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Abstract. The production of squeezed states in second-harmonic generation is
discussed theoretically from the viewpoint of the structure of the nonlinear
medium, phase-matching conditions, and the polarization state of the fields. The
nonlinear coupling constants are derived in explicit form for all 102 magnetic
symmetry groups for crystalline as well as electrically polarized isotropic media.
The phase-matching conditions are discussed in detail. Phase mismatch is shown
to accumulate along the optical path, and is calculated in full detail for various
media and geometries. We refer to this as the mismatch accumulation effect.
General formulae for normally ordered variances of the second-harmonic and
fundamental fields are derived by perturbative procedure, and are specified for
some special cases of practical interest.

1. Introduction

In recent years the problem of production of squeezed states of light has become a
challenge to both theorists and experimenters working in the field of quantum optics
[1]. Such states are characterized by reduced quantum fluctuations in one
quadrature component of the field at the expense of increased fluctuations in the
other non-commuting component. As expected, this new quantum effect should
manifest itself in optical processes in which the nonlinear response of the system to
the optical signal plays an important role. Theoretical predictions have shown that
squeezing of quantum fluctuations can occur in a variety of nonlinear optical
phenomena, in particular four-wave mixing [2—4], parametric amplification [5, 6],
harmonics generation [7-12], multiphoton absorption [13,14] and nonlinear pro-
pagation of light [11,15]. These theoretical predictions have stimulated intensive
experimental studies aimed at observations of squeezed states in a hitherto restricted
number of nonlinear processes [16-20]. As experimental research is under way and
many technical problems have already been overcome, there is a need for the explicit
form and numerical values of the coupling constants occurring in the effective
Hamiltonians [21, 22]. A more detailed description of the nonlinear medium used for
generation of squeezed states and of the conditions (phase-matching, polarization of
the exciting field, etc.) is also needed.

In this paper we discuss in detail the problem of squeezing in second-harmonic
generation in crystals as well as in isotropic media subjected to a d.c. electric field.
Second-harmonic generation is allowed in the electric-dipole approximation only in
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a medium without a centre of inversion. For isotropic media with a centre of
symmetry, second-harmonic generation is forbidden in the electric-dipole approxi-
mation and becomes allowed in the electric-quadrupole and magnetic-dipole
approximation [23].

The intensity of the second harmonic generated via multipolar mechanisms,
however, is much smaller than that generated via the electric-dipole mechanism. In
order to increase the intensity of the second harmonic the centrosymmetric medium
has to be placed in a d.c. electric field [24] which lowers its symmetry (removes the
centre of inversion). If the medium (a gas or liquid) consists of individual polar
molecules the d.c. electric field, depending on its strength, aligns the polar molecules
partially [25] or completely (electric saturation) [26]. Such molecular reorientation
can be described within the framework of Boltzmann statistics enabling us to express
the nonlinear coupling constants in terms of the molecular rotational invariants. The
latter will be tabulated in the present work for all magnetic point groups of molecular
symmetry. The effective Hamiltonian contains, in general, six different terms
describing couplings between the various polarization components of the funda-
mental and second-harmonic beams. Each term has, moreover, its own phase-
mismatch function, and the resulting mismatch functions that appear in our
squeezing formulae are different from those known for the intensity of the generated
beam. We shall give here general formulae for squeezing in both the fundamental
and generated beams that are valid for crystals as well as for molecular systems in a
d.c. electric field. Our formulae allow also for the appropriate choice of particular
configurations of the polarization states of the two beams.

2. Effective Hamiltonian and equations of motion

Second-harmonic generation is a well known nonlinear optical phenomenon, its
semi-classical description is a standard subject of textbooks on nonlinear optics [27—
30]. A strong electric field of optical frequency @ induces, in the nonlinear medium, a
polarization of frequency 2@ which in turn is the source of a field of frequency 2w
(second harmonic). The second-harmonic beam is coupled back to the fundamental
beam, so that energy is transferred from the fundamental beam to the second-
harmonic beam and back, depending on the phase relations between the two fields.
The nonlinear polarization at frequency 2w can be written as follows [27-30]:

Pl(zw) =Z xijk( - 260, @, 0))E§-+)(CO)E§C+)((D), (1)
&
and the polarization at frequency @ induced by the field of frequency 2w as
Py0)=) Yzl — 0, 20, —0)E{V(2w)E{ (), )
I3

where ¥;,(— 2w, w, w) is the tensor of the second-order nonlinear susceptibility of
the medium in the electric-dipole approximation, the explicit quantum-mechanical
form of which is well known in the literature [27-30]. For non-dissipative media the
following relation holds [30]:

Lip(—o, 20, —0) =2y (- 20,0, w), (3)
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where the two susceptibility tensors are real. The electromagnetic field is assumed to
be the sum of plane waves ‘

E)(r, t)=) E*)(kj, w)) exp[—i(w;t—k;- 1], “
J
and the intensity of the beam of frequency w is given by
1@) =20, ®)
2n

with n(w) the refractive index of the medium for the frequency w.

Using the slowly varying amplitude approximation, one obtains from the
Maxwell equations the following equations for the amplitudes of the second-
harmonic and fundamental fields [30]:

dE{VQw) i2n(2w)?
B R 200, OB @)EN©)
J

x exp (1Ak*z),

_ ? (6)
dE{(w) _ i4nw? -

& R Zk: Lin(— 20, 0, 0)E§V(20)E{ (o)

J

x exp (—iAk*z),

where in deriving the second equation we have made use of the relation (3). We have
assumed that both beams propagate in the z-axis direction of the laboratory
reference frame and that the fields have two polarization components x and y. The
propagation vectors have the values: £(2w)=n,2w)2w/c, k(w)=n w)w/c, where
n,(2w) and ny{w) are the refractive indices for the field component 7 of frequency 2w
and o, respectively. We hope that the double use of 7 as the imaginary unit and as the

Cartesian component will not lead to misunderstanding. The phase mismatch is
defined by

AR* =§[ — 271,(260) + n_,(w) + nk(w)] ™)

Equations (6) are general classical equations describing the second-harmonic
generation process. They include all possible combinations of the field components
and all possible mismatch values AkY*. The nonlinear susceptibility tensor
Yii(— 20, ®, ®) is defined in the laboratory reference frame and the fields are
classical.

To describe quantum effects such as squeezing we need equations for quantum
fields, i.e. equations for field operators. Such equations can be obtained as
Heisenberg equations from the following effective-interaction Hamiltonian

H1=th: [gi(2)bla;a, +h.c], : 8)
ij
where the nonlinear coupling constants g;;(z) are given by

2nw / 4mhw
ni(zw)ni(w)nk(w)\ |4

172 .
gin(2)= > lijk( —2w, w, W) exp (1Ak7*z), 9
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with ¥ denoting the quantization volume, which in this case is equal to the volume of
the nonlinear medium where the two beams interact. In the interaction Hamiltonian
(8), the operators a,, a, are the annihilation operators for the two modes of the
fundamental beam with polarizations along the x and y axes, and b,, b, are the
operators for the two polarizations of the second-harmonic beam. The annihilation
and creation operators satisfy the commutation rules

[a;, a}] =[b,, b}] = 5ij' (10)
Introducing quantized fields we should replace the classical fields by
2nhw \'/?
EMNw)y=i —— . 11
(@) (nz s V) : an

There are eight terms in the interaction Hamiltonian (8). Since a,a,=a,a, however,
the number of different combinations of the field operators reduces to six.

Using the interaction Hamiltonian given by (8) and the commutation rules (10)
one obtains the time evolution of the field operators (the Heisenberg equations of
motion). On replacing the time # by —nz2/c, where the refractive index n should be
chosen appropriately with respect to the field operator (for example, n,(2w) for b,
etc.), we obtain the following equations:

dby(z) _in,(20)

dz ¢ ;gijk(z)aj(z)ak(z), .
da; 2n ‘
% 1! n;(w) %‘: g}?k(z)a,t(z)bj( 2),

where again 1,7, k=x,y. The equations for the creation operators are Hermitian
conjugates of the equations (12). We thus have a system of eight coupled equations.
On applying the relation (11), equations (12) go over into the equations (6) for
classical fields. The equations (12), however, are operator equations that can be used
to describe all quantum effects related with the non-commutability of the field
operators (quantum fluctuations). Squeezing is just an effect of this kind. It will be
the subject of our present considerations.

3. General solution for squeezing effect and mismatch accumulation
The system of equations (12) does not allow for a closed analytical solution. T'o

cope with it, some approximations are needed. Equations (12) can be integrated

formally, giving

iny(

bi(z)=b(0)+

2 z
¢ s ; f ogijk(zl)ai(z’)“k(z’) dz’, (13)

@ =a0+ 2508 [ gl ) 3.
Ji

In the above form, equations (13) are easy to iterate, and a solution of given order
in the coupling constants g;; can be obtained. This iterative procedure can be
stopped short at the lowest non-vanishing term whenever the intensity of the second
harmonic is much smaller than the intensity of the incoming beam. One has to keep
in mind however that equations (13) are still operator equations and that the ordering
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of the operators must be preserved in the iterative calculations. The observable
physical quantitities are mean values of the operators over the initial state of the field.
For example if the second-harmonic beam is initially (i.e. for z=0) in the vacuum
state |0)> such that 5,(0)[0> =0, the intensity of the second harmonic is given by

(20)\2
ts@y=("22Y % (Od0n0n0)
Jjhim
<[ eteras [ am@raz. an
0 0

where the integrations over 2’ account for the phase mismatch along the path z in the
nonlinear medium. Each integration can be performed explicitly, giving

J gijk(zl)dzl=gijk(0)zf1(Akijkz): (15)
o
where
xp (ix)—1
fl(x)=%—, £O)=1. (16)

If there is only one polarization component, say x, of the incoming beam and if we
measure the x component of the second harmonic, then there is only one term on the
right-hand side of equation (14) and we obtain the well known result for the intensity
of the second harmonic with

2
f(Aka)[? =sin? éf—z/ (#) .

Generally, the summations in equation (14) are over the x and y components and
include all contributions to the ith component of the second harmonic.

To answer the question whether squeezed states of light can be produced in the
second-harmonic generation process, one has to calculate the normally ordered
variances of the in-phase and/or out-of-phase quadrature components of the fields
outgoing from the medium. Assuming that for =0 the second-harmonic field was in
the vacuum state and the incoming fundamental beam was in a coherent state, one
obtains from equations (13) and the commutation relations (10) the following results:

" [AafR) +al ()] )
=(a}(2)) +<a}*z)) +2{al (2)as(2)> — {a(2))*
—<af(2))*—2¢a}(2)><al2))

_ 2"'(‘”) Y20 a0a(0)

X J gﬁi(z’)J‘ gi(z")dz"d2' +c.c,, (17)
0 0
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- [AG(R)+ B2 2 )
8n,(2w)
=—7 Y. m(w)n(2m)<ai0)a,0)a,0)a,0)>

4 Jjklmpqr

x [7,(2w) J. giu(2) J ghn(z" J 8ipg(2") 2" dz" d2’
0 0 0
X f &imr(2") d2’' —n,(w) f &iu(2) J &hm ="
0 0 0

X J‘ Lipg(2") d2” j Gim(2")d2" d2” dz’} +c.c. (18)
0 0 :

The solutions (17) and (18) are general solutions obtained by retaining the first
non-vanishing order terms only. Comparing (17) and (18) to (14) it is easily seen also
that the phase-mismatch functions in the variances (17) and (18) are different from
those in the intensity (14). Noteworthy is the phase-mismatch-accumulation effect

_in the variances. One could expect it to occur since the two variances are phase-
dependent quantities and in this respect differ essentially from the intensity, which is
phase independent. All integrations can be performed explicitly and similarly to
(15). We obtain

2 5
M@ +al @)=~ 0 00)

ki

X 85i1(0)q i (0Yog oty fo(— ARz, ARM2) +c.c], (19)

4
GO S wm (o)

4
3¢ Jjkimpqr

C:[AG(R)+B] ()0 : )
X 2i1(0)21m(0)2154(0)2mr(0)
X {az Japocqa,[n,-(Zw)f3(Ak“"z, — ARy ARPIVf (AR™ 2)

n’";w)f4(Ak"f"z, — ARMmz, ARIPIz, Akf'"'z)] + c-c-}, (20)

- where the o; (i =, y) are complex amplitudes of the incident beam obtained on taking
the quantum-mechanical mean value in the coherent state of the incoming field. The
mismatch functions f,, f; and f, are

”
Falos, x1) = —i [fy (3 + %) — £1.(x5)], 1)
N
Fa(g, 25, %;) = ";c—i[fz(xs: %2+ %) — fo(x3, %5)] 22)
9
Falta, a3, %3, 1) = ——— [f 234, 03+ 23+ 27)

—fa(x4, 03+ %5) —fo(x4, 203+ x1) +fo(x4, x3)]  (23)
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with the f;(x) defined by equation (16). For comparison, in the intensity (14) the
mismatch function has the form

f1(“xz)f1(x1)=%[f2(_x2, %) +fa(x1, —x3)]- (24)

All the functions f,—f, are defined in such a way as to become unity when all their
arguments tend to zero. The parameters Ak'* are defined in equation (7). So, in the
general case when all Ak are different from zero we have a rather complicated
behaviour of the variances (19) and (20) along the path z in the nonlinear
medium. Nevertheless, our formulae cover all thz complications that may arise in the
production of squeezed states in second-haymonic generation. Whenever the
variances (19) or (20) become negative we havé squeezing in a particular component
of the fundamental or the second-harmonic beam. Our formulae also include:all
possible combinations of the polarizations of the two beams. The complex
amplitudes ®; can be written as a, =] | exp (i¢;) with the real amplitude |o;| and phase
¢;. The proper choice of the initial phase of the incoming field can simplify
considerably the formulae (19) and (20). For ¢,=¢,=0 only the real parts of the
mismatch functions remain and it is evident from (19) that the in-phase components
of the fundamental beam are squeezed. A shift in phase by /2 changes the in-phase
components into the out-of-phase components. A shift in phase between the x and y
components allows for circular polarization of the incoming beam. We should also
keep in mind that the coupling constants g;;(0), which are directly related to the
nonlinear susceptibility tensor y;;(— 2w, w, ) are so far defined in the laboratory
reference frame. The components of this tensor should still be expressed by the
corresponding components in the crystallographical reference frame (for crystals) or
by the molecular parameters (for molecular media). Some special cases will be
discussed in §4.

4. Some special cases

4.1. Crystalline media

" The most popular nonlinear media used to generate the second harmonic are
uniaxial crystals. The crystals KDP and ADP are probably the best known examples
of this class. A nice feature of such crystals is the possibility of finding a direction of
propagation for which one of the A% =0 and phase matching conditions are met.
For optically negative crystals i.e. such that n(w) —n(®w) <0 (which is usually the
case) there are two possible types of synchronism [30]: type I (ooe) and type 11 (oee).
Type-I synchronism means that two ordinary components of the fundamental beam
produce an extraordinary component of the second harmonic. Type II means that
one ordinary and one extraordinary component of the fundamental beam produce an
extraordinary component of the second harmonic. If we choose our laboratory refer-
ence frame in such a way that the x component be ordinary and the y component
extraordinary, Type-I phase matching means AR**=0 and type I] means AR**=0.
In the case of perfect phase matching one can retain in equations (19) and (20) only .
one term, i.e. that term for which phase matching is satisfied. This gives us for type [
(AR =0) the conditions

) 2.2
ClA@@ =~ 22D g o) 2 eos 26, 25)

_ 4z4n;‘(2w) .

CGIAGE)+B P ) ==L gh Ol cos 4g,.  ~ (26)
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Eciuations (25) and (26) reproduce the results already known in the literature [7-11].
It is seen from .equation (19) that type-II synchronism (AR”* = Ak*™ =0) cannot be
used to produce squeezed states in the fundamental beam. For the harmonic beam
we have

4,2 2 2
Gl +b( 1 = IO oo (1 o, 2 cos 26+ ), (27

and squeezing can be.obtained with the proper choice of ¢, and ¢,. It is also seen from
(25)—(27) that for circular polarization of the incoming beam and for type-I phase
matching one half of the incoming intensity will not be effective while for type-I1
synchronism the total intensity will be effective in producing squeezed states. The
coupling constants g,,.(0) and g,,,(0) are defined in the laboratory reference frame,
and to make the above formulae applicable to crystals of various symmetry classes
the susceptibility tensors defining the coupling constants have to be transformed into
the crystallographical coordinate system (see the Appendix). If the phase matching
conditions are not satisfied there is no single dominant term contributing to the
variances. In this case it is still possible to obtain squeezing, but all contributions
must be added according to equations (19) and (20). Some simplifications can be
achieved owing to the symmetry of the crystal, as is seen from table 1.

4.2. Weakly oriented molecular media

It has been shown some time ago that molecular media placed in a d.c. electric
field can be sources of second-harmonic generation [26,29]. In the classical
statistical-molecular approach the macroscopic tensor of nonlinear susceptibility can
be written as [26]

Xz]k( 260 @, W; EO) P f(ﬁl]k +))t]klE?+ )f(Q’ EO) dQ) (28)

where p=N/V denote the number density of molecules whose orientation Q with
respect to the d.c. field vector E° is glven by the classical distribution function
AQ, E%).

In the expansion (28) the tensor ﬂuk describes the second-order nonlinear
polarizability of the molecules. The variation of this tensor owing to the d.c. field is
described by the tensor y,zji’, The frequency dependence of the two hyper-
polarizability tensors can be derived from the classical Lorentz-Voigt theory or
quantum-mechanically using the Kramers—Heisenberg formulae [27-31].

If the molecules are polar and have a permanent electric-dipole moment g, then
in a linear approximation with respect to the static field E® the Boltzmann
distribution function takes the form [26] :

EO
fQ, E°)—f(9)(1+ kT ) (29)

where f(€2) is ‘the distribution function in the absence of an external field,
corresponding to entirely random orientation of the molecules.
According to (28) and (29) we have in the linear approximation

xuk (EO) p[<?ukl>ﬂ <ﬁuk:ul>ﬂ]E?' (30)
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The rotational averaging in (30) can be performed explicitly [29], and assuming
that the d.c. field is directed along the y axis we obtain for the macroscopic tensor
x,-zjﬁ’ (E®) (we use here a shortened notation) the following non-zero components:

xxxy(Eo) Xxyx(Eo) = _[: ‘Yaaﬂﬂ yaﬂﬂa (3ﬁaaﬂ”ﬂ p:;ﬁ?ﬂa):IEg

1 31
lyxx(Eo) __|:27aﬁﬂa ‘Yazt:t)?ﬁ + ﬁ(2ﬁazzﬂﬂﬂa ﬂaaﬂ”ﬂ)]E)? ( )

To(E9) = 2035(ED) + 135 ED),

where summation is to be performed over repeated Greek indices. On performing
this summation and using the available tables {32] defining the relations between the
non-zero components of the nonlinear polarizability tensors B2, and yZ25;, we have
found the explicit form of the susceptibility tensors (31) for all 102 magnetic point
groups of molecular symmetry. The results are given in table 2. For isotropic media
there are only four non-zero components of the nonlinear susceptibility tensor and
only three of them are different. The two molecular mechanisms contributing to the
second-harmonic generation process are clearly visible in equations (31). The one,
described by the tensor yf,;’y‘, is related to distortion of the electronic structure in the
d.c. electric field, whereas the other is related to the alignment of the permanent
molecular dipoles along the d.c. field direction [29, 33].
Such a medium has no linear anisotropy and

n(0) = ny(@) =n(w), n,(2w)=n,20)=n2w).

Thus, the refractive indices are distinguished only by their frequency dependences
due to dispersion. This means that all Ak"* defined by equation (7) are the same and
do not depend on ¢jk. This fact simplifies considerably the general formulae (19) and
(20) for squeezing in such a system. We have in this case

2 2
(A @)+ a1 > =~ (0 (000 +,,,(0)22)

X fo(—Akz, Akz)+c.c.  (32)

where we have taken into account (31). It should be noted here that only the y
component of the fundamental beam can be squeezed. This is due to our choice of the
direction of the d.c. field. The detailed molecular form of the coupling constants
£:(0) for various symmetry groups can be found using table 2. If the phases ¢, and
¢, of the incoming beam are zero, we have a still simpler expression

=2 n(w)n(Zw)

< [May(z) +al(2))?: )= Zyx(0)[Zyxx(0)lot

+8,,,(0], 1?12 Re fo( — Akz, Akz),  (33)

where

‘ Ak
Ref,(— Akz, Akz)=sinc? Tz’ 34)

with sinc x =sin x/x. In this case we obtain the standard mismatch function known
from the intensity formula.
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Table 2. The components J,..(—20; @, ®; E;’) and 2,(—2w; 0, @, E;’) of the susceptibility tensors for
all 102 magnetic point groups, in the case of weak reorientation.

lxxy( - 260; @, a; Eyo)

nyx( - 260; @, @; E;?)

Magnetic point groups g1 +3g,—1g, Uy tu,tuy; g —8,+28; witwyt+wg
1, g1+38,—325 uytu,tus  g1—g+28 witw,+w;
1,1,2/m, 2/m, 2[m, 2|m, 222, 222, mmm, gl‘*‘%gz—%gs 81—8:t28;
mmm, mmm, mmm,
m, m ga1+38:— % uytuy 81821285 wy +w,
2 2 mm2 mmZ me g1+%g2—'%g3 Uy gl_g2+2g3 Ws
4, f 4mm, 4mm, 4mm, 84+385—3L6 Uy £4—8s+286 Wy
K 4, 4/m, 4/m 4/m, 4jm, 422, 422,422, g, +3gs—igs 0 g4—8s+2g6 0
ZZm 2m, Jm2, ¥2m, 4/mmm :
4/mmm 4/mmm 4/mmm 4/mmm,
4/mmm,
3, 3m,.3m, 6, 6, 6mm, 6mm, 6mm, 0,
oom, cOm, &7 Uy 811 Wy
3, 3, 32, 32, 3m, 3m, 3m, 3m 6, 6, 6/m, 6/m, g, 0 811 0
/m 6/m, 622 622 622 6m2 62m, 6m2,
6m2, 6/mmm 6/mmm, 6/mmm, 6/ mmm,
6/mmm, 6/mmm, co/m, 00/m, 00/mm,
00 /mm, oo/mm
23, m3, m3 gs 0 812 0
432 432 43m, 43m, m3m, m3m, m3m,
m3m &o 0 813 0
Y, Yy, K, Ky 810 0 814 0
P
g4=E(2V1111 +73333)Ey,
2p 0
gs=E(Y1122+71133+73311)Ey,
2p o
g6=E(YI221+YI331+}'3113)E}U
p
g7=E[)’3333+771122+3(71133‘*‘3’3311)""71221"')’1331“3’3113]E3,
p
gs=w[2?3333+3(’}’1122"‘72211)—}’1221—72112]E3,

P
&9 =§(Y3333 + 371122 —71221)E,?,

g10=PV1122E;?,

&11 —_[73333+271122+671221 —2(71133+¥33110) 401331+ ¥3113)1EY,

p
£12 ='5“[73333—7’1122_

p
g13=§(73333 ~2¥1122+471221)E5,
g14=p'y1221E?,,

pusE)
Uy= 152; (B33s+3B113—Bs11)s
pusE
sEy (B333—2B115+4B511).

RRPTTY

Y2211 +2(P1221 +?2112)]E3,
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The corresponding formulae for the second-harmonic field are

4,2
G [AGy(a) +bNP ) =22

X 06221y(0)[66,,(0)668,xx(0)(0% +03) +(66g3,,(0)
+£2,(0) +4g2,, (0002021 F(ARz) +c.c.,  (35)

42*n3(2
CIAGy @) +BEIP ) =)

X [g;.xx(o)a: +g§yy(0)a; + (gsyy(o)gyxx(o)
+84yy(0)g5xx(0) +42,,,(0)2,,.(0)g2, (2] 1 F(Akz), +-c.c.,  (36)

where we have used the notation

~
F(Akz)=n(2w)F,(Akz)— "(;’ )F(Akz)
=n2w)f5(Akz, —Akz, Ak2)f,(Ak2)
—"(g’)f4(Akz, — Akz, Akz, Akz). (37)

It is worth noting that the expressions (35) and (36) become negative if we take
¢,=¢,=m/4. This now corresponds to a change of the in-phase component b;+ b}
into the out-of-phase component i(b;—b]) of the second-harmonic field. With this
choice of the initial phases, the mismatch is described by the real part of F(Akz) only.
We then have

12 Akz
R F A —Z . 2 o 2 2R< .
e F(Akz) Ak2)? —2 sinc® Akz —sinc > sinc 2Akz}
_ (38)
Re F,(Akz) =————] 2 sinc Akz —sinc? Akz —sinc? Akz
2 (Akz)?| 2 |

Equations (38) show that even in this simple case the mismatch function is rather
complicated, although it involves typical sinc x functions. The mismatch functions
(34) and (38) are illustrated graphically in the figure. It is seen that the functions (38)
have peaks much narrower than the peak of the function (34). They moreover change
their signs when the mismatch becomes sufficiently great, and squeezing in the
second-harmonic beam is lost. This means that the second-harmonic beam is much
more sensitive to the phase mismatch than the fundamental beam.

A further simplification of the formulae (35) and (36) is obtained if there is only
one polarization state (x or y) of the incoming beam. This reduces the number of
terms to one. Even in this case however the mismatch function.remains unchanged.
To write the formulae for a circularly polarized incoming beam it suffices to put
¢,=¢,+7/2. This of course, again does not affect the mismatch function. The
formulae (35) and (36) are valid for an arbitrary choice of the initial phases of the
incoming beam. In general, also Im F(Akz) contributes to the variances.
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1

-0-5

Plot of the mismatch functions: the functions: (1) Ref,(—Akz, Akz2); (2) Re F,(Akz); and
(3) Re F,(Akz).

4.3. Strongly oriented molecular media
If the d.c. electric field is strong, the linear approximation used in §4.2. is not
justified. In this case the averaging in (28) has to be performed with the distribution
function [26]
#Q, E%) = exp (p cos 0) ’ (39)
Jexp (p cos 8) dQ

which is valid for axially symmetric dipolar molecules with the angle 0 between the
dipole moment g and the electric field E°. The parameter p=puE°/kT. Since in the
strong field the molecular reorientation mechanism is predominant we neglect yﬁ,‘,"yé
in our further considerations. The nonlinear susceptibility tensor 2 I (E;,)) can now
be written in the form [26]

Xxxy EO) lxyx(Eo)_“[(pssa ﬁ31 VL (p)
+(2B303+ B30 — B3S3)LA(p)],

N EO)_‘[(ﬁsss 2B303+ B301)L4(p) 40)

+(2B305+ B30 — B333) La(p)],

vly;;(Eo) P[(2ﬂ113+ﬁ311)L1(P)
+ (355 —2Bi%s— 311)L3(P)],‘
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where L,(p) and L;(p) are generalized Langevin functions that are defined
analytically and illustrated graphically in [26,29]. Similarly to the weak re-
orientation case there are four non-zero components of the susceptibility tensor. The
difference resides in their molecular contents. If the field is so strong that all the
molecular dipoles are aligned along the d.c. field direction, the’ Langevin functions
tend to unity (for p— &), and the susceptibility tensor components (40) are expressed
directly by the components of the molecular hyperpolarizability tensor [33,[,‘;, Sointhe
case of electric saturation the susceptibility tensor is of an exceptionally simple form.
It has non-zero components for the following molecular symmetry groups only: 3, 4,
4,6, 6, o0, 3m, 3m, 4mm, 4mm, 4mm, 6mm, 6mm, 6mm, com and com. For the
remaining symmetry groups the tensor vanishes.

The formulae for squeezing have exactly the same form as in the case of weak
reorientation, except for the values of the susceptibility tensor components.

We have assumed here that the molecules are mutually independent, i.e. that
there is no interaction between them. In dense fluids, however, the many-body
mutual interactions of the molecules [34] (the short-range and long-range forces),
the Lorentz or Onsager local fields [35, 36], and fluctuations of the molecular fields
[29, 34] play an essential role and should be taken into account.

5. Conclusions

" We have derived general results for normally ordered variances of the second-
harmonic and fundamental fields when the two beams have traversed a distance z in
the nonlinear medium. Our results are then specified for crystals as well as for
electrically oriented isotropic media. The structure of the nonlinear medium which
is crucial for the second-harmonic generation process is considered in detail. The
non-zero components of the nonlinear susceptibility tensor responsible for second-
harmonic generation are calculated explicitly for all symmetry groups of crystals and
molecules. Our results include moreover all possible mismatch functions. We have
shown that in squeezing the mismatch functions are different from those that hold
for intensity. Mismatch is found to accumulate along the optical path. We refer to
this novel result as the ‘mismatch accumulation effect’. Squeezing as a phase-
dependent effect is in this respect different from intensity. The phase matching
conditions for crystals are also discussed in detail, In particular, when the phase-
matching conditions are satisfied our results reproduce the results known in the
literature. Our formulae include two possible polarizations of the harmonic and
fundamental beams and can be easily applied for circular polarization of the
incoming beam. We have shown that oee synchronism cannot be used for producing
squeezed states in the fundamental beam. For isotropic media, the formula for
squeezing in the fundamental beam has a quite simple form with the same mismatch
function as for the intensity. For the harmonic beam the formulae for squeezing are
more complicated but still accessible to interpretation. Our results showing the
possibility of squeezing in second-harmonic generation give at the same time an
account of some possible complications that can appear in real experiments.

Appendix

The coupling constants occurring in formula (9) are defined in the laboratory
- frame of reference, chosen with its z axis in the propagation direction of the two
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beams. To gain information regarding the influence of crystal symmetry on the
generation of second harmonics and/or squeezed states we have to express the
susceptibility tensor components g, 5(— 2w; @, w) of formula (9) by way of suscepti-
bility tensor components Z,;,(—2w; w,w) in the crystallographical system of
reference X, Y, Z.

The laboratory system of coordinates x, ¥, 2 goes over into the crystallographical
system of coordinates X, Y, Z on two successtve rotations: the first about the 2 axis
by an angle ¢, and the second about the new 3’ = Y axis by an angle 0. In this way, the
following well known transformation relation is fulfilled between the susceptibility
tensor components in the two systems of reference:

Ligiy( — 20; @, @)= CiyCipCry Xupy( — 200; 0, @), (A1)
where the C;, are elements of the transformation matrix

cosfcos¢ cosfsingg —sinf
C= —sin¢ cos @ 0 , (A2)

sinfcos¢ sinfsing cosd

with the indices i, 7, k referring to the laboratory coordinates and taking the values
x,9, 2, and a, B, y referring to the crystallographical coordinates and taking the values
X Y, Z

On carrying out the transformation, we obtain

Tyyy(—200; @, w)=ay, (A3)
Ayxx{ — 205 0, 0) =b + b, + b3, (A4)
Ly — 20, 0, @) =c1 + ¢+ €3, (A5)
Lxxx(— 205 0, @) =d; +d; +ds, - (A6)
Ly — 200; 0, W) =€ t+ e, +e3, (A7)
Ly —20; 0, @) =f, +f,+13, (A8)

where

a; = —sin @[sin’ ¢ Lyxx +cos” PQyyx + Axyy)]

+ cos P[cos® ¢ Lyyy +sin® P2xxxy + Ayxx)], (A9)
by Z% sin 20 sin 2¢(Xxxz — Lyvz), (A10)
b,=sin 26(sin? DAxyz— cos® @ Ayxz)s (Al1)

by =cos® 8{sin ¢[cos® d(— xxxx+ 22yyx) —sin® ¢ Lxyy]

+cos P[sin® ¢(Xyyy — 2xxy) +cos® ¢ yxxl}

sin? 0(—sin @ g7z +cos ¢ Ayzz), , (A12)
¢y =4%sin 20sin 20(Lxxz—~ Ayyz + Xzxx — Azyy)s (A13)
¢2=75in20(—cos 2 1 zxy — c0s> @ Yxyz +5in® @ Ayxz), (A14)
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3= cos? O{Sin d’[COSZ &(—Axxx+ Lxyy) +c0s 2¢ Yyyx]
+cos P[sin? ¢(xyyy — Zyxx) +cos 2¢ Axxy1}

+sin? (—sin ¢ yzzx + cos ¢ Azzy), (A15)
d; = —sin® 0 3,,,—cos? O sin O[cos® d(2xxxz + Xzxx)

+sin® $(tyyz+ 2zv1) | (A16)
dy=—cos? 0sin 0sin 2¢(Xxyz + Ayxz+ Azxv); (A17)

dy= cos® 9{003 ¢[c052 & txxx+ sin? OQyyx + Lxyy)]
+sin ¢[sin® ¢ gyyy + cos® PLxxxy + Ayxx)1}

+ cos 0sin® O[cos (A zzx + Axzz) + sin G2 zzy + Ayz2)), (A18)
e; = —sin 0(sin® ¢ gzxx +cos” @ xzyy), (A19)
e, =sin 0sin2¢ x,xy, » (A 20)
e3=cos 0{cos P[sin® ¢(xxx — 2Ayyx) +cos’ & Axyy]

+sin ¢cos® p(tyyy — 2txxy) +5in®  gyxxl}, (A21)
fi=—sinb(sin® ¢ gyxz +cos’ $ yyz), (A22)
for=%sin0sin 2¢(txrz + 2vx2), ' (A23)
f3=cos 0{cos@[sin® P(Axxx —Axry) + 08 2¢ Lyyx] .

+sin ¢[cos? $(tyyy — Ayxx) —cos 2¢ Xxxyl}- (A24)

Making use of the tables in [32], which give the dependence between the non-zero
components of the tensor y,g,(—2m;®,w), we have obtained the components
Liiny( — 20; @, @) of the susceptibility for all the 102 magnetic classes. For the results,
see table 1.

On summation over recurring Greek indices in formulae (31) we obtain:

Ly — 200; @, w;E3)=g1 +%g2—%g3+u1 +uy+us, (A 25)
nyx(_zw;w)a?; Eg)=g1_g2+2g3+wl+w2+w3) (A26)
with
p
& =E(71111 +¥2222 +¥3333)Ey, (A27)

p
g2=E(')’1122 +91133F Y2211 F V2233 F V3311 F V33220 Ey,  (A28)

) )
&3 =E(?1221 + 91331 V2112 V2332 F V2113 FV3223) By, (A29)

EO

“1=gp(t);ﬂf [2B111+3(B221+B3z1) —Biaa—Biasl, (A 30)
EO

uy =02 >[2B222+3(B112+B332) —B211— Ba3sl, (A31)

27 30T
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w2 st Brrst Bz —Bsus—Brzal, (A3
=2 g, Boss—Bass+ 2Bra +Bus, (a33)
0322 1= Brra=Busa+ 2 Baus + Baso)]

3= o= Biss—Bass+ 2By + Bzl (A35)

On making use of the tables [32] giving in explicit form the nonlinear polarizability
tensor Y and By} we obtained the components yi;2%E
and {2 *E) of the susceptibility tensors for all 102 magnetic point groups. The
results are assembled in table 2.
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