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S. Kielich, R. Tana$, and R. Zawodny
Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 60-780 Poznan, Poland
(Received 13 April 1987)

A phenomenological (classical) and quantum treatment of the laser light-intensity-induced Fara-
day effect in isotropic media and crystals is given. The effect, being universal (occurring in all
matter), is shown to act as a stimulator controlling the self-squeezing of light: depending on the
helicity of circular polarization of the light wave and on the sense of the dc magnetic field, the
sign of the pseudoscalar parameter of nonlinear coupling changes leading to an enhancement or
weakening of self-squeezing. Moreover, by varying the state of polarization of the light wave or
the magnetic field strength, control of the efficiency of light-squeezing generation can be achieved.

I. INTRODUCTION

Maker et al.' have observed that intense elliptically
polarized laser light exhibits rotation of its polarization
plane on traversal of an isotropic medium. If, addition-
ally, a dc magnetic field is applied, intensity-dependent
magneto-optical rotation appears in Faraday or, respec-
tively, Voigt configuration according to whether the
light beam propagates parallel or perpendicularly to the
magnetic field.> Laser intensity-dependent Faraday rota-
tion has been observed in indium antimonate.> The non-
linear Faraday effect plays a considerable role in light
self-focusing and parametric wave interaction.* The
laser beam intensity-dependent Faraday effect has been
analyzed theoretically for molecular fluids>® and crys-
tals,”” as well as atomic gases.®

The optical nonlinearities of bodies play a decisive
part in the generation of squeezed states of the elec-
tromagnetic field. The theory of these states is now de-
veloping rapidly’~!! and the first experiments have al-
ready been carried out.'?— 13

In the present paper we show that the intensity-
dependent Faraday effect leads to squeezed states of the
field, just as is the case for free nonlinear propagation of
light.16 There is, however, an essential difference: in the
case under consideration by us, the parameters of non-
linear coupling (nonlinear gyration) are linearly depen-
dent on the strength of the externally applied dc magnet-
ic field and, as a result, change their sign according to
the sense of the magnetic field (according to whether it is
|

F= —%; X,j(G),B)E,_(Cl))Ej+(ﬂ))+xz‘,(Q),B)EI+(CL))EIV(CU)

applied parallel or antiparallel to the propagation direc-
tion of the wave). Obviously, the same can be achieved
by a change in helicity of the circular polarization of the
light wave. This permits the enhancement, or weaken-
ing, of the efficiency of the light self-squeezing generated.

The experiment with nonlinear self-interaction of a
single laser beam at Faraday configuration can be ex-
tended to two beams,>® with the probe beam at Faraday
or Voigt configuration’ and the laser beam stimulating
the optical nonlinearity propagating at an arbitrary an-
gle to the dc magnetic field. Recently, Lakshmi and
Agarwal'” have discussed the squeezing characteristic of
radiation from the Hanle effect, in which the scattering
radiation exhibits changes due to the magnetic levels
(transitions).

II. PHENOMENOLOGICAL TREATMENT

Consider an arbitrary nondissipative medium in a
homogeneous dc magnetic field with induction B on
which a light wave with electric vector

E(t)zE*(a))e Aiwt_‘_Ev(w)eimz

and circular frequency w is incident.

The phenomenological approach to nonlinear optical
processes starts from the time-average free energy F
(Ref. 18) determining the interaction between the medi-
um and the field of radiation. In our case F has the fol-
lowing form (we apply the Einstein convention):

—+—X,~jk1(w,B)[E,-‘(w)Ej_(w)E,f(w)EfL(w)JrE,-‘(a))E;f(w)Ej'(co)E1+(a))—}—Ef(a))E;f(a))E,*(a))Ej_(a))]
+ijk,(w,B)[E,-*(w)Ej*(w)Ek‘(w)Ef(w)+E,»+(co)E[(w)Ef(w)Ef(w)+E,-*(a))Ek_(a))Ef(a))Ej*(a))]+H.c.} ,

whence, in a linear approximation in B, we obtain the
expansion

X,-j(w,B)z)(,-j(—w;a))+)(,jk(—w;w,0)Bk+ LI
XijkI(w,B)= X,-jk/(—a);—a),a),co)

+Xjkim ( —@; —0,0,0,0)B,, + - - -

(1)

r

Above, we have omitted terms in the successive harmon-
ics, as well as higher powers of the field B, considered by
Manakov et al.'®

The second-rank tensor X,;(—w;w) determines the
linear electric dipole susceptibility. The axial tensor of
third rank (of linear gyration) X, (—w;®,0) describes
the magnetoelectric susceptibility of second order inter-
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vening in the usual Faraday effect.>!'® The tensor of
fourth rank X;(—w; —o,0,0) describes the nonlinear
susceptibility of thlrd order determmmg the light-
intensity-dependent  refractive index.!  The axial
tensor of fifth rank (of nonlinear gyration)
Xijkim (—@; —@,0,0,0) describes a nonlinear magne-
toelectric susceptibility of fourth order present in the
intensity-dependent Faraday effect.? The quantum-
mechanical form of the gyration tensors X (— a) w,O)
and Xjym (—0; —o,0,0,0) have been given by us®’ to-
gether with their tabulated nonzero and mutually in-
dependent components for all crystallographical classes.?

We assume that the light beam propagates in a ma-
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croscopically isotropic medium composed of molecules
that are not optically active (see Appendix). The propa-
gation direction, denoted as the z direction, is assumed
to be parallel to the static magnetic field B (Faraday
configuration). Applying the circular basis for the opti-
cal fields (angular momentum convention) for right and
left helicity of polarization,
Ef(w)= [E+ )FiE) (0)],

we can write the time-averaged free energy (1) for a body
without intrinsic gyration (for the general case, see Ap-
pendix):

|
F=—XL(B,){E7 (@E+(0)—EZ(0)ET (@)} —XR{EZ(@PIE](@P+[EZ o) P[E* (0)]?}
—ﬂ}'E;(w)EZ(w)Ei(w)Ej:(w)—%X‘&'(Bz){[EI(co)]z[Ei(a))]z—[E:(a))]z[Ef(co)]z} , (3)

where we have introduced the linear (Faraday) magneto-
gyration parameter

X5(B,)=i [X sy (@) =X, (@) 1B, , 4)
the nonlinear coupling parameters
= 12Xy (@) + Xy (@)]
7{"' =24X ., (@) + X}
and nonlinear magnetogyration parameter
XE(B,)=12i[X rnpz (@) —X s (@) ]B, . (6)

In (4)-(6) we have used the shortened notation
Xijk (@) =X (—0;0,0),  Xijg(@) =X —w; —0,0,0),
and Xijklm (CL)):X,-]-HM( —w, —a),a),a),O).

On defining the right and left circular components of

the electric polarization vector P as'®

oF
Ptlw)=——"—,
)=o)
Pi‘(w)=—i—,

JE ~(w)

we obtain, by (3), the following expressions:
Pi(w)={*X5(B,)+[XR+X¥(B,)]|Ef(0)|?
HY|Et(0)|}ES(0). @)
Taking into account the relation (n} —n?)E_ (o)
=47P, (w) between the polarization and the refractive
index of the medium, we have from (7)

ne—n=2T(2X6(B,)+ HY | E+(0)]?

+XREXE(B,)] | EL (@)%, (8)
or, for the difference of the refractive indices describing

the optical rotation,

+X%(B |ET(0)|*+ | EX(0)]|?]

FHE XD E* ()| 2= Et ()| 2]}

9

The first term on the right-hand side of (9) describes the
usual Faraday effect related to the linear gyration con-
stant X5(B,). The second term describes the light-
intensity-dependent Faraday effect’ related to the non-
linear gyration constant X% (B,), and the last term de-
scribes the light-intensity-dependent rotation of the po-
larization ellipse.!

There is, however, a very essential difference between
the two last-named nonlinear effects: Whereas the effect
of rotation of the ellipse (or, rather, elliptical
birefringence?®) takes place only in the case of elliptical-
ly polarized light,! the nonlinear Faraday effect occurs
for arbitrary light polarization—Ilinear (E,  =E _
=E /V'2) and circular (E, or E_) as well as elliptical
(E_ 5E_). Thus the two effects can be separated by
appropriately choosing the state of light polarization.

On inserting the polarization (7) into the Maxwell
equations, we obtain for slowly varying amplitudes of
the electromagnetic field the following equations:

dE? (w,2) 121ra)
= +
dz {(£XG(B,)
+XREXE(B,)]| Et (0,2) |?
RIEf(0,2)|ET (0,2) .
(10)
Since |Ef(w,z)|? does not depend on z Ii.e.,

(d/dz) | E} (w,z)|?>=0, Eq. (10) has a simple exponen-



5672

tial solution,?! which in our case has the form

E{(0,z)=exp(i®;2)E T (0,0), an
where
D, = ZZI" [HXG (B )+ [XREXG(B)] | ES () | ?

+HY | EE(0)]|?) (12)

determines the light-intensity phase shifts of the field
amplitude in the presence of a dc magnetic field B, (in
the absence of natural gyration, considered by us??).

III. QUANTUM TREATMENT

In conformity with the classical equation (10), we go
over from the Heisenberg equation of motion for the
time evolution of the field operators to the equations of
propagation of the wave? through an active medium in
which it traverses a path of well defined length z:

0E (w,z) n
———=——[E(w,z),H,] . 1
oz iﬁc[ (,2),H;] (13)
In the quantum approach, the operators of the electric
field are expressed as follows in terms of annihilation
operators (in cgs units):
172

2mfie). a, . (14)

E
Vn?

H+

()=

where the annihilation operators @, in circular basis
fulfill the commutation relations

[a,v,aj*]:éij (i,j=+or—), (15)
where V is the field quantization volume.

The next essential step resides in finding the analytical
form of the Hamiltonian H; of interaction between the
material system and the field of radiation. On the mi-
croscopic level, H; is correctly expressed by way of the
Fermi operators of the optically active bond electrons in
the medium and the Bose operators of the light field
modes.”*?> In general the problem is a highly involved
one?® and has been solved for a specific atomic model
and nonlinear process. To circumvent these difficulties
in more general cases of arbitrary bodies we have
recourse to effective Hamiltonians of interaction.'®24—27
In practice, such Hamiltonians are constructed on the
basis of the time-averaged free energy F in which the
field vectors are replaced by boson operators in accor-
dance with the relation (14). Thus, we have?*?’
H,—»de3r or rather, as in the present case of a
homogeneous medium, H; =VF, and by (3) and (14) we
obtain the following effective interaction Hamiltonian:

H=—#X5(B,)a"a, —a'a_)
—1;—5(’;’ (@, a, P+a a ]
—ﬁ?{Ra+a a_a,
A B et a2 —(at e, (16)

2
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where the coupling constants are now given by

S V | 27w
XG(B,)=— !
G( z) # Vn2 G(Bz)y
2

= V | 2ntiw ~ V | 2ntw
X"]:— an) 7{n1:_
R=" Vnl R R="5 Vn? 7‘[ (17)
Sl V | 2ntw 1

B.)=— n
XG(B,) P Vn? XG(B,)

If there is a need for expressing the preceding phenome-
nological susceptibilities in quantum-mechanical form,
this can be done in the well-known manner.>%?28

With regard to (13), (15), and (16), we obtain for the
field operators in circular basis:

day(z) jn -
=Ly
dz c (X6

D+ HNat (2)a+(2)

+XREXE(B,)]alk(2)as(2)}as(z) .

(18)

Since the photon number operators aLa 4+ and ala_
are constants of motion, they commute with the Hamil-
tonian (16); the equations (18) have a formal solution in
the form of the translation operator

ai(z)=expliz[ ®L(B,)+€+(B,)ak (0)a,(0)

+8a’- (0)a+(0)]}as(0), (19)

where we have introduced the following notation:

o

The solution of (19) in the absence of a magnetic field
is identical with that for self-squeezing'® and resembles
that of Milburn er al.?® for squeezing in degenerate
four-wave mixing in the linearly polarized case. As was
predictable, there is correct correspondence between the
classical (11) and quantum (19) fields.

We now write the quantum field operators (19) in a
manner to extract, from the phase, the part due to rota-
tion of the plane of polarization:

a4 (z)=expli(¢ta)la.(0), (21)

where, by definition, we have
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with a the angle by which the polarization plane is ro-
tated on traversal of the light wave through the medium
of length z. Obviously, the quantum expression (23) cor-
responds to the classical magneto-optical rotation (9).

The formulas (21)-(23) hold for elliptical polarization,
when @, 54a _. In the particular case of linearly polar-
ized light (a, =a_=a/V'2), the phases (22) and (23)
take the form

¢,_§§(f§‘ +#Mata (22"
a,=;—§[2)?’G(Bz)+Y‘(‘;1(BZ ya'al . (23"

We note that for the case of linear light polarization the

J

(:[AQ.(2)]%:) =2Ref a2 exp[2i DY(B, )z +i€.(B,)z +(e

—a? exp[2i®Y(B, )z +2(e

i€ (B, )z
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rotation of the plane of polarization (23') is due only to
linear and nonlinear magnetogyration. Obviously, this is
a specific feature of Faraday’s effect. In a medium with
natural optical activity?> a role similar to that of
magneto-optical gyration is played by linear and non-
linear gyration, the numerical value of which is, howev-
er, much smaller* and can sometimes be neglected by
comparison with the Verdet constants X1 /B, and
X ¥ /B, taken into account above.

IV. SQUEEZING

On defining the Hermitian operators describing the
in-phase and out-of-phase quadrature components of the
electromagnetic field as follows:

Qi=ai+al, Pi=—i(ay—al), (24)

squeezed states of light are defined® as states in which
one of the normally ordered variances becomes negative:

(:(AQ1)%:) <0 or (:(APL1)%:)<0. (25)

Using the solution (19) and the commutation relations
(15), one easily calculates the normally ordered variances
(25). The result is as follows:

2ie, (B)z ;
’et( z -—1)|ai|2+(e2'5z—1)|a; |2]

—Dla. [242e®—1)|az 2]

+2|ay | [1—exp(2{cos[es(B,)z]—1} | ay | 24+2[cos(8z)—1] |ax | D], (26)

where ®%, €., and § are defined by (20). In (26), the in-
coming beam has been assumed as being in a coherent
state | @) with complex amplitudes . given by'®

ai=7a-é—(cosni—sinn)e Fie 27
where © and 7 are the azimuth and ellipticity of its po-
larization ellipse. For a linearly polarized beam 7 =0,
whereas for a circularly polarized beam n=*=/4.

To obtain the solution for (:[AP,(z)]*) it suffices to
change the sign of the first Re term in (26). The solution
(26) is rather complicated. Without performing a nu-
merical analysis, one cannot say whether it can be nega-
tive or not. We have performed such an analysis'® for
the variances in the absence of the static magnetic field
proving the possibility of self-squeezing of light propaga-
ting through isotropic media, and have shown that vari-
ances of the type (26) exhibit oscillatory behavior with
minima that dip to more than 90% of squeezing. In or-
der to obtain such strong squeezing, however, one would
have to tune precisely to the minimum by properly ad-
justing the intensity of the incoming beam. Since the
minima appear for rather high intensities, it may prove
difficult to adjust the intensity so as to obtain exactly a
minimum of fluctuations. As we have shown in this pa-
per, there is an extra physical factor—the magnetic
field —that can be used to tune precisely to the

minimum fluctuations. As it is seen from (20), both
®%(B,) and €,(B,) vary continuously with variations of
the magnetic field strength. Thus both the linear phase
®(B,) of the optical field and the nonlinear coupling
constant €;(B,) are changed simultaneously under the
influence of the static magnetic field. The ordinary
Faraday variation in linear phase can be compensated by
changing the initial phase of the incoming optical field,
and the magnetic field dependence of the nonlinear cou-
pling constant €,(B,) can be used for precise tuning to
the minimum fluctuations. Thus the intensity-dependent
Faraday effect can be used to increase the efficiency of
self-squeezing.

The nonlinear coupling parameters are rather small
and we have €,z <<€.z |a,|? and 8z<<8z|a,|>
This allows us to obtain much simpler approximate for-
mulas for the variances (26), which read

([AQ.(D)]%)

~—2{€.(B,)|a;|*2sinO, +[€2(B,)|a, |*

+8|a, |?a_|)?

X(cos©,L—1)} , (28)
where
6.=—-20+2z[PLUB,)+€.(B,) |y |2 +8|ax |?].
(29)
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The formulas (28) are much simpler to interpret than the
exact formulas (26) and reproduce their exact results
quite satisfactorily. The oscillatory behavior of the vari-
ances is clearly visible, and with regard to (27) their
dependence on the polarization state of the incoming
beam is obvious. The dependence of the variances on
the static magnetic field is through ®2(B,) and €.(B,),
and our preceding discussion is equally valid for the ap-
proximate formulas (28) as for the exact formulas (26).
Numerical evaluations of the simpler formulas (28),
however, are quite easy to perform even using a pocket
calculator.

V. CONCLUSIONS

We have discussed the intensity-dependent Faraday
effect as a means to enhance the efficiency of self-
squeezing of light propagating through isotropic non-
linear media. Although the normally ordered variances
of the quadrature components of the optical field as de-
rived above in a static magnetic field have the same form
as in the absence of a magnetic field'® and, for a circular-
ly polarized incoming beam are the same as for an
anharmonic oscillator,?® the magnetic field dependence
of the linear phase ®2(B,) and nonlinear coupling con-
stant €.(B,) introduce a novel factor of practical impor-
tance. This dependence will permit the precise tuning to
J

iwn
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minimum fluctuations by varying the strength of the
static magnetic field.

In contradistinction to other mechanisms leading to
the generation of squeezed states of the electromagnetic
field,’~!! the nonlinear Faraday effect considered in the
present work permits the control of the efficiency of
squeezing by way of external factors, such as the state of
polarization of the incoming wave, the properties of the
nonlinear medium, and, essentially, the strength of the
dc or ac externally applied magnetic field —in particular,
its sense.

APPENDIX: EFFECTIVE
INTERACTION HAMILTONIAN
FOR ARBITRARY NONLINEAR MEDIUM

In the expansions (2) we had restricted ourselves to
frequency dispersion. We shall now moreover take spa-
tial dispersion into account, so that the susceptibilities
will be dependent on the wave vector k of the field of ra-
diation.?®3! In other words, multipolar electric and
magnetic contributions will be included in the interac-
tion Hamiltonian.?>3?

At weak spatial dispersion, the linear and nonlinear
electric susceptibilities in the absence as well as in the
presence of the field B can be written in the form of the
electric and magnetic multipolar susceptibility ten-
sors30:31

X;i(—w;0;k; —k) =X + (“’xe,(,,, — ), )s,,+%<L”x‘,,§>,-u5,,pj+‘,,1’x;‘3,~5,,,,,- ), + (A1)
X — w;0,0;k; —k,0)= “'X(‘,j'," ’;"C” (= X0, (X By 4 XD i sy + (A2)
Xijkl( — —,0,0, k k k —k)= H)X(egelu}(‘ l;l)cn (g“xgelzﬁ((lpl‘}'(l)xeee ijkp)l — I)X(egelz 1];7 kI _(2 Xeeé (,1;7)}1(1) Sp

+ %((el )X(e;;r}’i_ljl)cu 6upl +e1 )X(e}né I_ljl)l] upk +e1 )X(n%ee{‘ih)klﬁupj + (rri 'Xgéélﬁ}lgléupz )s o, (A3)
Xijklr( —0; —0,0,0, O;k;k, '—k’ -—k,O): i’l )Xi';éli)'}()l:'n + l;‘)n ((I)X(e;e]ui)("l’p)r i‘] )X(eel'ezljl()kr;)lr (1)Xe2ee11 (E;:Tklr Z)Xzz’él(’i;;));";clr )Sp

4

(1)y (1,1, 1)m
+e Xmeeiuklr

where s is a unit vector in the propagation direction of
the wave k=(wn /c)s, and 8, is the Levi-Civita tensor,
whereas n and ¢ denote, respectively, the refractive index
of the light wave in the medium and its velocity in vacu-
um.

Above XY =2XY(—w;w) is the linear multipolar
electric (A4 =e) or, respectively, magnetic (4 =m) sus-
ceptibility of the pth order related with a multipolar

electric (D =e) or, respectively, magnetic (D =m)
transition of the gth order, whereas fx¥Y™
=2¥9"( —w;w,0) represents the linear (in the first ap-

proximation of quantum-mechanical perturbation cal-

(A1, 1, 1)m
upj +m Xeee ujklrsupl) ’

n (1,1, Dm (Ly(1,1,1)m
—( e Xeem ijkurﬁup1+e Xemeijulrsupk

culus) magnetlcally induced variation in the susceptibili-
ty 2.

Slmllarly, —w; —w,w,0) is the
nonlinear mu]tlpolar electric (A4 =e) or, respectively,
magnetic (4 =m) susceptibility of the pth order due to
three multipolar electric or magnetic transitions of order
g, r, and s, respectively. The linear magnetic variation in
the susceptibility AX\§%" is given by @xigGem

("’X(q’”)’"( —0; —0,0,0,0).

The Hamiltonian (1) is the time-averaged free energy;
when deriving it, the following general relation, fulfilled
by the linear and nonlinear multipole susceptibility, was

(p)X q,r,s) 1p)X(q,r s)(
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taken into account:?®3*
[‘PXF(—w;0)]* =8XF0; —0) ,

(A5)
[%)X(BP%S)( —w; —(t),&),ﬁ))]‘ Z(E)X(lg):%”(w;wi —w, —CO)

(the asterisk stands for the complex conjugate) as well as
the invariancy of the nonlinear multipole susceptibilities
PG — w;w,,0,,0;) With respect to the 3! space of
ternary combinations gD, rw,F, and sw;G. The con-
dition (AS5) ensures that the linear and nonlinear electric
(A =e) and magnetic (A =m) polarizations are real for
real electric and magnetic fields. The above relations
hold as well in the presence of a dc field B.

From the well-known Bloembergen permutation rela-
tions?®34 it results immediately that the nonlinear mul-
tipole susceptibilities 2X 9 —w; —w,w,0) as well as
their linear magnetic variations are invariant with
respect to pairwise permutations of pA4 and gD, and of
rF and sG:

PG — 05 — 0,0,0) =X BN — 0; — 0,0,0)
=X (— 0; —0,0,0)

=9XC5 N —w; —w,0,0) . (A6)

This relation permits a reduction from 4 to 2 in the
number of nonlinear multipole susceptibilities of Egs.
(A3) and (A4) involving a quadrupolar electric or a dipo-
lar magnetic transition.

With regard to the quantum-mechanical definition of
linear and nonlinear multipolar susceptibilities,>3? it
can be shown that even if the widths of the energy levels
are neglected (transparent medium) the ©2XY(—w;w)
and PXYe(—w; —w,0,0) as well as their magnetically
induced variations are complex for complex wave func-
tions of the stationary states (degeneracy of the energy
levels), i.e.,

X (—w;0) =91 (—0;0)+iFP(—w;0),  (AD)

PG —w; —w,0,0)
=g —w; —0,0,0)+i PGS —0; —0,0,0) ,
(A8)

with their real and imaginary parts fulfilling the follow-
ing relations:

PP —0;0) =P (—~w;0) , (A9)
PP —w30)= -0 —w;0) , (A10)
P9 —0; —0,0,0) =PI —0; —0,0,0) ,
(A11)
PEGHE N — 05 —0,0,0)= —LEEE —0; —0,0,0) .
(A12)

These relations reduce from 2 to 1 the number of linear
and nonlinear multipolar susceptibilities of (A1)-(A4) in-
volving a quadrupolar electric or dipolar magnetic tran-
sition.
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Acting with the time-inversion operator R (Ref. 35) on
the quantum-mechanical expression for the real and
imaginary parts of the linear and nonlinear multipolar
susceptibilities in the presence and in the absence of the
field B, it can be shown that the quantities

(pl(q) (P e(q)  (p)(q,rs) (p)elg,rs)

e 7]9 i e gm’ e eee ’ e geem ’

(p)s(q) (p),,(q) (p) el ) (p)a,( ) (A13)
m m ,r,s)m L FS)m

b‘p ;eq > ep 7"3 ’ ep t.:eZe > ep negm

are invariant with respect to time inversion. After

Birss,*® we refer to them as i tensors. The other quanti-
ties [see Eq. (A13")]

(prelg)  (pPl(q)  (p)elq,r,s)  (p)(q,r,s)

ep geq ’ ep nrg ’ ep gege ’ ep negrrrls ’
(Plylg)m  (p)e(g)m  (p) (q,r,s)m  (p)slqg,rs)
ep Tqu ’ ep §n‘f ’ ep nege ’ ep ge‘elm "

(A13)

undergo a change in sign (¢ tensors). According to
Neumann’s principle,*® ¢ tensors can exist solely in mag-
netic media (the operation of time inversion does not
occur as an independent element of symmetry3®),
whereas i tensors can exist as well in nonmagnetic
media.

By having recourse to the permutation relations
(A6)-(A12) and to tables giving the shape of i and ¢ ten-
sors of the second, third, fourth, fifth, and sixth rank for
all 90 magnetic classes®?*%® and the classes Y,Y,
(icosahedral) and K,K,, (complete group of rotations), we
find that for crystals with the symmetries 3m, 3m, 6m?2,
6m2, 62m, 6/mmm, 6/mmm, 6/mmm, 6/mmm,
6/mmm, Y,, and K, the Hamiltonian (1) takes the form
(3) in circular basis and on going over to normal order-
ing, and that the coupling constants for the magnetic
classes 6m2 and 6/mmm take the form

Xk =b+d, XG(B,)=g+j,
XR=A+D, HY=A4'+D",
X¥(B,)=G +I ,

(A14)

whereas for the classes 3m, 3m, 6m2, 62m, 6/mmm,
6/mmm, 6/mmm, 6/mmm, Y,, K, and isotropic media
with centrosymmetric molecules only the constants un-
derlined in (A 14) are nonzero. Above, we have used the
following notation:

9 (D (1)
b_ze nexx ’
d_4_" O (1)£(2) (D (1)
- c - 3 € gex(xz)+e nmxy Sz
_ (D) e(1)m
g__ze é_exysz ’
c_An | o) om (pm | o p
J= ¢ - 3 e 779x(yz)z+e gmxxz $;B; »
(1), (1,1,1)
44_:249 neeexyxy ’
96n | @ (1).01,1,2) (1), (1,1,1
— adl 1, ,1,1)
D=-— ¢ 3 e geeexyx(yz)+e neemyxxx Sz »
r__ (1),,(1,1,1) (1),,(1,1,1)
-4 _12(9 Meee xxxx e Neee xxyy) 4
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48n @ (1)£(1,1,2) (D £(1,1,2)
D'= - geeéxxx(xz)'*'e geeexxy(yz)
(4
(1),.(1,1,1) (1),.(1,1,1)
e Meem'xxxy —e neem xxyx }sz s
(1) (1,1,1)m
Q = geee xxXxyz Bz
7226n | @ () 1,1,20m 4 (DglLLUm | p
e 3¢ Neee xxx (yz)z + eem xyxyz |SzPz -

On perusal of (A13) and (A13’) one readily checks that
the underlined constants contain i tensors whereas those
not underlined contain ¢ tensors. For numerical values
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of the respective susceptibility tensor components for the
various crystal symmetries, we refer to the literature.?” 38

In the case of crystals with other symmetries the in-
teraction Hamiltonian (3) is of a more highly complicat-
ed form since, in addition to the underlined constants
which exist for all crystals irrespective of their symme-
try, new constants appear, leading moreover to other,
new combinations of fields.
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