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We propose a theoretical treatment of optical sum-frequency generation (SFG) by incoherent nonlinear mixing of two beams,
the one coherent and the other chaotic. The efficiency of SFG is calculated in the second approximation of the iterative method
solving the equations for parametric interaction of the three waves. It is shown that in the case of perfect phase matching the
efficiency of SFG increases with increasing spectral width # of the input chaotic radiation and increasing difference x between the
group velocities of the sub-frequency modes. For small spectral widths of the chaotic sub-frequency radiation the efficiency of
SFG is greater than for coherent interaction provided that « is large. For large spectral widths, however, the efficiency of SFG is
smaller than for coherent interaction irrespective of x.

1. Introduction

The process of optical sum-frequency generation (SFG) is a nonlinear phenomenon of great practical impor-
tance [1-3], and moreover presents highly interesting theoretical aspects [4]. The process consists in the gen-
eration of photons at the higher sum-frequency w1 by fusing the photons at the lower frequencies w, and w,
(w3=w,+w,) by way of nonlinear optical interaction in a quadratic medium.

The classical description of optical sum-frequency generation has been first given by Armstrong et al. [5]
and observed experimentally by Bass et al. [6]. The quantum description of this process was given by Agrawal
and Mehta [ 7] and Pefina [ 8]. The influence of the statistical and coherence properties of the generating radia-
tions was first discussed by Ducuing and Bloembergen [9] and Akhmanov and Chirkin [10] in second-har-
monic generation (degenerate sum-frequency generation) and by Chmela [11] in non-degenerate SFG. In
frequency-conversion experiments one usually deals with single or multimode laser radiations, while the ampli-
tudes can exhibit substantial light fluctuations. Therefore, it is important to understand the influence of the
light fluctuations on nonlinear optical processes. The effects of phase and amplitude fluctuations in the gen-
erating fundamental radiations on second-harmonic generation were studied in refs. [12-14]. Eckardt and
Reintjes [15] studied second-harmonic generation with phase modulation of the fundamental pulse. Chmela
[11] considered SFG by incoherent nonlinear optical fusing of strong coherent radiation and another weak
chaotic input beam with a finite spectral width. He has shown that the efficiency of SFG decreases with increas-
ing spectral width of the input radiation and/or increasing dispersion of the medium and is independent of the
difference between the group velocities of the interacting radiations.

In this paper we study the influence of field amplitude fluctuations on the SFG process when the input radia-
tions have arbitrary intensities. As we shall see later, in this case the efficiency of SFG is dependent on the
difference x between the group velocities of the input radiations and increases with increasing spectral width
1, attains its maximum value for moderate 7, and then decreases for large 1. We start from the set of first-order
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differential equations for complex slowly varying field amplitudes describing the incoherent quadratic non-
linear optical interaction. The solution is found by the iterative method in the second approximation and per-
fect phase matching is assumed.

It follows from this solution that the mean photon flux (intensity) of output sum-frequency radiation is
dependent on the spectral width of the input radiation, the dispersion of the nonlinear medium, and the dif-
ference between the group velocities of the input radiations.

2. Sum-frequency generation by incoherent interactions

Within the framework of our classical model we consider nonlinear optical interaction of three quasimon-
ochromatic waves propagating in a dispersive medium:

Et(rv l):e_/Aj(n t) exp[i(kj.r_wj[)]’ (j=1’2’3)> (1)

where e; are the unit polarization vectors and A4,(r, ¢) the slowly varying field amplitudes. The frequencies w,,
W, and ws; satisfy the resonant frequency condition

w|+w2=w3. (2)

The complex amplitudes 4;(r, ¢), (=1, 2, 3) in the linear dispersion approximation obey the following equa-
tions [10,11]:

grad A, f, +ui'dA,/91=1iy, A, A% exp(iAkz),
grad A,-f> +u3'0A4,/dt=iy,A; A% exp(idkz),

grad A;fs +u3 ' 9A4;/0t=1y;4, A, exp( —idkz), (3)

where dk=k;—k,—k, is the wave vector mismatching, y, are the coupling constants which depend on the sec-
ond-order susceptibility of the nonlinear medium [11], and ; are the group velocities in ray directions f; of
the individual waves. It is obvious from eqgs. (3) that, in general, the nonlinear optical interaction in a dis-
persive medium cannot be simply described in terms of one time (¢) or one spatial (z) variable only, as usually
done when studying nonlinear optical interactions of monochromatic waves [5]. In general, the field ampli-
tudes 4,(r, t) are functions of one temporal variable ¢ and three spatial variables x, y, z. However, the mean
values of the intensities (/;> or photon numbers (N,), as well as the higher-order moments of the type
Iy or (NN 'y can be expressed in terms of one temporal variable ¢ or one spatial variable z only, accord-
ing to the model of interaction considered.

Our aim is to calculate the mean photon flux (N;(z)) instead of the light intensities in the output beam
defined as

(N3(2) > =(€o/tto) " [(n5 cos &5 cos 33}/ (2hw4)] (A5 A%) (4)

(in SI units), where #; is the linear refractive index in an anisotropic medium, J; is the angle of anisotropy
(that between the ray direction f; and the normal direction s, ), and S, is the refractive angle of the ray direction
fs. It is necessary to stress here that the photon fluxes represent classical quantities and do not involve any
quantum aspects of the field.

In order to calculate the mean photon flux (N;(z))> we have to know the factorisation rules for the mean
values (A, o(1) AT o(1+7) > and (A, o(1) A% o(1+1)A4;0(1+ 1) A% o (t+1") ), (j=1,2), where the 4,,(?) are non-
perturbed amplitudes for the first step of the iterative solution. In the following, we assume that the input radia-
tion at frequency ), is coherent. We thus have [16]
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(Ayo(t) AT o(8) > =<(Ni(0) ), CAro(t) At o(8) Ay o(13) A¥ (L) > =<(N,(0) > 2, (5)

and the input radiation at frequency w, is chaotic with the finite spectral half-width I, introduced as [11,16]

(A20(8) A%o(82) > =<N2(0) Y exp[ -T2 |, =1, | ],
(Az0(t)) A% o(12) Az o(ts) A3 0(14) )

=(N:(0)>2 {exp[—T2(1ta—t |+ lta—ts D) +exp[ —T (16—t +[ta—1, )]} (6)

Both input radiations at frequencies @, and w, are considered as initially not correlated.
Using eqs. (3)-(6) with the boundary conditions for the SFG:

Ajo(r, t)=A;0(t—f-r/y;) forz<O0, (j=1, 2); Aso(r, t)y=0 forz<0, (7)

after straightforward but lengthy algebraic manipulations and assuming 4k=0, we get the following second-
approximation iterative solution for the mean photon flux of the sum-frequency wave:

(N3 (€)= (N(0) > 2N (0) > 2 (1, §) = KN (0) ) Ei(m, ) — N2 (0) Y [Ex(n, O) + Folm, ke, O], (8)

with

I(n, O)=(2Im){—(2/m*)[1 —exp(—nd)], (9a)
E (n,0)=(2/3n)* — (4L/m*)[ 1 +exp(—nl)] + (8/n*) [ 1 —exp( —n{)], (9b)
Ey(n, {)=(2/m*) % — (6/m){+ (1/n*)[ 7 +exp( —2n{) —8 exp(—n{)], (9¢)

2 2(k*+2 4(1— 4k — k2 +4

FO('I’ K, C): K—ﬂzcz_ (:2773 )C_ (1(_2’;)nc3 exP(—ﬂC) + K—K}’:;Z——_

— V 2_

SD(=2MKC) 4 p(—rnr)— HETKAD) Lo, (94)

k(1=2r)2n*  K3p (1 —2x)?

In egs. (8)-(9) we have introduced the notation
C=<(Ni(0)) AN (0) ) Pz, m=Ta]es|/{N(0)Y " A(NL(0)) "y,  k=€nllexnl, (10)

where u denotes the nonlinear coupling constant [ 11] and the ¢, are coefficients dependent on the group veloc-
ity differences and defined as

€;=(1/cos B;)(1/u; —cos a;/u;), (i#)) (11)

where «; are the divergence angles between the two ray directions f; and f;.

The iterative solution (8) is dependent on four parameters, namely, #, {, €5, and «. The parameter # describes
the spectral half-width I", of the input radiation at w, whereas ¢,; describes the difference between the group
velocities of the sub-frequency wave at w, and the sum-frequency wave at w;. The parameter x is dependent
on the difference between the group velocities of the input waves. The solution (8) is valid for all values of
{N(0)> and {N,(0)>, but is of limited applicability with respect to the parameter {.

For coherent interaction (for #=0) the solution (8) is independent of ¢,; and «, and has the simple form:

(N3(0) > =<N1(0) > 2N, (0) ) 202 — (KN, (0) > +2( N2 (0) ) ) §C°. (12)

In this case the efficiency of SFG depends on the normalized thickness ¢ of the nonlinear medium only.
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Fig. 1. Relative mean photon flux (N;({)D/(Ny>, Fig. 2. Relative mean photon ( N5({) >/{N,) versus normalized
({Ny)> =N (0)>={(N,(0)>) in the sum-frequency radiation spectral width n for { =0.4 and different k. Dashed line marks
as a function of x for normalized thickness { =0.4 of the nonlin- the value of the relative mean photon flux for coherent interaction.

ear medium and different normalized spectral widths 5. Dashed
line marks the value of the relative mean photon flux for coher-
ent interaction.

The total mean photon flux (N;({))> of the sum-frequency radiation, given by eq. (8), is plotted in fig. 1
for {=0.4, several values of n and different «. It is obvious that for small # the efficiency of SFG is enhanced
compared with coherent interaction. As 5 increases, the SFG efficiency increases, reaching its maximum value,
and then decreases for larger n. This is shown in fig. 2, where (N3({) > is plotted versus # for { =0.4 and dif-
ferent values of k. The maximum value 7, for which the SFG efficiency is enhanced with respect to coherent
interaction is dependent on x (fig. 2) and the normalized thickness { of the nonlinear medium. This is shown
in fig. 3, where the limiting value 7, of the spectral width of the input radiation at frequency w- for which the
effect of enhancement of the SFG efficiency appears, is plotted versus {. As { increases, the limiting value 7,
increases linearly. ,

The enhancement of SFG efficiency with increasing x for small values n (n<#y) can be explained within
the framework of light statistics. As it has been shown in ref. [17], during the SFG process for one coherent
and one chaotic input radiation with the same group velocities (k¥ =0) in the nonlinear medium, anticorre-
lation is generated between the input radiations. This effect leads to a decrease of efficiency of SFG process.
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If there is a difference between the group velocities (x #0) in the nonlinear medium, the generating radiations
become time or spatially shifted, so that their natural anticorrelation is compressed or can be completely
smoothed out for large ¥ (x >> 1), leading to strong correlation between the input radiations. This strong cor-
relation gives an increase of the SFG efficiency. However, if the spectral width of the chaotic sub-frequency
input radiation is considerable (> 1,), the SFG efficiency decreases with increasing # (see fig. 2), irrespective
of the value of . This is a consequence of the phase mismatching effect: in fact phase matching can be exactly
adjusted for the central maximum frequencies w,, and w,, only (k,,, — ke, —Ku,, =0). In this case, since
the spectral distribution in the sub-frequency radiation at w, (and consequently also in the sum-frequency
radiation at w;) is considerably extensive, only relatively small intervals of the frequencies w, and w5 satisfy
the approximate phase matching condition for the effective SFG: (ko +sw — Koy —Kewao+a0)2<< 1. The
remaining frequencies are phase mismatched, meaning that a considerable amount of the sub-frequency radia-
tion energy is converted into the sum-frequency radiation energy with a variously small efficiency and spatial
period according to the frequency difference 4w = |w,o—w,].

Of course, both above mentioned effects manifest themselves simultaneously. The limiting value 7, repre-
sents the situation of SFG at which both effects cancel out mutually. For n<,, the favourable group velocity
dispersion effect predominates over the damping phase mismatching effects, and vice versa for > #,.

3. Summary

We have studied the problem of sum-frequency generation (SFG) by incoherent nonlinear optical mixing
of second-order coherent input radiation and chaotic input radiation of finite spectral width. The efficiency
of SFG is described by the mean photon flux {(N;(z)> of output radiation and is dependent on the spectral
width of the input radiation as well as on the dispersion properties of the nonlinear medium. The iterative
method [10] is used to calculate the mean photon flux (N;(z)) in the output sum-frequency radiation.

Our calculations show that the SFG efficiency is strongly dependent on the normalized spectral width # of
the input chaotic radiation as well as on the difference between the group velocities of the sub-frequency waves
characterized by k. For small spectral widths # of the input radiation the SFG efficiency increases with increas-
ing x (see fig. 1) and next decreases for larger values of 5. For small x or large spectral widths # the SFG
efficiency is smaller than for coherent interaction, albeit for moderate # and large x the efficiency of SFG is
greater than for coherent interaction. The limiting value 7, (the maximal value of 5 for which the SFG effi-
ciency is enhanced with respect to coherent interaction) depends on the normalized thickness £ of the nonlinear
medium and increases linearly with increasing (.

Two effects influence the efficiency of the SFG process: correlations between the input radiations, and phase
mismatching.

At small n the former effect predominates for large x leading to an increase of the SFG efficiency. As n increases
the latter effect becomes predominant leading to a decrease of SFG efficiency. This results from the fact that
for large 5 only a small part of the input energies is phase-matched so as to be available for the SFG process.
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