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The multipolar theory of light Rayleigh scattered by linear centrosymmetric molecules is derived using spherical tensors.
Analytical forms are given for the binary and ternary radial and angular-radial terms describing the integrated intensity.
Particular attention is devoted to the ternary angular-radial terms. Using available computer simulation results for the
spherical components 81,5,m(712) Of the pair distribution function for molecules of liquid N,, the dipolar and octopolar
contributions to the integrated intensity are computed. The reasons why the quadratic terms of the scattered radiation are so
well described within the S model are considered.

1. Introduction

For many years, light scattering has been a highly useful means for studies of the microscopic properties
of simple molecular systems [1,2]. Numerous papers have been devoted to qualitative and quantitative
analyses of the scattered light intensity {3-18]. ‘

In a liquid, the magnitude of the moment induced in a molecule is dependent (in addition to the
external perturbation) on the internal field originating in its neighbourhood. In a first approximation, its
existence is due to the dipole moments induced in the neighbouring molecules by the light wave incident
on the medium. Within the volume of a molecule the field is strongly inhomogeneous and its gradients are
essentially important. Inclusion of the gradients into the theory is equivalent to taking into consideration
the multipolar polarizabilities of the molecules in the scattering process [4]. Here we deal with light
scattering by fluids with linear centrosymmetric molecules. Therefore, all the electric multipole polarizabil-
ity tensors of odd rank vanish, so that the dipole-induced octopole scattering mechanism is the first
multipolar correction term (immediately after the dipole~induced dipole mechanism). Consequently, this
paper is devoted chiefly to the influence of the dipole-induced octopole mechanism on the Rayleigh
scattering by fluids with linear centrosymmetric molecules. We have derived analytical formulae describing
the various parts of the scattered intensity. Particular attention is devoted to the ternary angular-radial
terms. As an example, we have performed numerical calculations for fluid N,. To our knowledge, the
complete set of dipolar and octopolar polarizability tensor components is available for N, only. Since we
are dealing here with the integrated intensity our calculations will be performed in non-projection scheme
{16,18].

Our calculations will proceed as follows: in section 2, we give the multipole theory of light scattering in
terms of spherical tensors. In section 3, using computer simulation results for the spherical components
81,1,m(r12) of the pair distribution function for molecules of liquid N,, we calculate numerically the
individual terms of the integrated intensity. The appendices summarize briefly (A) the multipole theory of
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the collective polarizability in spherical and Cartesian coordinates, (B) the analytical results for the DID
model, and (C) problems related with the ternary angular-radial terms describing the intensity of the
scattered radiation.

2. Multipole theory of the integrated scattered intensity

Present theories of light scattering [3,4] agree that the time-decay of the intensity of light Rayleigh
scattered by a dense medium is proportional to the fluctuation autocorrelation function of a dynamical
variable §, called the source function:

Lo (1) € (85,(0) 8S,(1)), (1)
where the source function § is defined in ref. [3] as follows:
§=P=[((cy 1) /41]E, )

and P is the polarization of the fluid and E the electric field existing within it. In (2), {€) is the
equilibrium value of the dielectric permittivity of the medium.

After Ladanyi [5], eq. (1) can be expressed by way of the collective polarizability IT of the medium, the
Lorentz local field factor [(n + 2)/3]%, and a geometrical factor G [19]:

1(1) « [(0* +2)/3]*6(11(0) OTI(1)), (3)
with © denoting the scalar tensorial product.
For multipolar interactions, we can write IT as the sum of two components

II= (1(\2;1_[ + o II, (4)

where (1(\2;1—1’ henceforth to be referred to as the molecular component, is the sum of the molecular
polarizability tensors in the absence of intermolecular interactions, whereas oyl is an excess interac-
tion-induced polarizability of the system due to the dipole-induced multipole mechanisms. In a first
approximation (Dl(lgH can be expressed in terms of a multipole series expansion (see appendix A):

M
D= M 1) (1)
(DH(M)H (DID)H + (DIQ)H + (DIO)H +..., (5)

where the first term is the dipole-induced dipole (DID) contribution well known from the Yvon—Kirkwood
theory, and the second and third terms represent, respectively, the dipole—induced quadrupole (DIQ) and
dipole-induced octopole (DIO) contributions. In our paper we use the multipole expansion (5) for the
collective polarizability assuming approximately that the individual intrinsic molecular properties (multi-
pole moments, polarizabilities) are not changed during interactions.

At this point, we introduce expressions for the dipole-induced multipole polarizability in spherical
coordinates (see appendix A). Below, we give formulae for (Dn(\}; II,, in two different coupling schemes:

AR
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where
M, ,=[(2a+1)2b+1)...(2f + D]Y?, and I, +1,=N.

Quite obviously, either scheme presents specific advantages according to the approach taken in the
calculations [20]. The left-hand superscript 1 at (DII(\BH stands for a polarizability in the first approxima-
tion of perturbation theory. The expressions for the polarizability in higher approximations are bulky and
highly involved. Thus, though we have derived a general formula expressing arbitrary dipole-induced
multipole polarizabilities in spherical coordinates in the second order of perturbation calculus [21], we
refrain from writing it out in analytical form here and restrict ourselves to discuss their numerical
contributions to the scattered intensity (contributions of the type ?°*%2C, [4].

These analytical expressions (6) hold for systems of molecules of arbitrary symmetry. Our present work,
however, is mainly concerned with an analysis of the integrated intensity scattered by fluids with linear
centrosymmetric molecules. In this case, tensors of odd rank vanish in the electric approximation. The
most essential consequence of this is the vanishing of the dipole-induced quadrupole polarizability:
MA@ = 0. This, in the first order of perturbation (iteration), causes the vanishing of the dipole—induced
quadrupole contribution to the polarizability (5), (DI%;H =0, and the collective polarizability IT of eq. (4)
becomes the sum of three components: the molecular component M, DID and DIO. When calculating the
scattered light intensity as the scalar product (3) of the collective polarizability of the system one easily
notes that the total integrated intensity is the sum of terms of two types: quadratic, and cross. There are
three quadratic terms:

(a) molecular,

00)~

zM))C2 - <(§2;H2 © (1(\2§H2> ’ (73)
(b) DID,

(D(III;; CZ = < (DI(I;;H2 © (Dl%;n2> > (7b)
(¢) DIO,

(D(Ilcl); G = < (m(éinz © (DI(01;H2> , (7¢)

and three cross terms:

(2) M-DID,

RaBG=2 B0 L), ()
(b) M-DIO,

A5G~ 2 B0 FTL). )

(c) DID-DIO,

(11) = 1) 1)
(DID—DIO)C2 2< (DID)HZ@ (DI(O)H2>' (8¢c)
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Table 1
The numerical values for N, used here for the spherical components of the dipole—dipole ASD | quadrupole-quadrupole A%, and
dipole—octopole AYY polarizabilities

AP (&%) 45 (&%) AGD (A%)

—2.850 @ 0 46832

—2.944 2120 »

2 0.843 % -1.809 @ —1.650 ¥
0.629 -1.786 ® ~0.683

4 0 —0.359 2 -0413®
-0.341 —0.368 ®

2 From ref. [23]. ® From ref. [24].

We have denoted by C, the “molecular part” of the integrated intensity given by the scalar tensorial
product in eq. (3). It will be the subject of our further analysis. The subscript 2 means that we are
analyzing the anisotropic part of the scattered radiation.

When analyzing the successive components of the integrated scattered intensity (7) and (8) we readily
distinguish the well known molecular component &O;Cz [1,2,22] as well as the similarly discussed [16]
guadratic (7b) and cross (8a) components of the first and second approximation of the dipole-induced
dipole (DID) model. Their analytical formulae are summarized in appendix B. Moreover for each of them
we shall calculate, in continuation of our earlier work [16], the contribution from ternary angular-radial
correlations (see appendix C). The next three are new components, hitherto not discussed numerically for
liquids (though analytical calculations have been performed [4,10,13]). Here, we have a purely octopolar
quadratic term (7c), a molecular—octopolar cross term (8b), and a specific dipole-octopole cross term (8c)
occurring, in contradistinction to the other cross terms, in the second approximation of statistical
perturbation calculus.

To derive the collective dipole—octopole polarizability of eq. (6) in analytical form we have to put
I,=1,1,=3and I, =3, I, =1 (obviously, for the dipole—dipole polarizability /; =1, /, = 1). On insertion
of the expression thus obtained into (7c), (8b) and (8c) we get formulae for the contributions to the
scattered light from the octopolar mechanism. As stated above, our numerical calculations will concern N,
— a system composed of molecules with symmetry D,,,. From the symmetry conditions it results that, in
the coordinate system of molecular axes, only two irreducible components of the dipole—octopole
polarizability tensor are non-zero, namely AGY and ALY, Their numerical values, calculated ab initio for
N, by Mulder et al. [23] as well as Maroulis and Bishop [24], are given in table 1 together with those of
A0 and AYP. Moreover, table 1 contains the numerical values of the non-zero components of the
quadrupole—quadrupole polarizability tensor (/; = 2, 1, =2) appearing if one calculates II with accuracy
to the second order of perturbation calculus.

The cross term (8a) is determined by binary and ternary angular—radial correlations. It is zero if angular
correlations are neglected [4,16]. Similarly, the dipole-octopole cross terms (8b) vanishes if the molecules
of the liquid are assumed to be correlated radially but uncorrelated angularly (the S model, [11-13,15]). On
the S model, only the quadratic components give non-zero contributions; so does the term 20+20C, (not
discussed here in full analytical detail), where we have taken into account the quadrupole—quadrupole
polarizability tensor [4,21].

In general, the expressions for the quadratic terms (7c) and (8c) are determined by binary, ternary and
quaternary angular-radial correlations. Within the framework of the S model, due to the absence of the
irreducible zero-rank tensor component AL =0 of dipole-octopole polarizability, the quadratic
quaternary octopole—octopole term (7¢) is zero. Analytical methods for the study of quaternary
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angular—radial correlations are as yet unavailable. Terms like these will not be dealt with in what follows.
We shall, however, carry out calculations of the binary and ternary radial and angular—radial contributions
to the scattered intensity. The terms given by binary correlations will be averaged using the spherical
components g, ,(r;) of the pair distribution function [25] calculated by the method of computer
simulation [26]:

g("u, 9127 9122) =4mw Z glllzm(rlZ)lelm(Q}ﬁ))flz-m(9122)' (9)

Lilym

In this way, we obtain for the general molecular—multipole cross term of the type (8a), (8b) of scattered
light intensity: '

12
2N)! L, N X\(L, 1 X
(10+01) ¢ — 4.5 _(___ 2 1
(M-B—IM)C2 45 PN, E ZHJ‘( )') {11 1 12}{2 J; 1}

TLNX L, @n),
~ ~ ~ J- X N B
XA%I&){A(XI) ® A(;D}XOZ [ az o 0 ]4“ng12a(’12)r12N+1 dry,, (10)
[+ 4

where [44¢] stands for the Clebsch-Gordan coefficient, N, is the number of scatterers in the medium,
p=N,/V, and the tilde denotes the molecular dipole-multipole polarizability tensor in the molecular
frame.

The expression (10) gives the cross term between the intrinsic molecular polarizability and the
polarizability induced in the medium due to the first approximation of the DID model at /, = 1, =1][16],
as well as the cross contribution between the molecular polarizability and that caused by the DIO
mechanism at I, =1, /;=3 and /, =3, [;=1; N=4. On expanding the sums in (10) for DIO, we get:

KRB Com = 5 Nep (V3 A0 (ASY 0 ALV oy + 1V AR (AL @ ALV s
+ 5V35 AP (AP @ YD), + VT 4GP (RS @ AQD }20]
X [3J5(220) + 4J5(221) + J5(222)]
+ %[ﬁg%a){[\(zn) ® AW}, +V3AP (AP @AYV ), + W2 AGP{AYY @ [\(211)}40]
X J5(400) } (11)

where we have introduced the following integral molecular parameter

Jn(lllzm)=4'”fgl,12m("12)’1_2"+2 dry;. (11a)

Even the simplest term, (gﬁgl%g C,, is rather complicated. We are thus forced to discuss the other

components (7c) and (8c) having recourse to certain simplifying assumptions. We first give the expression
for the quadratic term (7¢) in the approximation of the S model on the assumption that the molecules are
correlated radially but uncorrelated angularly, meaning that in the expansion (9) we retain the terms
8o0o(712) only. De Santis, Sampoli and Vallauri [18] have proved by computer simulation the beautiful
applicability of the S model to describe the quadratic DID term (7b) of the integrated intensity for N,. We
obtain

(D(Ilé% C2(2R) = NAP[%E{A%D ® A(&l)}oo{ﬂ(;a) ® A(zm}oo + %Q{A%” ® [\(31)}00{;(‘}3) ® [\(‘}3) }00
+ %{j\(;l) ® ;'\(211) }00{5(;3) ® A<213) }00 + ;%8‘/5{[\(;1) ® R‘;” }m{i(:s) ® 5(‘}3)}00

+ §{AGV @ APV ) o {AYY @ ARGV} o] /,0(000). (12)
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We calculate the three-molecule contribution to (7c) in the S model approximation with the radial part of
the ternary correlation function in Kirkwood’s approximation g{’(1, 2, 3) = g (r1,)82) (11282, (r3),
thus obtaining

(,;Iggc“‘*) =N, p2A<11>A<”>[ -5 5{APPe AP} o+ B {AG> @ AYY 00] ({T4(12) ® T4(13) } o0 De
(13)

with
o
<{T4(12) ® T4(13)}00>g§3’ =/,2ﬁ-6<’1—25"1_35P4(;12 * ;'13)>gg>

and [28]:
< —5 —Sp {a .a _o. 21 dry; pdry 1 4 2
o P4("12"'13)>gg>— 8ar f ld(cos ,B)fr—sf—r3 §(35 cos‘B — 30 cos’B + 3)
- 2 13

(2)("12)8(2)("13)8(2)(’23)- (14)

As shown above, the term described by quaternary radial correlations within the S model is zero in the
case of the quadratic DIO contribution.

When analyzing the binary angular-radial correlations we shall restrict ourselves, however, to the
lowest non-zero angular radial correlations, i.e. to those between the orientation of a single molecule and
the centre of mass of the other, thus retaining only the coefficients g,q0,(r) = gg,0(7) in the expansion (9).
This approximation is well justified [3,6]. In fact, it coincides with the dielectric cavity theory for an
anisotropic molecule interacting with a continuous dielectric medium. For the cross term (8c) we now get

(DID—D(IO)C N4p[ \/_{A(“)®A("’} {A‘“’@A‘”’} 1127225/_{A(11)®A(11)} {A(211)®A(:}3)}00

+ % {5(2}3) ® A((}l) }20{1(31) ® A(&l) }00 + 3_%‘/—7— {5(213) ® A(zll) }ZO{A%I) ® A((}l) }00
+ %4;(1)‘/5—1-{‘(‘}3) ® A(zll) }20{5(31) ® A(él) }00 + .}_‘%‘/5— {1(213) ® i(;l) }zo{i(zll) ® A(;l) }00
24V105 {A9V ® AGY ), (AGV @ A9D ) o] % (200). (15)

Computer simulations as well as analytical studies of the scattered light intensity [18,27,42] and the
absorption induced by interactions [28,29] point to an essential role of ternary angular—radial correlations
in these processes. An analytical method enabling to take these correlations into account in numerical
computations has been proposed by Ladanyi and Keyes [6]. In spite of restrictions imposing the omission
of “irreducible connected” terms, their method enables one to bring out the constant of ternary
angular-radial correlations. They applied it to the expressions we refer to as cross terms, since only such
terms occur in their theory. Madden and Tildesley [27] drew attention to the possibility of applying this
approach to terms of the quadratic type. We shall take ternary angular—radial correlations into account in
all the components occurring in our calculations by having recourse to the Ladanyi—Keyes method.

Following Ladanyi and Keyes, for cross molecular-multipolar terms like (82a) and (8b) we obviously
have

< T [@n,¢)evn (pq)]> = Moo &S (16)
pPqr

pFEqFr
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where (ﬁf’&?\}[; C, is given by (10), whereas f (pf=J,) is the well known parameter of binary angular
correlations (otherwise denoted as J, [2]), defined as follows by the coefficients of the expansion (9):

f= ‘E‘“Z('l)m_/gzzm("u)"lzz dry,. (16a)

General expressions for the ternary dipole-multipole cross terms (8c) and quadratic multipole-multi-
pole terms (7b) and (7c) are given in appendix C. Here, we restrict ourselves to giving but the leading
terms of the respective expressions in explicit form; thus, as in the case of angular—radial binary
correlations, we retain only the lowest non-zero correlations between the centre of mass of one molecule
and the orientations of the others, restricting ourselves in the expansion (9) to those terms for which
8200 = 8ozo- With regard to the fact that this problem has hitherto not been dealt with in detail even in the
DID approximation, we adduce here moreover the relevant DID analytical expression.

For the quadratic DID-DID term (7b), we have:

(DlD—Dgll;§C2(3AR)=4 2 [(nggnz(P‘I)@ (mggnz(pS)]>

P#g*s h(payh(ps)

=4N,p*(Sa* + 2a’y + 2a%y2 + Lav® + %v*)[ 1 (200)]. (17)
Similar expressions hold for the dipole—octopole cross term:
oS CEA = N, VI AP [ /7285 (AL © AT L, + /675 (A0 © AP ) )
x J,(200) J, (400). (18)

3. Numerical computations and discussion

We applied the analytical results of the preceding section for numerical computations of the individual
terms (7) and (8) of the integrated intensity of light Rayleigh scattered by liquid nitrogen, at the same time
making use of the computer simulation results of Streett and Tildesley [26] for the coefficients 81,1,m(M2)
of the expansion (9). The results of our computations are given in table 2, whereas the values of the dipole,
quadrupole and octopole polarizability components used by us are given in table 1. We had recourse to the
polarizability components calculated ab initio by Mulder et al. [23]. Noteworthy is their relatively high
value of the anisotropy of the dipole polarizability tensor, y = 1.03 A%, as compared with the commonly
applied value y = 0.69 A3 of Bridge and Buckingham [31]; this essentially raises the values of the molecular

component {9C, as well as the cross components (SI(EBIOLI\E C, and (10_51001} C, of the integral scattered

intensity. We also have used the polarizability components calculated recently ab initio by Maroulis and
Bishop [24]. Their anisotropy y = 0.77 A is in better agreement with ref. [31]. A comparison of the
magnitudes of the various interaction-induced scattered intensity components convinces us all the more
strongly [16] that for both sets of values [23,24] of the multipolarizabilities components (if the intensity is
analyzed in non-projection scheme) the decisive, numerically negative contribution to the scattered
intensity comes from the cross term (sﬁgl‘gg C,. When analyzing the magnitudes of the individual
components of the quadratic DID term and, jointly, the binary, ternary and quaternary terms in the S
model ‘PC{®, as well as the binary angular—radial term "VC{2A®) and the ternary angular-radial term
ADCEAR one immediately notes an almost complete mutual cancellation of the last two terms. Here,
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Table 2
Values for the individual terms of the molecular part G, of the integrated intensity (per one molecule) of light Rayleigh scattered by
liquid nitrogen . The true values are multiplied by a factor of 10

Approximation Term Multipolarizability
ref. [23] ref. [24]
M ©oc, 6.255 9 3478 ®
DID A0+, —1.698® -1.257®
angss 0.142 0.137
<:>c2<2"“> —0.141 —0.118
aDCBAR) 0.135 0.129
@0+, 0.005 0.010 »
DIO ao+one, 0.113» 0.081»
‘:?cz(j; . 0.006 0.006
<“>c2<3AR> —0.080 —0.085
ADCBAR) 0.054 0.060
DIO + QIQ @+0c, 0.008 0.014

® Thermodynamical state: p* = 0.659, T* =1.79, where p* =po>, T*=k,T/e (0 =331 A, e/ky=373K).
®) Use was made of the value pf = —0.12, determined in ref. [38] for the angular correlation parameter.

obviously, the cancellation of 'VC{> and "PC{*A® is fortuitous, as one easily concludes from an analysis
of the DIO mechanism. The strong reduction of the binary and ternary angular—radial correlations
explains once again why the quadratic terms of the scattered and absorbed light intensity [15,18,27,29,42]
are so highly adequately accounted for within the framework of the S model.

We shall now proceed to an analysis of the various multipole contributions, starting with the
dipole-induced octopole mechanism. Here, similarly as in the DID mechanism, the contribution of the
molecular—octopole cross term (8a), (11) is predominant. It is positive (though not so in the DID
mechanism) chiefly due to the negative values of the tensor components of dipole—octopole polarizability

A% and AYY (table 1). The extreme smallness of (DIO-D(Ilcl)g G5 is due to the cancellation of the radial

binary correlations (12) and radial ternary correlations (13) as well as the lack, in (DIO_D(I%; C®, of a term
originating in quaternary radial correlations (cf., section 2). Moreover, it is our opinion that the Kirkwood
model [2,32], with regard to the ternary correlation function g®, overestimates the negative radial
three-body terms leading to too much concellation of binary and ternary radial correlations.

From our calculations, the predominant contribution to the cross term (02), ©>*29C,, comes from the
quadrupole—quadrupole polarizability. This contribution, as shown by Kielich [4,33], differs from zero
already in the approximation of the S model.

The overall contribution resulting from the dipole—induced octopole and quadrupole—quadrupole
mechanisms in the case of the multipole polarizabilities components from [23] amounts to 0.101 x 10~ AS,
which makes 2.1% of the total intensity of the light Rayleigh scattered by liquid nitrogen. If the multipole
polarizabilities components are taken after ref. [24], the multipole mechanisms produce 0.076 x 10~ ! A®,
which makes 3.1% of the total intensity. This DIO contribution is positive in both cases, in contradistinc-
tion to the overall contribution from the dipole—induced dipole mechanisms. The dipole~induced octopole
mechanism is responsible for the rise in intensity compared with its rather drastic decrease due to the
changes caused by the first approximation of the DID model. Ladanyi [34] calculated the changes due to
higher-order terms in DID interactions on the depolarized light scattering intensity in liquid oxygen,
finding that the higher than first-order contributions to polarizability also give a positive (by contrast to
the first-order) contribution to the scattered intensity. Ladanyi estimates them at 2.8% of the total
scattered light. The changes due to the DIO mechanism are of the same order of magnitude.
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Computer calculations for larger molecules [35] with high polarizability (CS,) show that as much as
10-50% of the integrated scattered intensity is contributed by first- and higher-order terms of the dipole
polarizability expansion. Calculations for water and H,S [30,36,37] point to a highly essential role of
multipole mechanisms. If the anisotropy of the system is low, almost the whole contribution to the
depolarized intensity component of scattered radiation comes from interaction-induced mechanisms.

The scattered light intensity due to multipolar mechanisms in fluids of simple molecules, though not
great quantitatively, entails an important consequence with regard to the spectral description of the
scattered radiation. We immediately note that the dipole—octopole scattering mechanism is responsible for
rotational transitions governed by the following selection rules: AJ, =0, +2; AJ,= +2, +4. Then a
substantial part of the octopolar intensity is located on the far wings of the spectral line. Moreover
multipolar mechanisms strongly influence the spectral distribution of the isotropic part Co(w) of the
scattered radiation. Careful spectral measurements [39,40] indicate a substantial decrease in the depolariza-
tion ratio at the wings of the spectral line. That behaviour of the frequency dependence of the
depolarization ratio in N, and O, cannot be explained within the DID model [39,40]. Assuming
approximately that the overall intensity due to the octopole mechanism is located at the wings of the
spectral line, we calculate the depolarization ratio of the wings as:

iso ,yaniso) 1
n(wwing)=(%+1\l/V/IVH ’ (19)
where the polarized iéotropic Iy as well as the depolarized anisotropic 2% parts of scattered radiation
are due to the DIO mechanism. Performing numerical calculations for N, we get M @ying) = 0.69. The DID
model leads to 9(wy;,,) = 0.74. The inclusion of the DIO mechanism considerably improves the degree of
agreement between the theoretically predicted and the experimental value of the depolarization ratio of the
wings.

Appendix A

The Hamiltonian of a system of two molecules p and g subjected to an external electric field of
frequency w and interacting with each other by way of multipolar forces can be written as follows:

H=H,+ H (A1)

int >

where H, is the Hamiltonian in the absence of the interactions and H,,, describes the interactions [32]:

A, = \/5[{E1 ® Ii\lll(p)}00 +{E, @ h?ll(q)}m] cos wt

1,2
5 211+12
£ Y (1) ( )
L,

21,)121,)! \/{{'0'1,(1’) ®Ty(pg)}, ® “7'12(4)} (A2)

with 'i'N being the spherical multipole interaction tensor, I\?I, the irreducible spherical operator of the /th
order multipole moment, and E, the external electric field. The symbol ® denotes an irreducible tensor
product.

Dealing with I;Vim as a perturbation, we can write the dipole moment of the pth molecule in the form of
the sum

M.(p) ="M, (p) +OM,(p) +@M,(p) + ..., (A3)

s
00

where the XM, (p) are corrections to the value of the dipole moment corresponding to successive
approximations of perturbation calculus.
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On taking into account the appropriate terms of the sum (A.3) resulting from the second order of
perturbation calculus and linear in E,, we get

Sh+is 1/2 (_1)1 + Iy I+, N ! 12
(Z)Ml(p) = Z Z ( (21 )'(21 )’ ) ‘/— HJI.IZJ:,N 1 Jl J
Do dy L, 1):2l;): 3 3

{Jls ’Jz Jl}{{{A‘}{:)(P)®TN(pq)},3®A<}212>(q)}J®El}l, (A.4)

with {42¢} being the 6-j Wigner symbol and AP the irreducible J-rank spherical tensor of multipole
polarizability defined as:

AU Z%( {COI1M, [oXoIM,10)}, {<0|M,|¢K¢|M1|0>},).

A Wy — W w¢0+w

(A.5)

With regard to (A.4), summing over all the molecules, and on performing the appropriate operations of
spherical tensor algebra [41] we finally obtain the first interaction-induced correction to the collective
polarizability in the form

N 172 AR SR A
Z Z Z Z ( 1)N+Ji(_“—) I_Ijllsz 1 1 J
(DIM) p=1q#p hi; )J1J3 (211)'(212)' ’ ll 12 N
x {Tu(pq) @ (RS (p) @ AG(9)) ,} (A.6)
a b ¢
where { e [} is the 9-j Wigner coefficient.
g h J

We feel, however, that it is easier to gain insight into the origin of the collective polarizability II by
considering the above mechanisms in Cartesian coordinates as well. In these coordinates we have [4,29]

N ©
Oy= Y ¥ T (-G BAmI "G [ AV

p=1qg#p m,n=1

" (A7)

where the (¢ + d)th rank Cartesian tensor {)A“) determines the linear polarizability of the 2¢ pole of
molecule p due to the d-degree local electric field L' = v ““~PL at molecule p, whereas the Green tensor
of rank (m + n), which is

MG = g (D g (- 1)(V v, —k2U) ! exp(ikr, ) (A8)

determines the 2”-pole-2"-pole dynamic interactions between molecules p and g, separated by a distance
r,q- Since our considerations bear on liquids far from the critical point, the correlations are short-range
and the dynamical Green tensor ‘™G{? occurring in (A.7) and (A.8) can be replaced by the tensor
T =g (™ v iPr ! of the respectlve static interactions.

For the collectlve polarizability, restricting our considerations to the dipole and octopole mechanism
(when VA® = O) we have:

O 4 2 y {[ W AD . O (1>A<1>] y
p=14q#p

+ [(1>A(1>.(1>-|-<3)[3] B AD + BAIBOTY. (I)A(l)] ﬂ}_ (A.9)
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The first component of the sum (A.9) originates in the Yvon-Kirkwood dipole polarizability expansion,
whereas the other two components are due to dipole—octopole effects.

Appendix B

We summarize here the analytical formulae [4,11,12,15-17] describing the respective terms, as given in
table 2, of the integrated intensity within the molecular and DID models. In our previous paper [16] we
presented only the resultant formulae for the total integrated intensity. It is important, however, to have
each of them available separately. We have (per one molecule):

(a) for the molecular term

1012

(oG =3v*(1+of) =| A5 (1 + of), (B.1)
(b) for the cross molecular-induced dipole term (within the lowest angular-radial correlations)

W0+, = [£5 py(a®+ Jay + 3v2) 42(200)] (1 + of ), (B.2)

(c) for the quadratic term within the S model (binary, ternary and quaternary correlations jointly)
DCS = p {6a*[2,(000) + J(3b) + J(4b)] + Ea?y2[J5(000) + J(3b)] + £v*/,(000)},  (B.3)

(d) for the quadratic term to within the lowest binary angular-radial correlations,

DCPAR) = /5 p(day — La?y? + B1y*) J,(200), (B.4)
(e) for the (02) term within the S model

@0*+DCS = 4p {1a>y2[ J5(000) + J(3b)] + 2ay*J,(000) + gv*J,(000)}, (B.5)
(f) for the (02) term to within the lowest binary angular—radial correlations

OHOICEAR 15 b2y + Faty? + Bayd + dhv*) Jy(200), (B.6)
(g) the leading result for the (02) term for ternary angular—radial correlations

QO+0)CBAR) — 4543y [%‘/5_']6 (200)pf — %PTzz"'zo] . (B.7)

Between spherical and Cartesian molecular invariants the following relations hold
1&'(2101) =v2/3v, /fgol) =—V3a, (B.8)

where a denotes the mean value of the dipole polarizability tensor and vy its anisotropy, whereas 7,, and
Ty are the molecular angular-radial parameters introduced by Keyes and Ladanyi [3,6].

Obviously, for the normalized integrated intensity [16] of the depolarized component of scattered light
we have:

A

I, =+G. ‘ (B.9)

Appendix C

When calculating the scattered light intensity, the essential problem resides in the calculation of a
correlation function of the type

(o M2(12)0 B, (13)) ,, (1)



332 T. Bancewicz et al. / Multipolar light scattered contributions

determined by the radial-angular molecular correlations. On expressing the ternary radial-angular
correlation function g® in the Kirkwood approximation [2,3,32] as

g?(123) = g®(12)g@(13)g®(23) (C2)
and on introducing
h(12) =g@(12) —1 (C.3)

it is readily shown that (C.1) possesses a rather simple analytical form if g in (C.1) is replaced by the
product A(12)4(13). In place of (C.1) we now have

M, (12)© (1)H2(13)> (C4)

< (DIM) (DIM) h(12)h(13)

However, if one takes the other terms of g(3) into consideration, the situation tends to become much more
complicated. Ladanyi and Keyes [3,6] call the remaining terms “irreducible connected” and propose to
disregard them. Madden and Tildesley [27] also neglect them arguing that (C.4) contains the lowest
number of h-bonds. Here, we too shall apply a similar approximation. It thus remains for us to calculate
the value of (C.4) for the product of two arbitrary multipolar polarizabilities. Our experience suggests that
the easiest way to do this is to have recourse to the second coupling scheme (6b) for the spherical
representation of the multipole polarizability tensor and to expand the two distribution functions 4 of
(C.4) in a series of spherical harmonics in the laboratory system of coordinates [32]:

I / l
W 9 0) = S bt ) ()7, (2 V(2. ©3)
Lyl
m,lmzzm
One thus arrives at
< oip > (12)0 o, BT, (13)
, 1,2
sz R 2N+N
_N s 2(—1)11”,( —
4m KRL K'R'L’ KECRECNN (211)!(212)!(211)!(212)!

><KRzK’R’zLNR2KRL’N’R’2K’R’
0000001111211111{11511'11
X TyoTw-oHys1(RLN ) Hy: (R L'N") AGPATRALRAYR, (C6)
where

Tuo(r,g) = Tao(r, )1 = (~1)V [(2N)1 /2],

Ty, is the zeroth spherical component of the irreducible spherical interaction tensor of the Nth rank in a

coordinate system with z-axis parallel to r, , whereas

Hy (hy1) = 4 [h(hlal, ri)rs™*? dry (C.7)

is a molecular parameter strictly related with the parameter (11a) introduced by us in the text. In fact for
angular—radial correlations:

HM(11121)=§(-27‘:—1_T—1)1/2[11 2 (l)]JM(lllzm). (C8)

m -m
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In particular
H,,(202) = (4a)'* J,,(200);
moreover, for M = 3,

Hy(202) = }am 1y, H;(222) = 4w \/2/35 7,,,

whereas, for M =0

Hy(222) = V4= /5 f.
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