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Abstract. The two-time second-order correlation function of the electric field
spontaneously emitted by a system of two non-identical two-level atoms with
different transition frequencies and different natural linewidths is calculated from
the viewpoint of quantum beats and photon anticorrelation effects. Our analytical
solution shows that the intensity correlation exhibits quantum beats. The
quantum beats are shown to appear even if the two atoms are independent. For
identical atoms, beats appear only if dipole—dipole interaction between the atoms
is included, and they are then strongly dependent on the direction of observation
with respect to the line connecting the two atoms. The anticorrelation effect
between the photons emitted in different directions is also discussed. It is shown
that for a single-time correlation function the condition for anticorrelation is
independent of interatomic interactions. For a two-time correlation function,
interatomic interactions reduce the anticorrelation effect.

1. Introduction

The subject of quantum beats, or quantum-interference effects, has already been
discussed in a famous paper by Breit [1] and has recently become an important
method of studying atomic spectra and the various quantum mechanical interactions
that lead to different types of splitting and shifts of the energy levels. This
phenomenon results from the interference between two transition amplitudes to a
common lower level.

Another interesting problem is the interference between two independent beams
with different frequencies. Light beating resulting from the superposition of beams
from two independent sources has been demonstrated by Javan et al. [2] and Lipsett
and Mandel [3]. Mandel [4] has shown that second-order correlation functions of
light emitted by independent sources exhibit a sinusoidal dependence on the space
and time variables. This has been recently verified in experiments by
Vainshtein ef al. [5].

The presence or absence of beats in the emission of atoms has attracted
considerable attention [6-10]. The discussion has centred around two types of
atoms: one in which the transitions occur between each of two or more closely spaced
upper levels and a single lower level (type I), and another in which the transitions
occur between a common upper level and each of two or more closely spaced lower
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levels (type II). A qualitative difference in the theoretical prediction of beats in
spontaneous emission from the two types of atoms was noted by Breit [1]: if the
upper states of a type I atom are coherently excited, quantum beats in the
fluorescence intensity are predicted; on the other hand, no beats are predicted from
excitation and decay of type Il atoms. This difference has been the subject of
numerous experiments [11].

Recently, Zajonc [12] has pointed out that for single-atom emission, beats are
present in the second-order correlation function of the light emitted by type 11
atoms. Chow et al. [6], Herman et al. [7], Senitzky [8], and Agarwal et al. [10] have
discussed the presence or absence of beats in many-atom systems, showing that beats
are present in the intensity emitted by type I as well as type II atoms. However, the
atoms must radiate cooperatively in the case of type 11 atoms. These beats arise from
the interference of the fields emitted by a spatially random N-atom gas, and has been
observed by Vrehen et al. [13] in superfluorescence, i.e. in the cooperative emission
of an initially inverted system. Gross et al. [14] have reported beats arising from
interference between the light emitted by two groups of atoms with different
velocities. One should point out that in many-atom systems beats are present for
three- and more-level systems but are not present for identical two-level atoms [15].
Varfolomeev [16] and Milonni and Knight [17] considered the spontaneous decay
probability for a system of two non-identical atoms and have shown that, in special
cases, it exhibits beats.

Recently, we have studied spontaneous emission from two identical as well as
non-identical atoms from the viewpoint of quantum beats and super-radiant effects
[18]. We have shown that for two non-identical atoms the total radiation intensity in
the case when initially only one atom was excited exhibits beats. These beats vanish
for non-interacting atoms as well as for identical atoms. Moreover, beats are not
present in the case of an initially fully inverted system (both atoms excited). This is
easily understood within the framework of collective states of a two-atom system.
The Hamiltonian for a two-atom system can be diagonalized [19-21] including the
dipole—dipole interaction, giving the eigenstates

[0>={1>,11),, 'i>=(1/\/2)(]2>1|1>2i|1>1|2>2) and [2)=12),]2),

with energies =0, F, =h(w,+Q,,) and E,=2hw,, where o, is the transition
frequency between the lower state |1); and the excited state [2); of the ith atom
(/=1,2)and Q,, is the dipole—dipole interaction potential [21]. In fact, the two-atom
system is equivalent to a single four-level system with one upper state, one ground
state and two intermediate states (figure 1(a)). For identical atoms, the transition
amplitude from the subradiant state | — ) to the ground state |0) is very small, and
only the super-radiant state | + ) can radiate [20]: so, there are no quantum beats. For
non-identical atoms, the states | + > are no longer eigenstates of the two-atom system.
The Hamiltonian of the system can be rediagonalized [18] introducing eigenstates
|+ > which include the super-radiant state |+ > and subradiant state |— > (figure
1(8)). The transitions from the states |¢ ;> to the ground state [0 are allowed. For
initially only one atom excited, the initial population distributes equally between the
states |+ ) and [—). Since both channels |¢,>—|0> are open, the interference
between the two amplitudes gives quantum beats. This system is equivalent to a type
I system. If initially both atoms are excited we have the entire initial population in
the upper state |2}, and transitions |2>-+|¢ . > do not give quantum beats because we
have only one upper state (type II).
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Figure 1. Energy level diagrams for two-atom system showing the permitted transitions, in
the case of (a) identical atoms and (b) non-identical atoms.

In the present paper we investigate the two-time second-order correlation
function for spontaneous emission from a fully inverted two-atom system (type I1).
As we shall see later on, quantum beats are present in the second-order correlation
function of light radiated by a system of two identical as well as a system of two non-
identical atoms. We start from the equations of motion for the atomic operators
assuming that the atoms have different transition frequencies and different natural
linewidths. The time-evolution of the atomic variables is dependent on the
parameters A;, and u;, which describe the difference between the atomic energies
and that between their natural linewidths, respectively. This time-evolution is also
dependent on the collective parameters y;, and Q,, describing collective damping
and the collective shift in energy levels. These two collective parameters, which
provide a measure of the magnitude of interatomic interaction, determine the
collective properties of our two-atom system. We apply the solution of these
equations of motion to derive the second-order correlation function.

2. Intensity correlations
The aim of this paper is to calculate the second-order two-time correlation
function (intensity correlations):

GP(Ry, t1; Ry, 1)

2.\2
=<R ‘ > CEDR, )E TRy, 1) ET(Ry, t)E D (Ry, 1)), (1)
2nw,
for the collective spontaneous emission from two non-identical atoms, separated by
712, coupled to each other via retarded dipole—dipole near-field interaction and to all
modes of the electromagnetic field, which are assumed to be initially in their vacuum
state |{0})>. Each atom is approximated by a two-level system: the ground state
[1>;(i=1, 2) and the excited state |2); connected by an electric dipole transition. The
atoms are assumed to have the transition frequencies w; and ,, respectively, and the
corresponding natural linewidths 2y; and 2y,.
In (1), we have introduced the factor (R%¢c/2nw,)? so that

GP(Ry, t1; Ry, 1) dQpg, dQg, d¢, dt,

is the probability of finding one photon inside the solid angle element dQg, around
the direction R, in the time interval d¢, at the time ¢, and another photon inside the
solid angle element dQj, around the direction R, in the time interval d¢, at the
moment of time i,.
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The positive frequency part of the field operator E‘*)(R, ) in the far-field zone
IRy =IRy|=R>»7,7,,,

where A is the resonant wavelength, and for t > R/c, is given by the expression [18-20]

EY(R, )=EL" (R, t)— k? iR (RX”‘) S <t~}:>exp(—ikf2'ri), 2)

where k=w,/c; Wy =%(w; +w,); f; is the atomic transition dipole moment; and .S;"
and S; =(S;)" are operators that raise and lower the energy of atom 1.

Since the field is initially in the vacuum state, the vacuum part E§"(R, ) does not
contribute to the expectation values of the normally ordered correlation operator in
equation (1), and we obtain for G**(R, ¢,; R,, t,) the expression

2
GP(Ry, t;; Ry, 1) =u(R)u(R,) Z (ViVijVz)l/z

=1
x <Si{r([1)‘slj—(tz)‘sli(tZ)Sj_(tl)> exp [ik(R, - "i.f"’ﬁz )l (3)

where
L 3 .,
u(R)=-—sin" 0, 4
8n

with © the angle between the observation direction R and the atomic transition
dipole moment pu.

According to equation (3), in order to study the intensity correlation we have to
find the atomic correlation functions. To this aim we have used the equations of
motion for the atomic operators described by Lehmberg’s [20] master equation
generalized to the case of non-identical atoms [18]

d . B
ES"i(t) =~ (1 FiA)S] (1) — (7; F Q) S (1)
+ 20, TiQNS (NS NSH (1), i£] (5)

where A| = —A, =A,=%(w; —w,), and 2y, and 2y,, are the Einstein A coeflicients
for the atoms 1 and 2, respectively. The collective parameters Q;;and y;; arising from
the retarded dipole—dipole and radiative interaction between the atoms, depend on
the interatomic distance 7,,, and are defined as [18-21]
L A cos (kr, )
Ql]:%\/(yiyj){_[(Mi‘.uj)_(ﬂi.rij)(p’j U)] s

U'

Iy 30 gy ST cos (ki)
+ [ )= 34 n,-)(#,»ri,-)][s‘(r;m)’z e ]} (6)

sin (kr;;)

2\/(?”} %/[(:at Auj) (/’tl Lj)(iuj 11)] k”

. L | cos (k) _ sin (k7))
+ (A — 34 #i 7ij)]|: (krij)z (krij)3 ]}» (7)

where fi and 7, are unit vectors along the transition electric dipole moment and the
vector ry, =¥, —r, respectively. When deriving equations (5), we have assumed that
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the system is Markovian. Moreover, we have assumed that |A|<w, and that the
rotating-wave approximation (RWA) is valid [22, 23]. The Markovian approxim-
ation used in deriving these equations has been discussed by Milonni and Knight
[24].

For two non-identical atoms, equations (5) lead to a closed set of four equations of
motion for the vacuum expectation values: (ST (O)S7(®)), <{S7(H)S7 (),
(ST@S5 (0, S5 (1)ST (1)), and one equation, decoupled from the remaining four,
for (S} (0SF (S5 (DST ().

Introducing the Laplace transform

o

F(P)=$(F(t))=J F(t) exp (—pt) dt, (8)

0

this closed set of equations of motion transforms into an easily solvable system of
algebraic equations in transformed variables. The solution can be written as:

471,0(0)B(p) }

= 9
(p+2y; +2y,)det A(p)

X(t)=$—1{/11(p)X(0)+

and the remaining equation for (.S} (£)S5 (£)S; (£)S{ (¢)> has the simple solution:

(ST OS: ()87 (1)1 (1)) =p0) exp [—2(y1 +72)t], (10)

where p(0) = (S (0)S5(0)S5 (0)S7 (0)) is dependent on the initial population of the
excited states of the atoms. If both atoms are initially in their excited states, then
p(0Y=1, whereas in other cases p(0)=0.

In equation (9), X(¢) and B(p) are column vectors, defined as

X =col ((S1 87, (8587 ,{8{8,,{S; 87)), (11)
B=col (B, B,, B;, BY), (12)
where
Bi=—[2y1,22 + 47120, — A1 3Q12)2 4+ 801 571,915 — Ay uy0)],
By=—[2y,,2% —4(y 511, — A1)+ 8Q,(7,Q1 5 — Ay uy,)], (12 a)
By =[23+2iA,22 +4(Q7, —ul,)z + 8iuy (71 ,Q12— Ay yuy )],
withz=(p+7, +7,)and u,, =1(y,—7,), and A(p) is a 4 x 4 matrix with the elements
A =(=-2uy,), A,=A4,1=A4A34=A44,3=0,
A,y =(z42uy,), As;;=A%=(2—2iA,), (13)
A =A% =A%=A,=A3, =A%, =A%, =A4, = (71, +1Q,).

For further calculations one needs information about the zeros of det A(p), which
is a biquadratic polynomial in p:

det A(p)=2*+4A}, + 0%, — 1, —uf,)a? —16(y1 Q1 , —Ajyur,). (14)

This biquadratic equation (14) has two real roots and two complex conjugate
roots:

- +D,
Pi1,2 (yi+y2) =+ } (15)

P3a=—1+7) FiE,
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where we have introduced the notation
D=[—-2(A},+Q%,—u3,—»%,)+2B]"?,
E=[2(A2,+Q},—u?,—y%,)+2B]'?, (16)
B=[(A},+Q%, +ui, +71,)* —4(u,Q, + A 7,,)4 Y2

To obtain the second-order correlation function, we have to find the correlation
functions {S7(£)S; (t+1)S{(t+7)S5 (), etc. To this end, we make use of the
quantum regression theorem [25], which states that for 7> 0 the two-time average
(ST()ST(t+1)S™(t+1)S7(2)) satisfies the same equation of motion as the single-
time average {S*(£)S(¢)).

Hence from equation (5) and equations (9)-(16) we find that for two non-
identical atoms the second-order correlation function, for initially both atoms
excited, has the form:

R)u(R
GP(R,,t; Ry, t+17)= 2y1y2%2 exp [ —2w(2t+1)]

x{ X (D? cos Et + E? cosh D) + X'(cosh Dt — cos Et)
1 . : A1 . 1.
+3Y(Dsinh Dt+ Esin Et)+2mY l—)smh Dr—Fsm Et )}, 17y

where
wz%(% +72), m=(Aju;;—71,Q;,),
X=1+cos[kr,," (R1 —Ii’z)],

w2
X'= V12+W(V1V2+V12+Q 12)+ (12 —A%y) cos (kry, - Ry)cos (kry,* R,)
172
— (A2, +Q2,)sin (kr,- R,)sin (kr ,- R,)
2
A Q ~ _
_W( 12\)}1(72’-;“)12 12[sin(krn'Rl)_Sin(krlz'RZ)]
172
—AL,Q ~ ~
”‘(“j(y S feos (ke R —cos (hriz- Ry,
172

WYi2

V172)

Q,, _
+ 2122002 pin ke, Ry)+sin (kry, - Ry)],

\/(12)

Y'=—u;,sin [kr12'(R1 Rz)]+

Y=A;,sin [kr12'(R1 2)]*

[cos (kr 5" R,)+cos (kr;,  R,)]

[cos (kry," Ry)+cos (kry,- R,)]

\/(12)

UiaP12 . 5 . 5
+————[sin(kt{, R )+sin (kr,," R,)]. (18)

\/(V{J’z)
Equation (17) is the exact analytical expression for the two-time second-order
correlation function describing photon correlations in the spontaneous emission
from two non-identical two-level atoms. The time-evolution of this second-order
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correlation function is defined by the parameters u,, B, D and E, and is dependent
on the direction of observation, R, and R,, with respect to the line connecting both
atoms. The parameter D, together with the overall damping factor exp [ —2w(2¢ + 1)]
describes the decay rates of the particular terms, and the parameter E describes a
sinusoidal modulation superimposed on this smooth exponential decay. This
sinusoidal modulation describes quantum beats resulting from the interference
between transitions [2>—|+>—|0> and [2)>—>|—)>—|0> (see figure 1(a)) or
[2>—>]¢ . >—]0)> and |2)>—}¢ _ > —|0) if the atoms are non-identical (see figure 1(5)).

For =0, equation (17) reduces to
GARy, Ry, 1) =2y,7,u(Ru(Ry) exp (—4wt) {1 +cos [kryy (R —Ry)I}. (19)

This implies that the probability of finding two photons simultaneously, does not
exhibit quantum beats. Equation (19) reflects the correlation in emission and
becomes zero for 1 +cos [kr,, - (R; — R,)]=0 implying that for two directions R and
R,, for which

k., (Ry—R,)=n(2n+1), n=0,1,2,..., (20)

simultaneous emission of photons is not possible. This photon anticorrelation effect,
discussed recently by Mandel [26] and Paul [27] for independent atoms, has no
classical analogue. It is due to spatial interference between different photons, and
reflects the fact that one photon must have come from one source and one from the
other, but we cannot tell which came from which. It should be noted that the single-
time correlation function (19) is independent of interatomic interactions.

If the atoms are far apart from each other, we havey,, =0and Q,, =0, i.e. there is
no coupling between the atoms, and equation (17) leads to the equation for the
correlation function of independent atoms

GARy, 1; Ry, t4+7)=27,7,u(Ry Ju(Ry) exp [ —2e(2t +1))
x {cosh 2u;,T+cos [kry, (R, — Ry)—2A,,7]}.  (21)

Thus, over a limited space-time region, the two-time second-order correlation
function for non-interacting atoms shows a sinusoidal modulation in space and time,
which can be interpreted both in terms of interference fringes and light beats.
Equation (21) shows that interference effects are present even when the atoms
(sources) are independent. The interference term in (21) when u,, =0 is the same as
that obtained by Mandel [4], who considered the second-order correlation function
for two beams emitted by independent lasers.

As already mentioned, the interference fringes in the single-time second-order
correlation function are independent of interatomic interactions as well as of the
differences between the atoms. For the two-time correlation function, however,
these interference fringes show a different pattern. If u;, #0, i.e. if the atoms have
different natural linewidths, the correlation function (21) always differs from zero.

If the atoms are identical, we have u,,=0, A, =0 and equation (17) takes the
form

GA(Ry, 1 Ry, t+1) = 2y%u(R u(R,) exp [ —2y(2t +1)]
x {[14cos(kr ;" R)cos (k- R,)] cosh (2y,,7)
—[cos (kr,, R, +cos (kr,, - R,)] sinh (2y,,7)
+sin (kr 5" R)sin (kry, - R,) cos (2Q,,1)}. (22)
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For t=0, (22) reproduces equation (19) for the single-time correlation function
meaning that the condition (20) for anticorrelation is the same for identical as well as
for non-identical atoms. If the atoms are independent (y,, =0, Q;, =0) then even for
1#0, (22) reproduces equation (19), signifying that for identical non-interacting
atoms we obtain anticorrelations independently of 1.

Moreover, equation (22) shows that for identical atoms, the correlation function
exhibits quantum beats with frequency 2€Q,,. These beats vanish if dipole—dipole
interaction is ignored or if the atoms are confined in a region much smaller than the
resonant wavelength (kr;,«1). The amplitude of these beats depends on the
direction of observation and vanishes for directions 8, =90° or 8, =90°, where §, (0,)
is the angle between r,, and R, (R,). This directional effect, which has its maximum
for two photons detected in the direction 8, =8, =0° is connected with the fact that
the antisymametrical state | — ) does not radiate in the direction 8=90° [20]. In the
direction #=0° both states |+ > and |— ) radiate, and interference between them

leads to the quantum beats.
For non-identical atoms, however, the two states

¢+ > include the super-radiant
state |+ » and subradiant state | — ), so that emission from |¢ .. > in different directions
is possible and quantum beats appear in all directions. To illustrate this behaviour
we have plotted the general solution (17) in figures 2-4 for several values of y,/y, and
A, as well as different directions of observation.

Figure 2 shows the temporal dependence of the second-order correlation
function for interatomic separation 7, =A4/12, y, =7, and different A,,. The first
photon has been detected in the direction 6, =0° at the time t=0 and the second
photon in the direction #,=0° at the time 7. For identical atoms, the intensity
correlations exhibit small oscillations which increase as the atoms become more and
more distinct.

In figure 3 we illustrate the same situation as in figure 2 albeit now the second
photon is detected in the direction 0,=90". In this case, for identical atoms,

d%) o o
@'—_ ['2:)\/12, @1=0, @2:0

i ne5
1.0 — 450
\ -—- A12=5
08} —_— -
I N\ AQJO
. 06F
0.4
02r
0

Figure 2. Intensity correlations G'¥(t) plotted against the dimensionless time \/(ylyz)z' for
r1,=4/12,y, =y, and different A,,. The first photon has been detected at the time ¢ in
the direction 0, =0°, where 8 is the angle between r,, and R, and the second photon in
the direction 0, =0° at the time 1. G'=4y,7,u(R ) u(R,).
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Figure 3. The same as in figure 2, except that the second photon has been detected in the
direction 0,=90°.

oscillations are absent and we have a simple exponential decay of G®(1). If the atoms
are non-identical, oscillations appear and increase with increasing A, ,. According to
equation (21) for two non-interacting atoms, beats appear if the atoms have different
frequencies (A;, #0). In figure 4, we have plotted G*®(1) for A;,=0 and different
7,/7,. It is seen that for interacting atoms we have yet another mechanism leading to
quantum beats. Namely, different atomic lifetimes of atoms cause the transition
amplitudes [2>—|—) and |—)>—|0) to differ from zero. This is due to the
circumstance that the matrix elements {2|u; + p,| — > and { — |, + 5|0 are different
from zero as the atoms have different transition dipole moments. For identical atoms

2) . .
G_(Gﬁ(,ﬂ_ np=A12, ©:=0, ©,290

0

. -0
ol 7\ __22-: .
0.8\~ \\ -"6=24

AN =555
06F
04
02-

I

0 02 04 06 08

5T

Figure 4. Intensity correlations G'®(7) plotted against the dimensionless time \/(ylyz)r for
71, =A/12, A, =0 and different natural linewidths.
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(#1 = p,) these matrix elements are equal to zero; hence the transitions [2)—|— ) and
| —>—|0)> are negligibly small.

However, in contrast to the case A, , #0, this mechanism vanishes if the atoms are
mutually independent (see equation (21)).

3. Conclusions

We have studied the two-time second-order correlation function (intensity
correlations) for spontaneous emission from two non-identical atoms. Particular
attention has been paid to the appearance of quantum beats in such a system. The set
of four equations describing the time-evolution of the system has been solved by the
Laplace transform method. An exact analytical formula for the two-time second-
order correlation function has been obtained using the quantum regression theorem.

We have shown that for interacting atoms beats appear for non-identical as well
as for identical atoms. For non-identical atoms, two mechanisms lead to the
quantum beats. The one, consisting in a mixing of the states | + ) and | — ) for A;, %0
leading to new states [¢, » and [¢_ ), both of which are coupled to the ground state
|0>, gives beats for interacting as well as for independent atoms. This latter situation
is similar to the effect of interference between independent beams considered by
Mandel [4] and observed experimentally by Javan et al. [2]. The other mechanism
consists in the opening of the channels [2)—|— > and | — >—=|0) as the linewidths of
the atoms become different. It results from the circumstance that for different atoms
(py # py) the matrix elements {2{p; + p,|— > and {—|u, + ,|0> are different from
zero; thus, these transitions are allowed. However, this mechanism is dependent on
interatomic interactions, and vanishes for independent atoms.

For identical atoms, the quantum beats are strongly dependent on the direction
of observation with respect to the line connecting both atoms. If the atoms are non-
identical quantum beats are observed in all directions with respect to the line
connecting them.

Finally, we have discussed the effect of photon anticorrelation due to spatial
interference between the photons. Anticorrelation means that the joint probability of
detecting two photons at two different points is zero. For two independent
identical atoms this probability is zero if the distance between the two detectors is an
odd multiple of half the wavelength. We find that this condition of anticorrelation for
the single-time correlation function is independent of interatomic interactions and is
the same for identical as well as for non-identical atoms. For the two-time correlation
function, however, anticorrelation can appear only if the atoms are identical and
mutually independent. If the atoms interact mutually or are non-identical, this effect
is reduced.
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