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A new mechanism for producing squeezed states in the third-harmonic field generated in isotropic media is
discussed. It is shown that considerable squeezing is obtained if the third-harmonic field is generated by self-
squeezed light resulting from a nonlinear propagation process. Analytical formulas describing this novel way of
producing squeezed states are derived and illustrated graphically, showing strong correlations of squeezing in the

fundamental and the third-harmonic beams.

1. INTRODUCTION

Squeezed states of light have become a subject of intense
theoretical and experimental research in the past few years.
Some of the research results as well as literature on this
subject can be found in the review paper by Walls.! Theo-
retical predictions have shown that squeezing of quantum
fluctuations can occur in a variety of nonlinear optical pro-
cesses, such as resonance fluorescence,2¢ parametric ampli-
fication,” 10 four-wave mixing,!1-14 the Hanle effect,!5 multi-
photon absorption,617 the free-electron laser,!® the Jaynes—
Cummings model,’® harmonics generation,2-25 nonlinear
propagation of light,2426 and the Rydberg-atom maser.2” A
number of experiments have already been performed in or-
der to observe squeezed states,?8-32 confirming some theoret-
ical predictions and giving new impetus to additional stud-
ies.

In this paper we present a new mechanism for obtaining
squeezed states in the third-harmonic field generated in
isotropic media. It is well known2%-25 that coupling between
the fundamental and harmonic beams in a nonlinear medi-
um leads to squeezing of quantum fluctuations in the in-
phase or the out-of-phase quadrature components of the
fundamental and/or the harmonic beam. It has also been
shown?428 that a strong optical field propagating in a nonlin-
ear medium can squeeze its own quantum fluctuations; we
have called this effect self-squeezing.?® In isotropic media,
in which third- (but not second-) harmonic generation is
permitted by the symmetry of the medium, both processes
coexist, i.e., nonlinear propagation of the fundamental
beam, leading to self-squeezing, and third-harmonic genera-
tion (both of these being third-order effects). Thus, in a
sense, the third-harmonic field is generated by the self-
squeezed light of the fundamental beam, and the following
question is posed: To what extent can squeezing be trans-
ferred from the fundamental beam to the thirg-harmonic
beam? The answer to this question is the subject of this
paper. It will be shown that a considerable amount of
squeezing in the third-harmonic field can be achieved be-
cause of this mechanism.

0740-3224/87/101627-06$02.00

2. SELF-SQUEEZING OF LIGHT
PROPAGATING IN A NONLINEAR MEDIUM

It is well known that strong elliptically polarized light propa-
gating through an isotropic nonlinear medium varies its
state of polarization. This effect of self-induced rotation of
the polarization ellipse was first reported by Maker et al.33 in
1964. Since then, induced birefringence has become a stan-
dard topic in textbooks on nonlinear optics.3435 Recently it
was shown by Tanaé and Kielich?® that a single monochro-
matic beam propagating in an isotropic nonlinear medium
can become squeezed. This self-induced squeezing effect
was called self-squeezing. The details of the self-squeezing
effect are given in Ref. 26, and we shall refrain from repro-
ducing them here. In this paper we refer only to those
results that will be needed in our subsequent calculations.
Third-order nonlinear polarization (in the electric-dipole
approximation) at frequency w can be written as follows34.35;

Pw) = xiul=e, ~0, 0, DB @ E,PWE D (w), (1)
Jhl
where x;jri(—w, —w, w, ) is the third-order nonlinear suscep-
tibility tensor of the medium and the electromagnetic field is
decomposed into the positive- and negative-frequency parts
Ei(l’, t) = Ei(+)(r, t) + Ei(—)(l‘, t), (2) .
with

E{N@,6) = EM(w)expl-ilwjt — k;-1)]. 6)
J

The above definition of the field gives the following expres-
sion for the intensity of the beam at frequency w:

I() = %ZE}*(@E}“«»), @

where n(w) is the refractive index of the medium for frequen-
cy w.

For an isotropic medium with a center of inversion, the
nonlinear susceptibility tensor, x;jn(w) = xijr(—w, —w, w, w),
can be written ag3435
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Xijkl(w) = Xxxyy(w)aijahl + Xxyxy(w)aikajl + Xxyyx(w)‘silajk’ (5)

with the additional relation

Xawxx (@) = Xyyyy (@) = Xyyy (@) + Xy (@) F Xy (@) (6)

Assuming that the beam propagates along the 2 axis of the
laboratory reference frame, inserting Eq. (5) into Eq. (1) and
introducing the circular basis

E."(w) = é [E,9(w) = iE, ()], )

one obtains for the circular components of the nonlinear
polarization

Py 0} = [Xeyy (@) + Xgyya (@NEL D) PE P (w)
F [2X12yy (@) F Xy (@) F Xy (@)]
X |[E. N w)PE, P (). (8)

Taking into account the permutation symmetry of the ten-
sor x with respect to the first and second pairs of indices, we
have Xiyxy(w) = Xsyy«{w), and formula (8) can be further
simplified.

Inserting Eq. (8) as a source term into the Maxwell equa-
tions, and using the slowly varying amplitude approxima-
tion, one obtains the following equation for the amplitudes
of the circular components of the field:

dE:t(+)("-’) _ 127w
dz n(w)c
+ Xayay (DE- @) PEL P (), )

2 eyy (DNEL P (@)% + 2[x g (@)

where the amplitudes E.(*)(w) are assumed to be dependent
on z. Equation (9) immediately shows the advantage of the
circular basis used here. One can easily check that
|E L (w)|? does not depend on z, i.e., (d/d2)|E.H ()2 = 0,
and Eq. (9) has simple exponential solutions.36

So far, the field has been treated classically. To describe
quantum effects such as squeezing, we need quantum equa-
tions of motion for the field operators. Such equations, the
Heisenberg equations of motion, can be obtained from the
following effective-interaction Hamiltonian2426;

H = g [k;(a, Y2a 2+ a_*%a_?) + 2x,a,%a_%a_a,], (10)

where the nonlinear coupling constants x; and k, are real and
are given by

V[ 27rhw ]2
Sy [n2(w)V] P
V| 2rho P
Ky = hl:n;(rw)wV:I 2Xayay (@) F Xaxyy (@], an

with V denoting the quantization volume.

The operators a; are the annihilation operators for the
circularly right- and left-polarized modes satisfying the
commutation relations '

lo,a*]1=6;  (G,j=+or-). (12)

The relation between the annihilation operators, which are
dimensionless, and the corresponding field operators is giv-
en by
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LA 2mwhw
E, () =i/ n;(rw)V a,. (13)

Using the interaction Hamiltonian [Eq. (10)] and the com-
mutation rules [Eq. (12)], one can easily write the Heisen-
berg equations of motion describing the time evolution of
the field operators. When ¢ is replaced by —n{w)z/c, we
obtain the following equation:

da,(z) _ .nlw)
dz '

lia Y (@)a (z) + ket (2)a(2)]a,(z). (14)

The equations for the creation operators are Hermitian con-
jugates of Eq. (14). When relation (13) is applied, Eq. (14)
reverts to the form of Eq. (9). Since the numbers of photons
in the two modes a; *a+ and a_*a_ are constants of motion,
[they commute with the Hamiltonian, Eq. (10)]; Eq. (14) has
the simple exponential solution26.37

a,(z) = expliz[ea, T(0)a,(0) + da.T(0)a-(0)]}a (0), (15)

where we have introduced the notation

=)
€ Pt
p=" (16)

c

The solutions [Eq. (15)] are exact operator solutions for the
field operators of light propagating through an isotropic
nonlinear medium and can be used for calculations of quan-
tum effects such as photon antibunching3” and squeezing.26
It has been shown that more than 90% of the squeezing
allowed by quantum mechanics can be achieved in this way,
and exact formulas as well as their graphical illustrations
have been given in Ref. 26. In this paper we use the solu-
tions [Eq. (15)] as a starting point (the zeroth approxima-
tion) in our calculations of squeezing in the third harmonic
generated by such a field.

3. THIRD-HARMONIC GENERATION FROM
SELF-SQUEEZED LIGHT

Third-harmonic generation in isotropic media is a well-
known nonlinear phenomenon; see Refs. 34 and 35 and pa-
pers cited therein. To find the quantum equations describ-
ing the evolution of the annihilation and creation operators
of the third harmonic, one can proceed in the same way as
described in Section 2. The interaction Hamiltonian de-
scribing third-harmonic generation in isotropic media has
the form

H; = hxg(e,a, + ¢,*a )@, +a,?) + He.
= 2hkq(c,Ta2a_ + c_%a_%a,) + He, 17)

where k3 is the nonlinear coupling constant

_V [27ABw) 2rhw | .
kg(2) = P \/n2(3w)V [\/ng(w)V] Xexxx(Bw)exp(iAk2),

(18)

with the nonlinear susceptibility tensor component
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Xxxxx(3w) = Xxxxx(_3w’ w, W, w)
= Xryy(8®) + X2y (B0) + Xy (Bw).  (19)

The interaction Hamiltonian [Eq. (17)] is written in two
equivalent forms by using the Cartesian or the circular basis
with the annihilation operators a, a, (or as, a-) of the
fundamental beam of frequency w and the operators c,, ¢, (or
¢4, ¢_) of the third-harmonic beam. We have assumed that
both beams propagate along the z axis, and Ak = 3k, — kg =
3w/c[n(w) — n(8w)] is the linear phase mismatch.

Using the interaction Hamiltonian [Eq. (17)] and replac-
ing t by —n(wj;)z/c, we obtain the following equations of
motion (in the circular basis):

dC;z(Z) =i n(i’w) 2K3(O)ai2(z)a¥(z)exp(iAkz)’ (19'a)
d
0;2(2) = in(cw) 2K3(0)[2ci(Z)ai+(2)a;+(z)
+ c;(z)a;”(g)]exp(—iAkz). (19/b)

The equations of motion in the Cartesian basis can be readi-
ly obtained from the alternative form of the Hamiltonian
[Eq. (17)]. Here we prefer the circular basis because we use
the solutions [Eq. (15)] in our subsequent calculations. It is
seen from the form of Eqs. (19") that, were the field classical,
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where we have used the shortened notation

k= ”—(5:’“—)K3(0). @1)

If « is treated as a small parameter, Eq. (20) is easy to
iterate. To obtain the lowest-order solution, we insert the
solutions [Eq. (15)] into the right-hand side of Eq. (20). In
this paper we restrict our considerations to the lowest-order
solution and ask the following question: Can the third har-
monic be squeezed because it is generated by a self-squeezed
fundamental beam?

Thus we completely ignore the well-known mecha-
nism,?1-24 resulting from the coupling of Eqgs. (197), that leads
to squeezing, which is, however, of higher order in « than the
effect discussed here. In practice, small x means that only a
small part of the fundamental beam intensity is transferred
to the third-harmonic beam. Our approximation is thus
justified if the intensity (power) conversion ratio is suffi-
ciently low.

If the third-harmonic beam is initially, i.e., for z = 0, in the
vacuum state and the fundamental beam is in a coherent
state, then, using Eq. (20) together with the solution [Eq.
(15)] and the commutation rules [Eq. (12)], one can easily
obtain the following expression for the normally ordered
variance of the in-phase component of the third-harmonic
field component with right circular polarization:

GlAler @) + et @N%E) = Cley) + e, T(@)]%) = (cp(2) + ¢, T (2))?

= —8K2j dz’] dz”[Re o, e 2 exp(i(z’ + 2”)(Ak + € + 20) + {exp[i(z’ + 2”)(2e + 08)] — 1}la, [?

0 0

+ {exp[i(z’ + 27)(e + 26)] — 1}la_|? + iz”(5¢ + 45)) — Re o, *a_2 exp(i(z’ + 2”)(Ak + ¢ + 20)

+ lexp[iz’(2¢ + 8)] + expliz”(2¢ + 8)] — 2o 2 + fexpliz/(e + 26)] + expliz” (e + 26)] — 2la_[?)

— lagl*la_|? exp(—i(z — 2”)(Ak + € + 26) + {exp[—i(z’ — 2”)(2¢ + 8)] — L}]e, 2

+ {exp — i(z’ — 2”)(e + 20)] — Yla_?) + |a,|*la_|? exp(—i(2 — 2”)(Ak + € + 20)

+ fexp[—iz/(2¢ + 6)] + expliz”(2¢ + 6)] — o, > + fexp[—iz'(e + 20)] + expliz” (e + 26)] — Zla_P)], (22)

there would be no third-harmonic generation for a circularly
polarized fundamental beam (both circular components of
the fundamental beam appear on the right-hand side of the
equation for the third harmonic). For quantum fields this
statement is no longer true. The coupling between the oper-
ators of the third-harmonic and fundamental beams de-
scribed by Eqgs. (19’) leads to squeezing in the third-harmon-
ic or the fundamental beam.?12¢ However, the fundamental
beam itself varies because of its self-interaction described in
Section 2, and this fact should be taken into account when
we consider squeezing obtained from the third-harmonic
process. In fact, we should add the two Hamiltonians [Egs.
(10) and (17)] when we write the equations of motion for the
fundamental beam. Since we have already solved the evolu-
tion equations resulting from the Hamiltonian [Eq. (10)] and
since the solutions are given by Eq. (15), we simply use these
solutions as zero-approximation solutions in solving Eqs.
(19). Equation (19’a) can be integrated formally, giving

*

e, (2) = ¢, (0) + 2ik jz a,X(2)a-(2)exp(idk2)dz,  (20)
o

.where a and «_ are the initial complex amplitudes of the

circular right and left components of the fundamental beam,
which was assumed to be in a coherent state. The corre-
sponding expression for the left circular component can be
obtained from Eq. (22) by replacing all the plus subscripts
into minus subscripts and vice versa. The expression for the
out-of-phase component can be obtained from Eq. (22) by
changing the signs of the phase-sensitive Re terms. The
variance [Eq. (22)] is equal to zero if there is only one circular
component {cy or a-) in the incoming beam. If the incom-
ing beam is linearly polarized along the x axis, we have oy =
a_ = a/y2, where |a}2 is the average number of photons in the
incoming beam. In this case formula (22) is considerably
simplified but still remains quite complicated because the
integrations cannot be performed analytically. To calculate
the variance for the x component of the third-harmonic
field, we have recourse to the relation

(:[A[cx(z) + Cx+(z)]]2:> = 1/2{<1[A[C+(2) + C++(Z)]]23)
+ C[Ale_(2) + c_T(2)]]%)
+2(:Ale,2 + ¢, (2)]
X Ale_(z) +c_*(2)]),  (23)

so)e)S pazaanbg -




Squeezed States.

1630 J. Opt. Soc. Am. B/Vol. 4, No. 10/October 1987

where the colon stands for normal ordering of the operators.
To simplify formulas (22) and (23) further, we assume here
that the nonlinear coupling parameters ¢ and 8, defined by
Egs. (16), have the same value. This is the case when only
the transitions J = 1 <> 1 and 0 < 1 contribute to the
susceptibility tensor of the medium.3” This assumption,
however, is not crucial for squeezing considerations, but it
simplifies the formulas, and this is why we use it here. With
this assumption, for linear polarization of the incoming
beam, we have

Kielich et al.

(6 (2)e,(@) = lalfe? sin? 5 Z<§)2 (28)

with intensity-dependent mismatch given by Eq. (27). The
linear phase mismatch Ak can be compensated for by tuning
the laser to the anomalous dispersion region and adding an
appropriate amount of buffer gas.3435 Even if perfect linear
phase matching is achieved, the nonlinear intensity-depen-
dent mismatch appears, thereby lowering the third-harmon-
ic intensity.38 For perfect linear phase matching, according
to Eq. (27), we have 8 = 3¢|al?2, and Eq. (26) takes the form

Glale,@) + e, @)N1%) = 2(¢:[Aley(2) + e (@]]%)

= —92x%|af® r dz’ r dz” (expi[cos 3e(z’ + 2”) — 1]|alBcos[(Ak + 36)(z’ + z7)
0 o

+ 9¢z” + |af? sin e(z” + 2”)] — expl(cos 3ez’ + cos Bez” — 2)|al?]

X cos[(Ak + 8€)(z’ + 2”) + |al*(sin 3¢z’ + sin 3ez”)] — expi[cos 3e(z’ — 27) — 1] |/}

X cos[(Ak + 3€)(z" — 2”) + |al? sin 3e(z’ — 2”)] + exp|(cos 3ez’ + cos 3ez” — 2) |al?]

X cos[(Ak + 3e) (2’ — 2”) + |al*(sin 3e2’ — sin 3ez”)]). (24)

In a real physical situation, the nonlinear coupling parame-
ter ¢ is very small, and it is safe to assume that ez « 1 and
that, for a great number of photons in the incoming beam
(lal2 >> 1), we have ez|al? of the order of unity.

Treating ez as a small parameter, we can expand the inte-
grand of Eq. (24) into a power series and retain only the
leading terms. We then have (ez «< 1)

¢:lAle,(2) + e, @]%)
~ 22%|al® r dz r dz”{9e2” sin[(Ak + 3elad?) (2’ + 2)]
o o

+ 18¢%|al?2’2” cos[(Ak + elal?)2’]
X cos[(Ak + elal?)2]}. (25)

The second term in expression (25) can be written as the
square of a single integral and thus is always positive. So it
is the first term that plays the crucial role in obtaining
squeezing in the third harmonic. This term, proportional to
9¢, appears because the commutation rules [Eq. (12)] were
applied; it would not appear if the fields were classical. For
the out-of-phase component the sign of this term is changed.
After performing the integrations in expression (25), we ob-
tain for the in-phase component (upper sign) and the out-of-
phase component (lower sign) of the third-harmonic field
the following expressions for the normally ordered vari-
ances:

x (:[Ale,(2) £ ¢, F(2)]]1%)

- 18k%|af%ez®

o {:I:[Z cos 8 — cos 28 — 1 + B(sin B — sin 28)]

+ 2¢|al?2

[cos 8 —1+ 8 sin 6]2}, (26)

where we have used the notation
8 = (AR + 3¢lal?)z. @7

Within the same approximations, for the average number of
photons of the third harmonic we have

+ ¢[Ale, (@) £, T @) = % {£3[2 cosB—cos28—-1+ 8

X (sin B — sin 268)] + 2[cos 8 — 1 + BsinB]3, (29)
where

- 3x2| 622 ~ I(8w)
laef? Ip(w)

is the dimensionless power-conversion ratio, the value of
which determines the fraction of the initial power that has
been transferred to the third harmonic. So, finally, we have
derived a relatively simple formula [Eq. (29)] for the third-
harmonic field variances. For comparison, we refer here to
the formula for the variances of the fundamental beam’s
field operators, as derived from the exact formulas given in
Ref. 26, when the approximations used in this paper are
applied. The formula reads as

+(:[Ala,(2) £ a,"(2)]]%)

~ % I:g F (sin % + gcos 23—6)], (31)

(30)

where, again, 8 = 3¢|al22.

In Fig. 1 we have plotted the normally ordered variances of
the in-phase component of the fundamental beam [upper
sign in expression (31)] and of the out-of-phase component
of the third-harmonic beam [lower sign in Eq. (29)], assum-
ing for the conversion ratio [formula (30)] a value of = 0.1
(10% power conversion). Negative values of these variances
signify squeezing in the corresponding components of the
field. A considerable amount of squeezing in the third-
harmonic field can be achieved in this way, and the strong
correlation between squeezing in the fundamental beam and
squeezing in the third-harmonic beam is clearly visible in
Fig. 1. This is a new mechanism by which squeezed states
can be produced in the third-harmonic field. It consists of
the generation of a third-harmonic field by the self-squeezed
light of the fundamental beam. One can say, looking at Fig.
1, that squeezing from the in-phase component of the funda-
mental field is, in a sense, transferred to the out-of-phase
component of the third-harmonic field. However, there is
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Fig.1. The plots represent the following: 1, the normally ordered
variance of the in-phase quadrature component of the fundamental
beam; 2, the normally ordered variance of the out-of-phase compo-
nent of the third-harmonic beam; and 3, the mismatch function
sin2(8/2)/(8/2)2. All curves are plotted versus 8/3 = elal2z.

no such simple correlation for the other components of the
fundamental and third-harmonic fields. According to Eq.
(29), the efficiency of squeezing in the third-harmonic field_
is proportional to the conversion ratio % and increases if 7
increases. We must bear in mind; however, that we have
ignored the coupling of the third harmonic back to the fun-
damental field [Eqgs. (19’b)], and our approximation breaks
down for large 5. We have also plotted in Fig. 1 the intensi-
ty-dependent mismatch function appearing in formula (28)
for the third-harmonic intensity. Figure 1 shows that, for
the values of 8 for which squeezing has its maximum, the
intensity still retains 75% of its value for perfect phase
matching.

When the linear mismatch is much greater than the inten-
sity-dependent nonlinear mismatch, i.e., 3¢lal? « |A%|, then,
according to Eq. (26), the amount of squeezing is proportion-
al to 3elaf2/ |Ak| <« 1, and only weak squeezing can be pro-
duced in the third-harmonic field.

4. CONCLUSIONS

In this paper we have considered a new way of producirig
squeezed states in the third-harmonic field generated in
isotropic media. In such media, two nonlinear processes,
both of third order, take place simultaneously: (1) nonlin-
ear propagation of the optical field at frequéncy w and (2)
third-harmonic generation. It has been shown?%26 that non-
linear propagation of the fundamental beam can lead to self-
squeezing of light. On the other hand, it has also been
shown?21.2¢ that squeezing can be obtained in the third-har-
monic field without taking into account the changes in the
fundamental beam caused by nonlinear propagation. In
this paper we have shown that nonlinear propagation of the
optical field at frequency w can be a source of squeezing in
the third-harmonic field thereby generated. This mecha-
nism of producing squeezed states in the third-harmonic
field is completely different from the one already known.
The fundamental beam becomes self-squeezed in the non-
linear propagation process, and this squeezing is transferred
to the third-harmonic beam during the generation process.
We have obtained analytical formulas that describe the nor-
mally ordered variances of thesin-phase and out-of-phase
quadrature components of the third-harmonic field. We
have shown that a considerable amount of squeezing in the
third harmonic can be obtained in this way. If 10% of the
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initial power is transferred to the third harmonic, the
amount of squeezing in the third-harmonic field reaches 34%
of the value allowed by quantum mechanics. This amount
can be even higher if the conversion ratio increases. For
higher conversion ratios, however, the approximation used
in this paper breaks down, and Egs. (19’) should be used to
solve the problem; however, this is a difficult task. It was
shown?12¢ that the iterative solution of Eqs. (19’), when
nonlinear propagation effects are not considered, leads to
squeezing of the order of «* in the third harmonic. So the
nonlinear propagation effect considered here, which is of the
order of «2, should be dominant whenever « is small.

Squeezing, which is a phase-sensitive effect, will generally
depend on the initial phase of the field and may not attain its
maximum value for our choice of the phases (in-phase and
out-of-phase components). For the propagation effect, the
initial phase dependence was discussed in Ref. 26. To keep
the formulas as simple as possible we do not discuss this
dependence here.

We should also emphasize that, to obtain considerable
squeezing in the third harmonic, the linear mismatch that is
due to dispersion of the refractive index of the medium
should be made much smaller than the intensity-dependent
nonlinear mismatch. On the other hand, a large nonlinear
mismatch lowers the third-harmonic intensity3® and does
not permit us to obtain conversion ratios close to unity.
This difficulty may be overcome by using beam focusing to
compensate for the nonlinear phase mismatch.3®

ACKNOWLEDGMENT

This research was supported by the Polish Government un-
der grant no. CPBP 01.07.

REFERENCES

. D.F. Walls, Nature 306, 141 (1983), and references therein.

D. F. Walls and P. Zoller, Phys. Rev. Lett. 47, 709 (1981).

. L. Mandel, Phys. Rev. Lett. 49, 136 (1982).

. Z. Ficek, R. Tana$, and S. Kielich, Opt. Commun. 46, 23 (1984);
Phys. Rev. A 29, 2004 (1984).

. W. Vogel and D. G. Welsch, Phys. Rev. Lett. 54, 1802 (1985).

oo =

. D. Stoler, Phys. Rev. Lett. 33, 1397 (1974).

G. J. Milburn and D. F. Walls, Opt. Commun. 39, 401 (1981);

Phys. Rev. A 27, 392 (1983).

. H. J. Carmichael, G. J. Milburn, and D. F. Walls, J. Phys. A 17,

469 (1984).

10. C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).

11. H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 334 (1979).

12. R.S.Bondurand, P. Kumar, J: H. Shapiro, and M. Maeda, Phys.
Rev. A 30, 343 (1984); P. Kumar and J. H. Shapiro, Phys. Rev. A
30, 1568 (1984).

13. J. Pefina, V. Pefinova, C. Sibilia, and M. Bertolotti, Opt. Com-
mun. 49, 285 (1984).

14. M. D. Reid and D. F. Walls, Phys. Rev. A 31, 1622 (1985).

15. P. A. Lakshmi and G. S. Agarwal, Phys. Rev. A 32, 1643 (1985).

16. M. S. Zubairy, M. S. K. Razmi, S. Igbal, and M. Idress, Phys.
Lett. A 98, 168 (1983).

17. R. Loudon, Opt. Commun. 49, 67 (1984).

18. W. Becker, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett 48,
475 (1982).

19. P. Meystre and M. S. Zubairy, Phys. Lett. A 89, 390 (1982).

20. L. Mandel, Opt. Commun. 42, 437 (1982).

21. M. Kozierowski and S. Kielich, Phys. Lett. A 94, 213 (1983).

22. L. A. Lugiato, G. Strini, and F. de Martini, Opt. Lett. 8, 256

(1983).

0 =~ o o

©

A. Heidmann and S. Reynaud, J. Phys. (Paris) 46, 1937 (1985). °




Squeezed States |

1632  J. Opt. Soc. Am. B/Vol. 4, No. 10/October 1987

23. J.Pefina, V. Pefinova, and J. Kodousek Opt. Commun. 49, 210
(1984).

24. S. Kielich, M. Koz1erowsk1, and R. Tana$, Opt. Acta 32, 1023
(1985).

25. M. dJ. Collett and D. F. Walls, Phys. Rev. A 32, 2887 (1985).

26. R. Tana$ and 8. Kielich, Opt. Commun. 45, 351 (1983); Opt.
Acta 31, 81 (1984).

27. A. Heidmann, J. M. Raimond, 8. Reynaud, and N. Zagury, Opt.
Commun. 54, 189 (1985).

28. M. D. Levenson, R. M. Shelby, A. Aspect, M. D. Reid, and D. F.
Walls, Phys. Rev. A 32, 1550 (1985).

29. M. W. Maeda, P. Kumar, and J. H. Shapiro, Phys. Rev. A 32,
3803 (1985).

30. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F.
Valley, Phys. Rev. Lett. 55, 2409 (1985).

31. M.D.Levenson, R. M. Shelby, R. G. DeVoe, and S. H. Perlmut-
ter, in Digest of Internatwnal Quantum Electronics Confer-

Kielich et al.

ence (Optical Society of America, Washington, D.C., 1986), p
56.

32. H.J.Kimble and J. L. Hall, in Digest of International Quantum
Electronics Conference (Optical Society of America, Washing-
ton, D.C., 1986), p. 86.

33. P.D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett.
12, 57 (1964).

34. 8. Kielich, Nonlinear Molecular Optics (Nauka, Moscow,
1981).

35. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New
York, 1985).

36. P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).

37. H. H. Ritze, Z. Phys. B 39, 353 (1980).

38. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Per-
shan, Phys. Rev. 127, 1918 (1962).

39. G. V. Mironov, A. K. Popov, and V. V. Slabko, Opt. Quantum
Electron. 17, 435 (1985).

S. Kielich

S. Kielich was born in Poland on Novem-
ber 10, 1925. He obtained the B.Sc. and
M.Sc. degrees in physics in 1953 and
1955, respectively, from Poznafi Univer-
sity; the Dr. Phys. Sci. degree in 1960
from the Polish Academy of Sciences,
Warsaw; and the Dr. Habilitatus degree
in theoretical physics in 1964 from A.
Mickiewicz University, Poznan. S. Kie-
lich has held the following positions:
professor extraordinary (1971) and pro-
fessor ordinary (1976), A. Mickiewicz
University; associate professor (1970—
1971) Bordeaux University, France; head of the Department of
Molecular Physics (1966-1969), director of the Institute of Physics
(1969-1975), and head of the Nonlinear Optics Division (1973-
present), A. Mickiewicz University. Since 1983 he has been chair-
man of the Scientific Council, Molecular Physics Institute, Polish
Academy of Sciences, and a member of the Polish Academy of
Sciences, the Polish Physical Society, and the European Physical
Society. His scientific interests include nonlinear optics and quan-
tum optics (squeezed light). He is the author of Nonlinear Molecu-
lar Optics (PWN, Warsaw, 1977) (Russian ed., Nauka, Moscow,
1981).

R. Zawodny

R. Tana$

R. Tana$ was born in Poland on Febru-
ary 15,1946. He obtained the M.Sc. de-
gree in physics from A. Mickiewicz Uni-
versity, Poznaii, in 1969. Since 1969 he
has worked at the Institute of Physics, A.
. Mickiewicz University. He received the
Ph.D. degree in physics in 1975 and the
Dr. Habilitatus degree in theoretical
physics in 1985, both from A. Mickiewicz
University. He has been on a one year
internship at the Department of Chem-
istry, Florida State University, and at
the Department of Physics and Astrono-
my, University of Rochester. His current research interests are
centered on quantum optics, in particular on the generation of
squeezed states and autoionization.

R. Zawodny was born in Poland on De-
ember 6, 1946.
orked at the A. Mickiewicz University,
rom which he received the M.Sc. degree
n physics in 1969 and Ph.D. degree in
physics in 1977. His current research
_ interests are focused on linear and non-
linear electro-optics and magneto-op-
tics.

Since 1969 he has



