8(B°)/c].

In particular, if b =1—as it is the case if, additionally,
the two following conditions are fulfilled: n,=n, and
h (B%)=0—two circularly polarized waves with opposite
senses will be propagating in the medium, their superpo-
sition giving a linearly polarized wave, ®=0 with its po-
larization plane at an angle ¥ =wzf (B®)/2nc to the xz
plane.

Here, we deal with circular birefringence (of circularly
polarized waves). The first term of (32) determining the
parameter f(BY), ie., Myl (), describes gyrotropic
rotation;'® the second term of (32) at u =z (magnetic field
acting along z) describes the well-known Faraday effect;
and the third term at arbitrary orientation of the field B0
describes quadratic magnetic variations in gyrotropic ro-
tation.?°

B. Linear birefringence

The second case, which is given by (51), occurs if

© k 0y __
1+ 3 —12)kU(l;){ ] ’ (55) f(B%= (58)
k=1 + involving
J
© k 2k
Ao — @2 po (—DY2U(h,g)]
=SB 2 T ’ &
2 2
o2 2 o | oz 2 (=D*U(h,g)*
4, BBt hBONS [1+k§1 2k + 1)
A4, K © k 2% )2 ’ 6
1 1—2 wzg (BY) 1+ 3 (=1)*U(h,g)
2nyc i~ (2k + 1)

where U (h,g) is obtained from (57) on replacing f by g.
The relation (51) states that two linearly polarized waves
now propagate in the medium, respectively, in the direc-
tions €, =€, +1/a€, and €_ =€, —ad€,, the two waves
being mutually orthogonal: €, -€_=0.

—

Their superposition in a point z (on having traversed a
path z in the medium) is an elliptically polarized wave.
Here, we deal with linear birefringence (of linearly polar-
ized waves). In particular, if a =1 [this takes place if
n,=n, and h (B%)=0] the parameters of the ellipse are



3510
equal to
&= g (B%wz
2noc
Y0 (61)

its major axis lying along the x axis. Obviously, the light
wave will propagate in the medium with its state of polar-
ization unchanged if @ =0; this occurs if g (B%)=0.

Let us consider the case when the incident wave is po-
larized linearly at an angle of 45° to the x axis in the xy
plane. At the input, we now have EX(O,t)=Ey(0,t). If,
moreover, the parameter a vanishes [this occurs if
f(B%)=0 and g(B°)=0] two linearly polarized waves
will again be propagating in the medium, in the direc-
tions €, and ’éy, respectively, their superposition giving
an elliptically polarized wave

V=1m/4,
[n}—n}+h(B)]wz

d= ,
4nyc

(62)

the major axis of the ellipse coinciding with the polariza-
tion direction of the wave at the input to the crystal.

C. MATPE

The conditions (22) and (58) restrict the variety of anti-
ferromagnetic crystals where linear birefringence can be
expected to occur to those with directional symmetry of
the following magnetic point groups: 4/mmm, 4/mmm,
3m, 6/m, 6/mmm, 6/mmm, m3, m3m and m3m. From
the tables’ of i and c tensors of the second, third, and
fourth rank we determined the parameters a, h(Bo),
g(B%, W, and @ for these crystallographical classes for
B applied along the axis x or, respectively, along y [a
disposition with the magnetic field parallel to the z axis
would be forbidden with regard to the condition (58)]. In
determining ¥ and ® we restricted ourselves to the first
term of the series expansion of arctan(A4;/A4;) and
arcsin( A5), an apparently satisfactory approximation
since the term omitted in the two expansions is propor-
tional to the third power of the argument of the respec-
tive function, thus giving a contribution to ¥ and @
whose dependence on B® has an exponent higher than
that assumed in the expressions (5)-(8). For the same
reasons, in the expression defining 4;/A4, and 45, we
neglected the terms containing the parameter U(h,g).
Our results are given in Table I (where the fifth column
specifies the configuration of the electric field of the light
wave at the input to the crystal).

Table I clearly shows that by choosing appropriate
configurations of the optical electric field at the input one
can observe linear birefringence in antiferromagnetic in-
sulators with the symmetries 4/mmm, 4/mmm,
6/mmm, m3, m3m, m3m, 3m, 6/m, and 6/mmm.
Strictly, in the first five of these classes, the ellipticity is
dependent on the square of the magnetic field. Here, we
have the well-known magnetooptical effect of Voigt or,
respectively, the Cotton-Mouton effect.
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In the class 3m, if BC is applied along the x axis, the el-
lipticity is dependent on the first power of B? and the ma-
jor axis of the ellipse subtends an angle ¥, with the x axis
that is given by a rather complicated function which, in a
first approximation, depends but on the third power of
B? and thus exceeds the accuracy assumed for our calcu-
lations (which restricts us to quadtatic terms; thus,
W,=0). The situation is similar for the class 6/mmm
when B is applied along y (second part of Table I).

Birefringence proportional to the first power of B? will
also occur in the classes 6/m and 6/mmm with B° ap-
plied along x and the light wave at the input polarized
linearly along x or in the €, +€, direction. From the first
part of Table I, the ellipticity for these two classes in-
volves, moreover, a term proportional to the second
power of the magnetic field. The linear term is easily se-
parable from the quadratic term since it changes its sign
on reversal of the magnetic field.

The situation is similar for the classes 6/m and 3m if
the magnetic field is applied along the y axis. The
birefringence proportional to the first power of the static
magnetic field which is at the core of our interest will
occur as well in noncentrosymmetric magnetic crystals,
possessing the symmetries 3, 3, 32, 32, 3m, 3m, 3m, 6, 6,
622, 6mm, 62m, and 6m2. In these classes, however, the
condition (22) ceases to hold so that the birefringence in
question will be accompanied by other optical effects,
such as natural optical activity,!® natural gyrotropic rota-
tion and birefringence,'*!> and their variations are pro-
portional to the first and second power of the magnetic
field strength'®~!® rendering difficult the observation of
birefringence proportional to the first power of the static
magnetic field.

At the configuration under consideration here (the lab-
oratory coordinates coincide with the crystallographical
set of axes and the field B? is at right angles to the light
propagation direction) no birefringence dependent on the
first power of the field will appear in any of the magnetic
crystals belonging to the regular system. If the system of
laboratory coordinates coincides with the crystallograph-
ical axes, magnetic crystals having the symmetries 23,
m3, 432, 43m and m3m can exhibit the effect only if the
field is applied parallel to the direction of light propaga-
tion; however, the effect will always be masked by the
linear magnetooptical effect of Faraday.

Dillon et al?® were the first to show that the
birefringence linear in B® can be expected in the longitu-
dinal geometry B°||[001]|k (Faraday configuration) in
Dy;Al;0,, crystals (magnetic symmetry class m3m). It
was subsequently measured in some antiferromagnetic
crystals;?! DyFeO, (symmetry mmm), Ca;Mn,Ge;0,
(symmetry 4/m), CoF, (symmetry 4/mmm), a Fe,O,
and CoCOj; (symmetry 3m). For a detailed discussion of
these experiments see the paper of Eremanko and Khar-

chenko.?! The values thus obtained for certain tensor
components Va ﬁ,lg),;'; (o) amounted to (e”afel()xy,z(w)
=2.5%10""7 Oe at A=5900 A for DyFeO;, and

Pallm ()= —Palm(0)=1.25x10"%  0e™'  at
A=11500 A for a Fe,0;. It is easy to check that for
P (el<),;'§k(w) of the order of 1077-107% Oe~!, a crystal
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with / =0.1 cm thick and a magnetic field H of n kOe (ar-
bitrary n in cgs units, ® =[47wl /(2n,c)]}! )a‘el(’,-;-")k(w)H,?),
the ellipticity ® will range from n rad to n X 10~ ! rad, re-
spectively, magnitudes well accessible to measurement.
The magnetic field acting on the antiferromagnetic crys-
tals modifies the well-known ferromagnetic vector M and
antiferromagnetic ~ vector L. The components

Mallim (o) can be expressed via L and M:*!

ML (XML +Q%E (0X5L,
+ QMM (XN M, ,

1) (1)m

( —
e ae(lj)k(w)—

where XM is the magnetic susceptibility and X% the anti-
ferromagnetic susceptibility characteristic of induction of
the r component of the antiferromagnetism vector L by
the field B®. Antiferromagnetic crystals with the sym-
metries 23, m3, 432, 43m, and m 3m can exhibit MATPE
(birefringence linear in B® in the transversal geometry
BCLk||2) only if the laboratory coordinates x,y,z do not
coincide with the crystallographical coordinates X,Y,Z.
If x,y,z are chosen so that they shall go over into X,Y,Z
after two rotations, the one about z by an angle ¢ and the
other about the new axis y’= Y by an angle 6, we get®® for
crystals with the symmetries 23, m3, 432, 43m, and
m3m:

(l)a(l)m(w)zo ,

e eyyy
(1), (1)m __ (1) _(1)m
e aeyxx( )‘—e aexyx(w)

— (g ¢

e “exxy o)

=sin(26)cos(24) Va7 (w) ,
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Walllm ()= —3 cos?(8)sin(8)sin(2¢) ol V3, () ,
Dol —a o
=a)7 (o)

=sin(8)sin(24). al Y, (0) ,

where (Vall)m (w) is the component of the susceptibility

tensor Pa!""(w) in the crystallographical set of coordi-
nates.

The MATPE is sensitive to the crystal magnetic sym-
metry and to reorientation of the antiferromagnetic vec-
tor. Moreover, it undergoes a change in sign when the
directions of the magnetic moments of a sublattice are in-
verted.?! Owing to this, MATPE can be used to study
the time-reversed domain structure of antiferromagnets,
to determine the symmetry of magnetic ordering, and to
study the magnetic crystal energy spectra by spectroscop-
ic methods. MATPE can be used moreover for phase
modulation of laser light and for controlling the efficiency
of generation of squeezed states of the electromagnetic
field by way of a static magnetic field.*°
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