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Abstract. An isotropic medium with electrically removed centre of symmetry in which a
fundamental wave at frequency w generates the second harmonic at 2w is considered. The
two waves give rise to self-acting effects modifying the refractive indices at w and/or 2w (self-
induced ellipse rotation, optical Kerr effect). For this physical situation, an effective
interaction Hamiltonian is introduced involving nonlinear coupling parameters, discussed
versus the dc electric field and temperature as well as the density, concentration and
molecular structure of the medium. The solutions of the respective quantum equations for
the field operators at @ and 2w permit, in particular, the calculation of the variances for a
novel process of second-harmonic generation by light, self-squeezed in an isotropic
medium. It is shown that squeezing in the out-of-phase component of the second harmonic
beam follows, with some delay, after self-squeezing in the in-phase component of the

fundamental beam.

PACS: 42.50.Dv, 42.65.-k

The pioneering observations of the second harmonic of
laser light in quartz crystal (with no centre of symme-
try) by Franken et al. [1] started the epoch-making
evolution of non-linear optics [2]. In the quantum
picture we deal here with a nonlinear elementary
process in which two photons are annihilated and one
photon with doubled frequency is created in the
direction of light propagation. Intense laser light is the
cause of many nonlinear optical effects; here, we
restrict ourselves to mentioning the optical Kerr effect
[3] and self-induced ellipse rotation [4] (strictly speak-
ing, elliptical birefringence [5]). In optically active
bodies, moreover intensity-dependent optical activity
is induced [6]. Mayer [7] succeeded in demonstrating
the occurrence of second-harmonic generation in
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gases, the dipolar molecules of which undergo reorient-
ation in the dc electric field [8].

In recent years, nonlinear optical processes have
been shown to play a quite exceptionally great role in
the generation of squeezed states of the electromagne-
tic field, which are manifestations of the quantum
nature of light. Among the numerous nonlinear pro-
cesses hitherto discussed, we shall direct our attention
to squeezing as it occurs in second-harmonic gener-
ation [9-14] and to self-squeezing in nonlinear light
propagation [15]. Recently, several authors have
announced observations of squeezing in different non-
linear processes [16-19], in particular Kimble and
Hall [20] in interacavity harmonic conversion.

In the present paper we consider the situation when
an intense light wave of fundamental frequency w is
incident on an isotropic medium in a weak dc electric
field leading to generation of the second harmonic and
to decay of the latter into the fundamental wave. In the
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medium, simultaneously, self-induced effects take
place modifying nonlinearly its refractive indices at w
and/or 2w and causing optical birefringence (optical
Kerr effect) at the frequencies w and 2¢. We derive
classical as well as quantum equations for the (slowly
variable) amplitudes of the electric fields in the pro-
cesses under consideration. In fact, in these complex
processes we are dealing with an entirely new pheno-
menon, residing in generation of the second harmonic
by the self-squeezed light arising in the isotropic
medium. In addition, it presents a manifestation of
interaction between squeezed light and matter; it is
highly promising with a view to applications in
practice, e.g., in molecular optical engineering. With
this in mind we shall concentrate on the nonlinear
coupling parameters occurring in the equations of
motion, parameters dependent on the dc electric field
strength as well as the statistical-molecular structure of
the medium and its density, concentration and temper-
ature. The numerical values of these nonlinear cou-
pling parameters can be determined from measure-
ments of the respective intensity-dependent variations
of the refractive indices or dc-field-induced second-
harmonic generation. All the above enumerated ex-
ternal and internal factors enable us to control the
efficiency of quantum field generation in isotropic
media.

1. Classical Phenomenological Approach

We assume the electric vector E(r, t) at the time-space
point (r, ) to be the superposition of two fields, with the
fundamental frequency @ and the second-harmonic
frequency 2w, respectively (with the third harmonic
being neglected)

E(r,t)=E*(w)ei®er")
+E*Qw)ei®zerm290 o c., (1)
where k,, and k,,, are the respective wave vectors.
Our interest bears on the nonlinear interaction of
the field (1) and the medium. Classically, it can be
expressed by the time-averaged free energy [2];
Fyr= —Xijk(—2w, , )
x E; Qw)E;} (0)E{ (w)e™* " +c.c.
- % [Xijkl( -, — 0,0, )
X E[ (0)Ej (w)Ef (0)Eff (w)+c.c.]
-3 [Xijkz( —w, — 20,0, 20)
x E (0)E; 2w)E (0)E; 2w)+c.c.]
“% [Xijkl( —2w, —2w,2w, 2w)
x E 2w)E; Qw)E{ 2w)E 2w)+c.c], (2)
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with
Ak =2k, —k,,, (3)

and the numerical factors resulting from frequency
degeneracy [5] as well as the Einstein summation
convention over recurring indices i, j, k, [ = x, y, z taken
into account.

In the phenomenological approach, (1) provides
the starting point for calculating the vector compo-
nents of nonlinear polarisation at the frequency Q=w
or 2w:

_ Fyy
OET (Q)

P ;i (Q)NL= (4)

By (2 and 4), we get for the nonlinear polarisation at «

Pl (0)y= 2Xijk( -, —,20)
X E; (0)Eff Qw)e ™"
+ 3y — 0, —0, @, w)EJ_(w)E,f(a))E,‘L(w)
+6Xijkl(_w’ —2m,0,20)E j_(zw)Et:r (W)Ez+(2w)- (%)

Above, the third-rank tensor y;;(— o, — o, 2w) defines
the second-order nonlinear susceptibility, related with
a process which is the inverse of second-harmonic
generation: it consists in the reconversion of part of the
second harmonic at 2w back into the fundamental
nonlinear wave w. The fourth-rank tensor y;;(— w,
—w, w, w) determines the third-order nonlinear
electric susceptibility, related with the self-induced
intensity-dependent refractive index at o [3-6].
Similarly, the nonlinear susceptibility tensor y; ;(— o,
—2wm, w, 2w) determines the optical Kerr effect at w [3]
produced by the intensity of the second harmonic
|E™(2w)l*.

With regard to (2 and 4) we obtain, for the
nonlinear polarisation at 2w,

P o)y =1 jk( —2w, w,w)

x E] () E¢ (w)e! ™

+ 6 — 20, — 0,20, ®)

x Ej (0)E{ Qo) E/ (o)

+ 3% — 200, — 20, 20, 20)

XE; 2w)E FQRw)E[ 2w), (6)
where the third-rank tensor y;;(—2w, o, w) is that of

the second-order nonlinear susceptibility responsible
for second-harmonic generation [1], whereas
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Xij — 20, —o, 20, w) describes the nonlinear vari-
ations of the refractive index at 2w [21] due to the
intensity |E” (w)|>. Similarly, the nonlinear suscepti-
bility tensor y;;(— 2w, — 2w, 2w, 2w) describes the self-
induced intensity-dependent refractive index at 2.

The effects represented by (5 and 6) correspond to
nonresonant nondissipative processes, related with the
real part of the respective nonlinear susceptibility.
Here, the following permutation symmetry relations
are fulfilled [2]

Xl — 0, — 20,0, 20) = 1 — 20, —0, 20, w),

Xl — @, — 20, 0, 20) = g; { — 0, — 20, 0, 20),

X?‘jkl( -0, ~0,0,0)= Xkli;( -0, — 0,0, 0),

X?jk( -, —0,2w)= in,( —2m, w, w). (7

Our interest bears on isotropic centrosymmetric
media. In the electric-dipole approximation, their y; ;-
components vanish, and second-harmonic generation
is forbidden. An externally applied dc electric field
destroys the centre of symmetry and the medium is
then endowed with the symmetry C, so that it
becomes capable of generating the second harmonic.
As long as the dc electric field EJ is weak (it is assumed
to act along the y-axis of the laboratory coordinate
system xyz) we are justified in writing [8]

iR E) = xZ00) + (35,0, E
+ XxyxyélkEo + nyxyéjkEO ) (8)

(with the notation y7% = y;x(—2w, w, w)), where the
components x?jj‘c’(O) in the absence of the dc field are
related with negligible multipolar contributions only
[2, 22] which, in the case of our geometry of observa-
tion and for isotropic media, vanish since the second
harmonic propagates along the z axis in the propa-
gation direction of the fundamental wave. More gener-
ally, however, it can be shown that if the light beam of
frequency @ propagates along the z axis of the
laboratory coordinates x, y,z not coinciding with the
crystallographical set of coordinates X, Y, Z, gener-
ation of the second harmonic can occur in certain
crystals of the regular symmetry class even in the
absence of a dc electric field. Specifically, in the
symmetry classes 23, 43m and 43m, the following
components [23] in laboratory coordinates are
nenzero:

nyx(o) Xxxy(o) = —sin26 cos 2(pXXYZ(O) s
x22(0)=3cos? @ sin @ sin 20y 22,(0),

Xxyy(o) nyx(o) - Sln @ Sln 2(pXXYZ(0) ’ (83')

and we note that they are determined by one compo-
nent from the crystallographical set of coordinates

Xxvz only.
In (8) the components 22 ., xio, Xoeey are €X-

pressed, in accordance with classical electrodynamics
and statistics, by the electro-optical molecular para-
meters, €.g., the electric-dipole moment as well as the
first- and second-order hyperpolarizabilities [7, 8]
(next subsect.).

For an isotropic medium in the absence of natural
gyration we can write the tensor of third-order non-
linear susceptibility as follows [24]:

Xijit = XxyyOiiOkt T LayxyOikO i

+ Xxyyxéiléjk . (9)
The nonlinear susceptibility tensor y;( — 0, — @, », w)
is symmetric in the pairs of indices ij and ki, so that the
3 components of (9) reduce to 2 mutually independent
ONES, Y xyy AN Yy, = Xxyyxe The tensor y;( — 20, — w,
2w, w) is not symmetric, s0 that x,,, F Xxyxy F Lxpprr It
has been shown recently that, in the case of molecular
substances, the symmetry relation of Kleinman is not
fulfilled generally for the tensor y;;, [25-28].

We shall now write the electric field (1) in spherical
representation. For the right- and left-polarized wave,
propagating along the z axis (and on applying the
angular momentum convention) we now have

Ei(r,0)=%)/2[E} (z, ) FiE; (z,1]. (10)

By (8-10), in spherical representation, we obtain
the averaged free energy (2) of the isotropic medium:

—3{8?[EX(0)* E{(w)?
+EZ(w)*EX(w)*]
+4g2E(w)EZ(w)EX(w)EX (w)
+81°[E7(w)* EZ(w)?
+EZ (0P E*Qw)?]
+4g3°E7(20)EZ20)E1(2w)E* 2w)}
—i{g3°[E720)EL(w)?
—~EZQQw)E*(w)*]
2g3°[E7 (2w)
—EZQu)]E{(0)EX(w)}e“* " +c.c.
—83°[E7(20)EZ(0) EX () EX 2w)
+EZ(0)EZ(0)E*(@)E* Q)]
g2 [E720) (@) () E1(20)
+EZQw)E(w)Ef(w)E?(2w)]
3°[EX2w)EX(w)E(w)EZ(2m)
+E—(260)E_((o)Ef(a))Ef(2a))], (11

Fy=
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where we have the nonlinear coupling parameters
g!12 = 6Xxyxy( - Q) - ‘Qs ‘Q’ ‘Q) s
g?: 3 [Xxxyy(_ ‘Q, - Q’ 99 Q)
+ Xxyxy( - Q’ - ‘Q’ ‘Qa ‘Q)] s
2
ggw = ﬁ Xxxyy( —2w, w, w, O)E)(,) N
1

20
g4 1/5

+ nyxy( - 2w, w, @, O)] E;) s

[Xxxyy( - 260, @, W, 0)

832 =3 [Ynyy( — 200, — 0, ©, 200)

+ Xy — 200, —0, @, 20)],
ggw =3 [Xxxyy( - 2(0, — o, W, 260)

+ Lyl — 20, — 0, @, 20)],

g%w =3 [Xxyxy( - 2(0, — W, W, 2('0)

+ Xxyyx( - 260’ —w,w, 20))] . (1 2)
Applying (4 and 11), we obtain the nonlinear polaris-
ations in spherical representation:
Pi(@)y.={g?[Ex(0)]* + 23 |E3(w)*} E(w)

—2i{+ g3 **E1Qw)Ex(w)
—84 °[E1Qw)
—EXQQw)]EF(w)}e kT
+22°EZ(2w)E}(0w)E{(2w)

+{g8°|Ez Q)
+87°|E5Q0)’} E(w), (13)
PiQu)y,={gi"|E:(20)* +2¢3°|EZ(20)*} E1 2w)
+i{£g3"EL(w)’

F28°EL(w)EX (w)} et
+g2°E-(w)E}(w)E* (2w)

+{g5°[Ez ()

+87°|Ex(0)*} E1(2w). (14)

Once the Fourier components of (13 and 14) are
available, we are in a position to determine the slowly
varying spatial behaviour of the field amplitudes (1) as
the waves propagate through the isotropic medium. In
the case under consideration we make use of the well
known wave equation of Maxwell [2]. For the electric
field amplitudes, we obtain

dEi(w) .2nw?

iz g P (15)
dE}(2w) _.21Q0)’
dz  c%ky,

PIQw)yy.. (16)
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On restricting ourselves in (13, 14) to the terms related
with the self-induced intensity-dependent effect at
Q=w or 20 we get, with (15,16) (on neglecting
interferences)

dE;(Q)_.ZnQ2 O 12
dz _I?E[gI,Ei(Q)I

+2g2|Ez (QIP1EL(Q). (17)

Since |EZ(Q)* does not depend on z because
(d/dz)|[EX(2)*=0, (17) in our case possesses the well
known exponential solution [29]

E1(Q,2)=exp(i®.2)EL(Q,0), (18)
where
28 _ _
D, = —n—c[g?IEi(Q)l2+2g?IE¢(Q)IZJ, (19
(94

determines the light intensity phase shifts of the field
amplitude.

The set of (13-16) is accessible to solution by
perturbative methods only.

On having recourse to the well known relation
between the refractive index and the nonlinear polaris-
ation of the isotropic medium ndn, E.(r,¢)
=2nP . (r,))" and applying (13, 14), we obtain the
nonlinear variations for the right- and left-polarized
wave at o and 2w

2n - o -
on ()= "= [g7|E:(0) +2g5 Ex(w)?

+86°1E3(20)* +g3°|Ex 2w)*], (20)

nz—:—[gf“’lE;(2w)lz+2g%“’IE$(2w)l2
+ g2 E5 @)+ g2° E3(@)]. 1)

Measurements of these variations of the refractive
indices lead us directly to the numerical values of the
nonlinear coupling parameters g, g,, g¢, and g..

Equation (20) gives us the difference between the
two indices at w (elliptic birefringence [5])

on_(w)—on_(w)

on.(2w)=

6n _
= n_ {2Xxxyy(— », —0, W, (,U) [IE_((D)lZ

—|EZ (@)1 [ty — @, — 200, 0, 20)

— Xyl — @, =20, @, 20)][|EZQw)|?

—|EXQw)1}, (22)
where the first term describes the well known effect of
Maker et al. [4], consisting in self-rotation of the

polarization ellipse due to the intensity of elliptically
polarized light at w. The second term accounts for the
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additional anisotropy in nonlinear susceptibility due
to the intensity of the second harmonic at 2w — a novel
effect, reminiscent of the optical Kerr effect for cir-
cularly polarized light [30] (e.g., right handed E_ =0).

Similarly, with (21), we get for the optical rotation
at 2o

on,(2w)—dn_ (2w)~ {[Xxxyy( 20, —w, w,2w)

- Xxyyx( - 2(1), — o, 0, 260)] [lE_(Cl))l - |E;((,{))|2]
+ 2y — 20, —20, 20, 20) [|E = (2) 2 '
—|EZQw)*]}. (@)

Here, we come upon a new effect, hitherto not studied
experimentally.

2. The Nonlinear Coupling Parameters Versus
the Number Density, Concentration, Temperature
and DC Electric Field

The nonlinear coupling parameters (12) are expressed
by way of the respective tensor components of the
nonlinear susceptibilities; the latter reflect the mole-
cular structure of the medium in accordance with the
manner in which they depend on the frequency of the
electric field. In the case of isotropic media the most
highly structure-sensitive nonlinear susceptibility is
that given by the phenomenological relation (8), and
we shall accordingly start by discussing it first, on the
classical level.

For simplicity, we begin by assuming that the
isotropic medium is sufficiently rarefied to be free of
intermolecular interactions, as it is the case in gases.
On denoting by ¢= N/V the number density of mole-
cules, we may express the tensor of macroscopic
second-order nonlinear susceptibility in the form of the
following expansion in the presence of a not excessively
intense dc electric field [on denoting y(— 2w, w, w) by

18]
lek(EO) Qj‘{ﬁuk +yljklE0+ '}f(g’ EO)dQ’ (24)

where f(Q,E°) is a statistical function describing the
distribution of molecules in the medium having the
orientation € with respect to the direction of the
external field E°. Integration in (24) extends over all
possible orientations of the molecules in the body angle
element dQ, with Q the set of Euler angles.

In (24), the third-rank tensor f;; determines the
nonlinear molecular polarizability of the second order
(first-order hyperpolarizability). The variation of the
latter caused by the dc field E° is described by the
fourth-rank tensor 7, of third-order nonlinear mole-
cular polarizability (second-order hyperpolarizability).

If the molecules possess a permanent electric dipole
moment p, the Boltzmann-Debye distribution func-
tion, in a linear approximation in E°, becomes

ﬂiE?
f(QE%)=f() (1 + k—T) (25)

where f(€) is the distribution function in the absence
of external fields, when the orientation of the molecules
of the medium is completely random.

With regard to (24, 25), we have

Xizj‘;c)(EO) <<Vukt>n <ﬂqk N1>n> E? > (26)

since in optically inactive media the term (ﬂfj@n
vanishes on averaging over all possible molecular
orientations £ as denoted by the symbol { >g.

The molecular tensors of (26), given in the labora-
tory system of coordinates x, y, z (Latin indices i, j, k, I),
have to be transformed to molecular coordinates 1, 2, 3
(Greek indices a, f, v, §) in accordance with the relation
u;=R,.u,, etc., where the R,’s are rotational trans-
formation coefficients connecting the two coordinate
systems x, y, z and 1, 2, 3. As a result, we get

1
Xizj(l‘c)(EO) =0 (?024‘3‘;5 + kT ﬂazszyﬂo> {Ry,R jBRkleé>nE? .
(26a)

The general formula for unweighted rotational averag-
ing {R;R;sR;,R;5>q is well known [31]. Hence, we
arrive quite generally at (8) with the tensor components
of third-order nonlinear susceptibility [§]

Xxxyy Xxyxy 30 |:3yaaﬁﬂ yaﬂﬁa
(3ﬁaaﬂﬂﬂ ﬂozzs;)“a)] s
nyxy 15 |:2yaﬂﬂa yazza?[)iﬂ

+ ﬁ (2ﬂ:;;?/‘z ﬂaaﬂuﬂ)] . (27)

Thus, in the molecular-statistical approach, the
macroscopic susceptibility tensor components (8)
given by the expressions (27) originate in two micro-
scopic processes: (i) the one (temperature-independent
terms) consists in direct nonlinear electronic Lorentz-
Voigt polarisation, common to all molecular symme-
tries including atoms in their ground state, and (ii) the
other (temperature-dependent terms) consisting in
reorientation of the permanent electric dipoles in the
dc electric field as described by the theory of Langevin
and Debye.
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In the absence of electronic dispersion, the hyper-
polarizability tensors f,,, and y,,, are completely
symmetric; by (27), we obtain the symmetry relation of
Bloembergen [24]

X’zc?yy = Xchyxy nyxy %nyyy > (28)
where

w Q
Lovwy= 3 (Vaaﬁﬂ T ﬂmﬂ#ﬁ) (29)

In applications to different point group symme-
tries, it is convenient to have recourse to the irreducible
representation of the tensors f,5, and y,,4,5 [30, 32-34].
In particular, a completely symmetric tensor f; can be
represented in the form of two irreducible tensors of
weights 1 and 3 (a vector and a septor [32])

ﬂijkzﬁg}k)""ﬁgk) (30)
For a dipolar molecule with axial symmetry de-
fined by a unit vector s along the 3-axis (y; = p55;), we
have [30]
B = 3B1)(0i5u+ O si+ 0uis)).
ljk - 2ﬁ(3) [SS S Sk (6usk+ 5 ks + 5k1 })]

where we have denoted the irreducible molecular
hyperpolarizabilities by

Bay=2B333+2B113), Bay=2(Bs3s—

In this case (29) simplifies to

o » ﬂ3ﬁ(21°§
X)zwyy:9<y(20)+ 3T )’

with
y(O)zyaaﬂﬁ/5:(3y3333 +12y3311 +8y,111)/15.

Thus, in the case under consideration, the tech-
nique of dc-field-induced second-harmonic generation
enables us to determine the rotational invariant y%) of
the tensor y2g ; and the irreducible weight 1 component
B of the tensor B2 In this way, the parameters v
and % have been determined for many different
molecules of gases and liquids [35-42].

In a strong field E° the relations (28, 29) are not
fulfilled; restricting ourselves to the term in the first
hyperpolarizability [8, 28, 33], we now have

Xxxy(EO) Xxyx(Eo) nyx(Eo)
=g [Eﬂ(21ﬂ))<P1(COS @)>E9

(30a)
(30b)

33113)'

(29a)

— 3B (P3(cos @) gl , (28a)
nyy EO) @ [ﬂ(zla))<P1(COS @)>E°
+BE {P3(cos ©)) gyl , (29b)
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with the Boltzmann-distribution-averaged Legendre
polynomials

{P(cos @)>Eg =Ly(p),
{P3(cos ) gg=13[5L;(p)—3L4(p)],

L,(p) and L;(p) being Langevin functions of the dipole
reorientation parameter p= ,u3E§,)/kT [8, 30].

Thus, in the present case, we are able to determine
the values of the two irreducible molecular hyper-
polarizabilities %3 and 23 of the tensor (30).

The technique of hyper-Rayleigh scattering [30]
also permits the determination of the irreducible 1 and
3 weight component of the tensor (30) and the irreduc-
ible components of the tensor y24; of weights 2 and 4.

In condensed liquids and gases, as the result of
various molecular correlations and molecular electric
field fluctuations, the nonlinear susceptibilities (27, 29)
become functions of higher powers of the density and
(in mixtures) the concentrations as well as various
molecular parameters and the macroscopic field [24,
40,44, 45]. In Kirkwood’s semi-macroscopic approach
[45], we can express the effective nonlinear suscepti-
bility of a dense medium in the following form

Loy =taoSa foT'2, (1)

where f,,, f., fo are shape parameters of the macro-
scopic field existing in the sample evaluated at the
frequencies 2w, w, and 0 (e.g., by methods involving the
local Lorentz or Onsager field [2, 30, 43]).

In(31), we have introduced the following molecular
hyperpolarizability parameter of the mixture:

FZ“’—QZxFZ‘”+Q Zxx T2
+0° Z’:‘x,-xjxkl"ijk +... (32)
1y

with x; denoting the molar fraction of the i-th compo-
nent of the mixture, and N;=Nx; — the number of
molecules of the i-th species.

I'?® is the parameter of nonlinear hyperpolariza-
bility of an isolated i-th molecule in the absence of
molecular correlations; its form is given by (29). Thus,
the first term of (32) expresses the additivity principle
for the nonlinear susceptibilities of the ideal compo-
nents of a mixture. The other terms of (32) describe
divergences of the nonlinear susceptibility from the
additivity principle due to different radial and angular
correlations between molecules of the same or different
species (specific models have been discussed in [45]).

Various factors and molecular models can raise or
lower the value of the effective nonlinear susceptibility
(31) and thus can lead to greater or smaller values of the
parameters of nonlinear coupling (12).

Our preceding discussion concerned the case of a
weak dc electric field with the linear equation (8) valid.
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In a sufficiently strong field reorientation of the
molecules (particularly macromolecules) can become
considerable causing the molecular system as a whole
to behave like a uniaxial crystal [8] (electric satur-
ation). In this case the nonlinear coupling parameters
can attain high values and are accessible to control by
varying the intensity of the dc electric field. In certain
model situations, multipolar electric and magnetic
contributions [2, 22, 43, 46] to the first component of
(8) can play an essential role.

The other nonlinear coupling parameters (12),
related with self-action light intensity, are dependent
on electronic and molecular-statistical mechanisms
such as intervene in the optical Kerr effect [30, 47].

3. Quantum Description

The central problem in the quantum approach to the
statistics of nonlinear processes resides in our knowl-
edge of the analytical form of the Hamiltonian of
interaction H; between the material system (described
by fermions) and the field of radiation (described by
bosons). Although the determination of the interaction
Hamiltonian on the microscopic level is possible for
simple systems [48-50], one is in practice very often
forced to use a semi-classical Hamiltonian [51], or an
effective interaction Hamiltonian [52] constructed
with the time-averaged free energy of the system (2)
where the electric fields are now dealt with as quantum
boson operators:

R 2y \ 12
Bi(w)=i (ﬂ> a,

niv

12
27th2co> b, (33)

E;(zw)=i<n%7
with commutation rules
[ai’a;]z[bi’b;—]zéija
[a,b=[a,b/1=0, i j=+ or —. (34)
Taking into consideration that [52] H,= [FdV, we
obtain by (11, 33) for the effective Hamiltonian of
nonlinear interaction
H}VL:—g[g“f(aizai+af2a2_)+4g‘5’aiafa+a_

+82(b1%b% +b*2b%)

+482°btbtb , b_]

—h[§3°(bTa —blal)

+282°(bt —bt)a,a_]e* T +H.C.

—h[§2“btata,b_+btala_b,)

+g2*(btata_b,+b*ata . b_)

+g2“(btata,b, +b*a*a_b_)], (35)

where we have denoted the nonlinear coupling pa-
rameters by

oV <27‘ChQ)2 o

= w\my ) &
eV (2nR20\'* ,  (2nhw
gq =? n% V gq n2V E]
V (2nh2w\ (2nho
~2w=_ 2w
e

with p=1, 2, q=3, 4, and 5s=5, 6, 7.

In order that our further procedure shall be in
agreement with the classical treatment involving
(15, 16) we go over from the Heisenberg equations of
motion for the time-evolution of the field operators to
spatial propagation equations [53] which, in our case,
for the operator A(z), take the form

dAG) _ in,

=~ 7o [A@), HY]. (37)

With (35, 37), we obtain the following equations of
motion for the field operators of the fundamental and
second-harmonic wave:

da.(z) .n,, ., "
;Z =1Ac-(g1a;ai+2g2a$a;)ai

+2"2 [T g5 al

+85 (b, —b-)azle i

i (@ jazb,

+(g5°b3bs +87°bibs)as}, (38)

db . (2) _

Mo o w 52w
iz 1%(8% bib. +283°btbz)b,

Mo~ ~ idk-
+Hi—= (FE30% £280% 0 )T

+insz g3%azasbs
+(g¢%ataz +§5°ala)b,]. (39)

On neglecting in (38) interference related with the
second harmonic, we obtain a formal solution in the
form of the translation operator

a.(z)=exp{iz[e,a1(0)a.(0)+ 6,a3(0)az(0)]}a.(0),

(40)
where we have made use of the notation
n n
= @ o ) 5 = @ 5o .
80) c gl 7 2 ¢ g2 (41)
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The solution in the form (40) has been obtained by
Ritze [54] for photon antibunching, and by Tana$ and
Kielich [15] for light self-squeezing. Similar solutions
have been obtained by others [53, 55-57] for a variety
of nonlinear optical processes. A solution analogous to
(40) is obtained from (39) for the second harmonic (if
present) in the absence of interference with the funda-
mental wave.

In the general case when coupling between the
fundamental beam and the second-harmonic beam is
taken into account, both (38) and (39) should be solved
simultaneously. This is, however, a very difficult task to
perform, and some approximations are needed. There
are a number of terms in (38, 39) all of which can
contribute to the solution. As an example of an
approximate solution of (38, 39) we will calculate the
normally ordered variances of the second-harmonic
field generated by the self-squeezed light of the funda-
mental beam. To this end we assume that the main
process is that of self-interaction of the fundamental
beam in the nonlinear medium. The latter is described
by the coupling constants § and g%. If all other
coupling constants are smaller than ¢4 and g% we can
take advantage of the solution (40) and apply it as the
zero-order solution in solving (39) for the second-
harmonic field perturbatively. Eq. (39) can be in-
tegrated formally, giving

b (@)=boO)Fi™2 [ 64 (el )
0

—2§3%a,(2)a_(2)}, (42)

where we have dropped all terms with integrations
containing the second-harmonic operators b, (z). The
contributions from these terms would appear as
higher-order in the coupling constants were the
second-harmonic field taken as initially (i.e., for z=0)
in the vacuum state b, (0)|0>=0.

Thus, they can be omitted. Moreover, we assume
that the fundamental beam is initially in a coherent
state with right circular polarization, i.e.
a,(O)a,>=0,|e,>. This assumption eliminates also
the term proportional to §3°. On these assumptions,
the problem becomes more transparent and allows for
relatively simple formulas describing the quantum
fluctuations in the second-harmonic beam.

On insertion of (40) into (42) and using the
commutation rules (34) we obtain the following ex-
pression for the normally ordered variances of the
second-harmonic field

+[A(b 4 (2) £ b1(2)]* )
=1 [bi(2)2b1(2)]* D F b (2) £bI(2))?

= —2x? {dz {dz"{+ o4 exp{[cos2¢,(z +2")
0 0
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—1]oc|*} cos{(dk+e,) (2’ +2") +4e,2"

+ |oe 4 |* sin2e,(z’ + ")}

Fa? exp{[cos2e,z’ +cos2¢,z" —2]|a, |}

x cos {(4k +¢,)(z' +2")

+|ot |*(sin2¢,z" +sin2¢,z")}

— ot |*exp{[cos2e,(z' —2z") — 1] |oc4 |*}

x cos{(4k+&,) (2’ —2")+ o |* sin2e,(z' — z")}

+|oc |* exp{[cos2e,2 +cos2e,z" — 2] |o, |?}

x cos{(dk+e,)(z' —z"

+ ot [*(sin2e,,2’ —sin2¢,z")}}, (43)

where we have used the notation

Mo 2o

The upper (lower) sign applies to the in-phase (out-of-
phase) component of the second-harmonic field. A field
is said to be in a squeezed state if one of its variances
becomes negative. The expression (43) is still quite
complicated because the integrations cannot be per-
formed analytically. However, in real physical situa-
tions the nonlinear parameter ¢, is very small and we
have ¢,z <1, allowing us to expand the integrand into
a power series and retain only the leading terms with
respect to this small parameter, terms containing
€,2|a 1 |* with values of the order of unity for |a|?>> 1.
Assuming, moreover, the phase of the incoming field as
zero (o, =[x, [) and that the linear phase matching
conditions are met (i.e., Ak=0), we have

T G[AB L (2)£bI(2)]* D
= %’zl{i [2cosf—1—cos2pB

— B(sin2f —sin )]
+(cosf—1+ Bsinp)?}, 45)

where f=2¢,z|o,|?, and we have introduced the
power conversion ratio

_ 2o 2 IQw)
Joc ]2 Io(w)’

(46)

describing the fraction of the initial power transferred
into the second harmonic.

The expression (45) is already simple enough and
easy to evaluate numerically. In Fig. 1 the normally
ordered variance of the out-of-phase component of the
second-harmonic field is plotted against £,z|o, [* and
compared to the variance of the in-phase component of
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Fig. 1. Plot of the normally ordered variance of the in-phase
component of the fundamental beam (curve 1) and the out-of-
phase component of the second-harmonic beam (curve 2) against

B/2=¢,zla.|?

the fundamental beam [15]. One notes that squeezing
in the out-of-phase component of the second-
harmonic field (negative values of curve 2)is correlated
to the self-squeezing of the in-phase component of the
fundamental field (negative values of curve 1). For
small values of § both curves take on negative values.
However, the maximum of squeezing in the second-
harmonic field (minimum of curve 2) occurs for
positive values of curve 1 (no squeezing in the funda-
mental field). One can say that when the second
harmonic is generated by the self-squeezed light,
squeezing from the in-phase component of the funda-
mental beam is transferred in some sense into the out-
of-phase component of the second-harmonic beam.
The correlation of squeezing in the two beams is not so
strong as in the case of third-harmonic generation
[58]. The value of squeezing in the second harmonic is
proportional to the conversion ratio . We have to bear
in mind, however, that (45) has been obtained under
the assumption that there was no coupling of the
second harmonic back into the fundamental beam, and
our approximation breaks down if # becomes large.
We should also emphasize that the mechanism of
producing squeezed states in the second harmonic
generated in isotropic media as considered in this
paper is quite different from the mechanism consi-
dered earlier [12, 13, 23].

4. Conclusion

We have considered the process of second-harmonic
generation in isotropic media by self-squeezed light.
We have introduced an effective interaction Hamil-
tonian describing the processes related to the propa-

gation of the strong optical field in the nonlinear
medium and generation of the second harmonic in
such a medium, The nonlinear coupling constants have
been derived explicitly including their statistical mole-
cular contents. Second-harmonic generation in an
isotropic medium subjected to a dc electric field is
considered. Classical as well as quantum equations
describing the field evolution in the nonlinear medium
have been derived. A new mechanism leading to
squeezing of quantum fluctuations in the second-
harmonic field has been discussed. Some correlation
between squeezing in the second-harmonic beam and
self-squeezing in the fundamental beam has been
shown to exist, although the squeezing in the second
harmonic does not follow exactly that in the funda-
mental field. The maximum of squeezing in the second
harmonic appears already for positive values of the
normally ordered variance of the fundamental field.
Thus squeezing in the second-harmonic field is delayed
with respect to self-squeezing in the fundamental field.

We should also emphasize that, to obtain consider-
able squeezing in the second harmonic by way of the
mechanism discussed here, it is essential to make the
linear mismatch much smaller than 2e,z]e,|> The
squeezing is proportional to the conversion ratio 7, as
given by (45, 46). Thus, the squeezing increases with
increasing conversion ratio. One should bear in mind,
however, that for higher-conversion ratios the approx-
imation used breaks down and (38, 39) have to be
solved without the perturbative expansion used above.
This is, however, a rather difficult task to perform. On
neglecting the nonlinear propagation effects leading to
sell-squeezing and on solving (38, 39) perturbatively,
one arrives at the results already obtained for squeez-
ing in harmonics generation [13]. The latter mecha-
nism is of higher order (~«*) in the coupling constant
x than that discussed in this paper (~«?). So the new
mechanism due to the nonlinear propagation effect
should be predominant whenever x is small.

Finally, we would like to make the following
terminological remark: Tana§ and Kielich [15] referred
to squeezing due to nonlinear propagation of strong
laser light in a Kerr medium as the “self-squeezing
effect” and refer to the states of the field as “self-
squeezed states”. Recently, Kitagawa and Yamamoto
[56] have discussed the properties of the states that are
created due to self-phase-modulation in the Kerr
medium, according to their interaction Hamiltonian
a*2a?, and have obtained the quasiprobability density
for such states showing that it has a “crescent” shape
(which differs essentially from the ellipse that is
obtained for ordinary squeezed states). In fact, the
“crescent” squeezing of Kitagawa and Yamamoto [56]
is exactly the same as the “self-squeezing” of Tanas and
Kielich [15] in the one-mode case.
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