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The problem considered is that of the spontaneous emission from two nonidentical two-level
atoms coupled to a continuum of quantized electromagnetic modes. The atoms are separated by
distances comparable to the resonant wavelength and have different transition frequencies and
natural linewidths. Correlation functions and radiation rates are expressed in terms of expectation
values of time-dependent atomic operators. The radiation pattern, total radiation rate and spectral
distribution of radiation are obtained with the initial conditions that only one atom is excited and
that the system is fully inverted. We find that the radiation pattern and total radiation rate show
quantum beats when initially only one atom is excited. Moreover, the total radiation rate for strong
interatomic interaction becomes greater than its initial value at the beginning of the emission
process. This “superradiant” property is absent for two identical atoms. For initially fully inverted
system, the radiation pattern and total radiation rate decay monotonically in time. Some weak
beats can appear for drastically different atoms. The spectrum of radiation calculated for the case
of strong interatomic interaction, i.e., for separations much smaller than the resonant wavelength
shows two peaks, located at frequency *4(2,,, contrary to the case of identical atoms, when the
spectrum consists of only one peak located at the frequency +12,,.

1. Introduction

The concept of collective spontaneous emission, or superradiance, has been
the subject of a very great number of theoretical papers' since the pioneering
article of Dicke'), who showed that the influence on each atomic dipole of the
electromagnetic field produced by the other atomic dipoles could, in certain
circumstances, cause each atom to release its energy of excitation more rapidly
than it would on its own. The shortening of the atomic lifetime resulting from
the interaction of N atoms via the electromagnetic field can generally involve
an enhancement of the intensity of radiation up to as much N°I,, with I,: the
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single atom intensity. This phenomenon has also been extensively studied in
experiment”~’) during the last fifteen years, after the development of ultrashort
laser systems made it easy to excite in a very short time a collection of atoms
into a well defined electronic level.

The interest in superradiance studies lies in its close connection with the
quantum and classical as well as with the spontaneous and stimulated aspects of
atomic emission. Another intrinsic feature of superradiance is that the emitted
field which propagates along an initially inverted medium exhibits strong
nonlinear behaviour. The phenomenon of superradiance is, in general, charac-
teristic for macroscopic systems with a large number of emitting atoms. Some
papers have been devoted to the study of this phenomenon in the case of
several atoms. Although the several (two or three) atom system is admittedly
an elementary model, it offers some advantages over the multiatom problem.
Because of its simplicity, one obtains detailed and almost exact dynamical
solutions with a variety of initial conditions. Many of these results are
analogous to phenomena that one would expect in multiatom systems. For
example, the nonexponential decay law and simultaneous radiation at two
frequencies are elementary examples of superradiant pulse formation and
interaction broadening, respectively.

Coffey and Friedberg®) and Richter’) have shown that for some special
configurations of a three atom system the total radiation intensity* can be
greater than its initial value. This superradiant emission is due to the radiative
as well as the dipole—dipole near-field interactions. Recently, Blank et al.'’),
ignoring dipole—dipole interaction, have shown that this effect for atoms
located in an equidistant linear chain appears starting from six atoms.

Collective radiation from a system of three identical atoms for all possible
geometrical configurations and for N atoms radiating in cascade process has
been recently studied by Freedhoff''). Some modifications in collective radia-
tions arising from omission of the rotating wave approximation (RWA) have
been discussed by Seke'?).

Numerous papers have dealt with the spontaneous emission from a two atom
system'”"'*). In all the above discussed papers it is assumed that each atom
cooperating in the emission process has the same transition frequency. In this
case the total radiation rate is always lower than its initial value, meaning that
superradiance is not present.

The formalisms developed ignore inhomogeneous spectral broadening,
which is often very important, for example in the observation of superradiant
effects in solids'*™") as well as for moving atoms’>>’). The influence of

*In the literature, many authors use the term total radiation intensity instead of total radiation
rate. Both terms are correct and will be used in our paper equivalently.
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inhomogeneous broadening on radiation by macroscopic atomic systems has
been discussed by Eberly**), Agarwal®®) and Jodoin and Mandel*®). They have
shown that the effect of inhomogeneous broadening generally reduces the
amplitude of the superradiant pulse. Coffey and Friedberg®) considered the
effect of inhomogeneous broadening on the total radiation intensity for sponta-
neous emission from two and three initially excited atoms and have shown that
in this case the total radiation intensity exhibits no superradiance.

Varfolomeev®’) considered spontaneous decay probability amplitudes for
two nonidentical atoms with one atom initially excited and has shown them to
exhibit sinusoidal modulation (beats). This sinusoidal modulation of proba-
bility amplitudes also has been found by Milonni and Knight**), who consi-
dered the effect of all the retardation times on various spontaneous decay
probability amplitudes.

In this paper we show that superradiant effect and quantum beats can occur
in the spontaneous emission from two nonidentical two-level atoms. We
assume that the two two-level atoms have different transition frequencies and
different natural linewidths. The methods and results presented here differ
considerably from those of earlier treatments by Varfolomeev®’) and Milonni
and Knight™®); in particular, the emphasis is on time-dependent decay rates
and correlation functions rather than on quantities such as the probability
amplitude for finding a particular set of photon states. Although these admit-
tedly convey less information than probability amplitudes, they are usually the
quantities of most direct physical interest, and are easier to calculate.

We start from the Hamiltonian for a system of N nonidentical atoms,
interacting with the electromagnetic field via electric dipole interaction, and
derive general equations of motion for the atomic operators. We then apply
them to the problem of spontaneous emission from two nonidentical atoms for
two initial conditions: (a) only one atom excited, (b) both atoms excited. We
study in detail the directional properties of the radiation, the total radiation
intensity, and the spectral distribution of the radiation field. As is well
known'*"'*), the total radiation intensity for two identical atoms does not
differ from the single-atom exponential decay. We shall see later, however,
that the total radiation intensity emitted from two nonidentical atoms differs
from the exponential decay and exhibits sinusoidal modulation (quantum
beats) as well as superradiant effect.

2. Derivation of the equations of motion

We consider a collection of N nonidentical nonoverlapping atoms, coupled to
a quantized multimode electromagnetic field, on the assumption that the atoms
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have different transition frequencies w, # w, # * - - # w, and different transition
dipole moments g, # m, 7 + - - # p. Each atom is approximated by a two-level
system with the ground state |[1), (i=1,2,..., N) and the excited state |2),,
connected by an electric dipole transition u;.

In the electric dipole approximation the Hamiltonian of this system has the
form

wR{(t) = m, E(ri, DR () + R (D]}

n Mz

 (#
2 g (t)an(t) 1)

where R;(t) and R; (¢)=[R,;(¢)]” are operators raising and lowering the

energy of atom i, and R; describes its energy. These operators fulfil the
well-known commutation relations

[R;,R;]1=2R:s,, [R:,RI]==R:s,. 2)

If the atom i is initially in its ground state |1), then (R?) = —1/2, whereas

(R?) = +1/2 if the atom is in its excited state.
The field operator E(r,, t) in the transverse mode decomposition is given by

. 2mfiw, ' iker;
E(ri,t)=1% v eula(t) e —h.c], 3)

where V is the normalization volume, e,, the unit polarisation vector, a,, the
annihilation operator for the kth mode with polarization A, and r, is the vector
describing the position of the ith atom.

Inserting (3) into (1) we have

H= 2 AawR(f) + 2 WINOLING,

- E 2 [8a(r)an () ~he ][RI () + R; ()], 4)
with
8ilr) = (211-3-‘01() e e (4a)

The Heisenberg equation of motion for the atomic operator R; (¢) now takes
the form (a dot denotes d/dr)
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R (t)=—iwR; (1) +2 kE (8 (r)an () —h.c]Ri (D), (5)

while the corresponding equation of motion for the radiation field operators
has the form:

() = — iw,a,,(6) + 2 g (r)R; (1) + R; ()] . (6)

The equation of motion for the operator R; (¢) is Hermitian conjugate to eq.
(5). Moreover, the equation of motion for the operator R;(¢) can be obtained
from (5) using the relation

Ri(0)=3{[R; (1), R O] +[R} (1, R, (1]} .

Eq. (6) may be integrated formally and its solution is:

040 = )+ 2 8u(r) [ 4RI @)+ R @™ ()

where a;,..(f) = a,,(0) exp(—iw,t) is the solution of the homogeneous or
free-field equation that characterizes the field without sources (atoms).

Eqs. (5) and (7) cannot be solved explicitly. However, as far as atoms are
concerned, spontaneous radiative decay is a very slow process, requiring on the
average many millions of cycles of dipole oscillations before it is completed.
Thus, we assume that R (f) may be written as S (¢) exp(*iw,t), where S; (¢)
is an unknown operator whose time variation, compared with exp(*iwyt), is
very slow, and w, = (1/N) £, w;.

Then the second right-hand term in (7), called the ‘“source part” of the
quantized field, may only be approximated replacing S(¢') by S, (¢) and
extracting it from the integral. The integral can then be obtained with the
following two approximations: the Born approximation, assuming weak coup-
ling between the atom and the field, and the Markoff approximative assump-
tion that the time required for the light signal to traverse the system is small in
comparison to the time required for appreciable changes in population of the
atomic levels, i.e.

(rij)max <c At N (8)

With these two approximations and for sufficiently long time ¢> (1/w,), the
right-hand term of (7) may be expressed by way of S “(¢) and the function {(x),
defined as™)
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i P
if(x) = }imw J dre™ =i T + wé(x) , 9
0

where P indicates the principal value of the integral.
On these approximations eq. (7) takes the form

B (1) = A (1) + ; Ea(r)S; (I, + S (0J], (10)
with
J. =né(w, T v,) — iP(a) i - ) . (10a)

Substituting these results into (5) and taking normal ordering of the radiation
and atomic operators [thus, a,,(f) to the right of S (¢)], we have

S7(t) = ~iw,S;7(£) +2 kZ [0, (r)SE(D) .. (1) — g (r)ate. () SZ(1)]
+ 28Rl 10, + I8, () ~hee]

+2 % 2 Algn(r: )8 (r)J.— g;(’i)gkA(’i)Jf]Sf(f)Sf(t) —h.c.}.
7 (11)

If we now consider all modes of the radiation field available for spontaneous
emission and go over to the free-space continuum limit V— , so that

> dk 2 12
i (211') o (12)
we obtain from eq. (11) (with the rotating wave approximation):
$7(0) == (5 =i8)S7 ()22 8 ()SI(Da4ec ()
A
+ 2 2y, +12,)8:1(0S; () . (13)
i
Here, y,=2u’w,/3%c’ is one-half the Einstein A coefficient for the ith atom,
A= w,— w;, and
3 A A sinkrii
Y T VY Y85 = 2V %Vj{[(/-"i : I~L;) — (- rij)(/‘“j : rij)] kr
ij
cos kry;  sin krii]}
(krij)2 (krij)3

L ) =3, 7y 7)) (14)
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cos kr..

=mbi/‘ = %\/T'Y,{" [(&; ﬁ,) — (4 ?ij)(la’j' fi/‘)] 7’?—1
if

sin kr; cos kr[.j]}
(kr, ) (krij)3

where fi; and 7, are unit vectors along the transition electric dipole moment
and the vector r = r, — r, respectively. Moreover, r; =|r,| and k= w)/c =
2mw/A,. When derwmg eq. (13) we neglected all s1ngle atom radiative level
shifts as irrelevant for our purposes. The parameters (14) and (15), which both
depend on the interatomic distance r;;, describe collective damping and collec-
tive shift of energy levels and determine the collective properties of our system
of N nonidentical atoms. In fig. 1, b; and a;, defined in (14) and (15), are
plotted for the cases when [ is parallel and perpendicular to 7,. Both
parameters b; and a,; strongly depend on the interatomic distance r;; and on the
spatial orientation of the dipole moments.
For kr; <1 we obtain

aijzl ) bijz[(la‘i./i‘i) _3(ﬁi'fij)(ﬁj'fij)]ri;3 . (16)

For this case we see that a, reduces to unity, and b, reduces to the static
dipole—dipole interaction.

3.0

R ) =3 77| (15)
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Fig. 1. The damping constants vy, and frequency shifts {2, versus the interatomic separations r,; for
dipole matrix elements g, parallel and perpendicular to r,.
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Eq. (13) is fundamental for the theory of radiation of nonidentical two-level
atoms. For identical atoms, it is the same as those obtained by Lehmberg")
and Agarwal'’). Beside the parameters describing the nonidenticity of the
atomic system it depends also on the collective parameters v, and (2, which
describe the collective properties of our system of N nonidentical atoms. We
apply eq. (13) to derive the directional properties of the radiation, the total
radiation intensity, and the spectral distribution of the radiation.

When deriving eq. (13) we omitted rapidly oscillating terms with the
frequency 2w, (so-called counter-rotating terms) using the rotating wave ap-
proximation (RWA). As shown by Seke'’), the counter-rotating terms play a
significant role for some processes with times shorter than spontaneous emis-
sion. In this paper, we shall consider new phenomena like quantum beats
effects, which are slow processes not caused by the counter-rotating terms. The
role of the rotating wave approximation in the spontaneous emission from two
identical atoms has been discussed by Milonni and Knight'®).

3. Calculation of the radiation intensity

We now calculate the radiation intensity I(R, ¢}, which is proportional to the
normally ordered one-time correlation function of the electromagnetic field at
a point R = RR in the wave zone:

R’c

IR, 1)=5— (EC(R,0)-EP(R, 1)) . (17)

Here, we have introduced the factor (R’c/2waw,) so that I(R, t) d£2 dt is now
the probability of finding one photon inside the solid angle element d{2 around
the direction R in the time interval d¢ at the moment of time ¢ in the far field
zone of the radiation emitted by the atomic system.

The field operator is given by the well kaown expression

ER,)=EDR, )+ ETR, 1), (18)

where E") (E‘7) denotes the positive (negative) frequency part of the
electromagnetic field and, in the transverse mode decomposition, is given by

2mh 1/2 )
EC(R, tR)=i%( “V“’k) e (D) ¥, (19)

with ¢, = t+ (R/c) and the same parameters as in eq. (3).
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On insertion of eq. (10) into (19) and applying the relation (12) we obtain

ECR, 1) = BY (R, 1) + — 232 f o] do, a0, [~ k(- )]

xexpli % £-R)(ST (1), + 8 (1)1 1. (20)

where k denotes the unit vector in the direction k and E,(R, t) denotes the
positive frequency part of the vacuum field. The only important contributions
come from those directions around k = =R, where the phase *wR,/c is
stationary; hence, one can replace [m, — k(k- )] by [m — R,(R, u,)] and
remove it from the integral over df2,. On integration over d{2, in (20) we
obtain

ECR 1) = EQR, 1) + 5

R,

g J o~ R(R, - m)
=12 i
x expli % R,-)[s:(rR)L 57 (1)1 (21)
Since the atomic operators S; (¢) oscillate as exp(*iwyt) we write
S;(te) = S; (e ™. (22)
Thus, substituting (22) into (21) and then evaluating the integral, we obtain
E(R, tg) = E;" (R, 1)

_ <%>§ [R, % (? X )]

)

S7(t) e RTR (23)

The term with S (¢) contributes nothing to E‘*)(R, t) because integration in
(21) extends over positive w, and J_ is the only contribution to the integral.

If R lies in the far field zone of the radiation emitted by the atomic system,
i.e. R> (r;)max> Ag> SO that R~ R — R-r,, then (23) becomes

E(+)(R’ tR) = Ef)ﬂ(R’ [R)

~ (9_0)2 S [R, x (R, x w)]

c/ =2 R, S, (t)exp(—ikR-r;). (24)

Hence, for the angular and time distribution of radiation intensity I(R, t) we
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have the following expression:

IR, 1)=I,(R, t) + u(R) 21 20y,%,)" (S (1) (1)) R, (25)

i,j=

where the average is taken over the initial states of the entire system,
u(R) = (3/8w)sin” 9, with & the angle between the observation direction R
and the atomic transition dipole moment p.

On integrating over all solid angles d{2, eq. (25) yields the total radiation
rate I(¢) given in photons per second as:

0= 1)+ 2 27,(5/ ()8 (®)), (26)
where
Iy(1) = —2% [ a0, (EO® 0-EO®, 1) @7

and v is given by eq. (14).

From eqs. (25) and (26) it is obvious that, in order to calculate the angular
distribution of radiation and the total radiation rate from a system of N
nonidentical atoms, it is necessary to have available the correlation functions
for the atomic operators. These atomic correlation functions can be found
using the equations of motion for S (¢) given by (13).

4. Spontaneous emission from two nonidentical atoms

4.1. General solutions for the atomic correlation functions

In the case when the radiation field is initially in the vacuum state |{0} ), we
have ES™(R, 1)|{0}) =0, and eqs. (13) lead to the vacuum expectation values
for the atomic correlation functions.

For two nonidentical atoms (i = 1, 2), egs. (13) lead to the following, closed
set of five equations of motion for the vacuum expectation values

(ST 810 =—27 (878 ), — w(S;81), —x*(S!8;),, (28)

(87 820, ==2%(8,8, ), — x(S{S;), —x*(8;5),, (28b)
<S;— S;>t= - (71 + Y2 —ZIA)<S;S;>t_ K<Srsl_>t
= k*(878, ) +4y,(575, 5785 ),, (28¢)
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(S 1) =—(n+%+248)(S;57), —«(S;S;),
—Kk*(STST ) + Ay (SIS, 8.8,). (28d)

(S8, §182),=—2(n +%){(S/8;815;),, (28¢)

where k = (v, +182,,).
It is obvious from the above equations that eq. (28e) is decoupled from the
other four equations and has the simple solution

(87878787),=(ST(0)S;(0)S7(0)S; (0)) e~ (29)

The remaining set of four equations can be solved strictly. The system of four
equations (28a)~(28d) can be transformed using the Laplace transform method
into a system of algebraic equations in transformed variables, which is easy to
solve. To obtain the time dependence, however, we have to know the roots of
the fourth-order biquadratic secular equation for the system (28a)—(28d),

(s+n+ 72)4 + 4(A2 + sz - ”?2 - 7%2)(5 tyt+ 72)2

= 16(y, 2, — Au,,)* =0, (30)
where u, = (1/2)(y, — 1)-
Putting
z=(s+y+ 72)2 ) (1)

eq. (30) reduces to a quadratic equation with the roots
Z12= 7 2(A2 + 9%2 - 7%2 - u?z)
x 2[(42 + 'sz + ”%2 + 7?2)2 —4(Ay, + ulznm)z]l/z . (32)

Since the z, , are real, z; >0 and z, <0, we find for the biquadratic equation
(30) two purely real roots

s;i=—n+twn)+vz, (33)
$,==(n+t%n)-Vz,, (34)

and two complex conjugate roots

s3=—(n+twn)+iv=ez;, (35)
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sa=—(n+ ) -iv=z,. (36)

Tedious though straightforward calculations lead to the following general
solution of eqs. (28a)—(28d) for arbitrary initial conditions:

327’1260[7’1')’12w + 0,(nA+ 712012)] et

<S:S1—>x= (D2—4w2)(E2+4w2)

3 A,(s)
T ; 21 (Si+4W)(S,~—Si)(si—sk)(si—sl) e (37)

327,Go[ YW + D1, (=7, A+ v,0,,)] o4
(D? — 4w*)(E* + 4w?)

3 A_(s)
+ | ; (Si+4W)(si‘Sf)(si—sk)(s,.—s,) e, (38)

(8387),=

327’12G0[(Qf2+ w’ — uiz)w (194 + upy2,)] o
(D? = 4w} (E® + 4w?)

3 G(s;) s
+ | 21 (s, +4w)(s, — s]_)(sl_ —5.)(s, - 5, e, (39)

(81830, =

(8787, =880 )%, (40)
where we have introduced the notation:

A.()=A,(s +4w)[(s + 2w)3 +2u,(s + 2w)2
+2(24% + 0%, — y3)(s +2w) = 84(Auy, — 7,,02,,)]
+2Dy(y3, + Q)(s + 4w)(s +2w) — 4y, Gy [215(s + 2w)?
= 4( YUy, — ADL)(s +2w) + 802, (v, 2y, — Auy,)], (41)

G(s) = — Agk(s +4w)[(s + 2w + 2u,,)(s + 2w + 2i4) — 4iy,, 2,,]
= Do *(s +4w)[(s + 2w — 2u.,)(s + 2w + 2i4) + 4iy;,2,,]
+4y,Go[(s +2w)° + 20A(s + 2w)’ +4(Q3, — ul)(s +2w)
+ 8iu (v, 2, — Auy,)], (42)

up=172) (v, —n), w=012)n+n), (43)
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B= [(Az + -sz + ”?2 + 7%2)2 —4(4y,, + u12012)2]1/2 ) (44)
D =[-2(4*+ 0}, - ui, - v3,) +2B]'"?, (45)
E=[2(4"+ 03, — uj,—v},) +2B]'"”?, (46)

with A, = (S8, )9, Dy=(85585)0» Go=(S/S,5.S;),, describing the ini-
tial population of the excited states of our nonidentical atoms. If initially atom
1 is in its excited state and atom 2 is initially in its ground state, then A,=1
and D, = G,=0, where A, = D,= G, =1 if both atoms are initially in their
excited states.

The parameters (43)—(46) define the shape of the time evolution of the
system. The parameter D, together with the overall damping factor
exp[—(y, + 1,)t] describes the decay rates of the particular terms whereas
parameter E describes the frequency of modulation that is superimposed on
the composite exponential decay (the existence of this modulation arises from
the fact that eq. (30) has two complex roots). If the atoms are far apart
(1,=0, 2,,=0) we have D=1y, — vy, and E = w, — w, and the atoms evolve
independently. In the opposite limit when the atoms are close to each other
(very strong interatomic interaction (2,, > V¥,%), D =2y, and E=2{2,,. In
this case the evolution of the atoms is strongly correlated.

In fact, the two-atom system Hamiltonian can be diagonalized including the
dipole—dipole interaction, giving the eigenstates: [0) =1|1),|1),, |*)=
ANV2)(|2),]1), £]1),]2),) and [2) =]2),]2),, with energies E, =0, E. =
fi(w, = 02,,) and E, = 2hw,, respectively (see fig. 2a).

For nonidentical atoms, the states |+) (the superradiant and subradiant
state) are no longer eigenstates of the two-atom system. The Hamiltonian of
the system can then be rediagonalized including A giving the new eigenstates
|, ) = C,|*) + C,|+) with the energies E. = fi(w, =\ A* + 21,) as shown in
fig. 2b. The coefficients C, and C, are: C, = a/Va’ + A C,=—ANa* + A%,
where o = 0, +\/A> + 023,. For small interatomic separations r, the sub-
radiant state |—) is decoupled from the other states. Since both the states |¢. )
include the superradiant state |+), the transitions from both states to the
ground state are allowed. Thus, one can expect quantum beats to appear in the
spontaneous emission from such a system. This is the subject of the next
section.

It is interesting to note that the solutions (37) and (38) for D = vy, + v, in the
steady state (¢— =) are nonzero. This signifies that part of the energy has been
trapped in the atomic system. This effect of population trapping has been
discussed recently by us’’).
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i
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1> 1 . 1>
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o> 1 10>
(a) (b)

Fig. 2. Energy-levels diagrams for two-atom system with possible transitions, in the case of: (a)
identical atoms, (b) nonidentical atoms.

4.2. Radiation pattern and total radiation intensity

4.2.1. Initially only one atom excited

Assuming that initially only atom 1 is in its excited state and atom 2 is in the
ground state, we have A,=1, D,= G, =0, and the general solutions (37)-
(40) reduce to:

~ B 1 A2+ 2 A2+ 2
($/87),=e 2Wt{—<1———~ﬁ>cosEt+1<1+ Bun)costh

2 B 2
2
upE” —44(Au, = yp82,)
+ 2BE sin Et
2
up D™+ 44(Au, — 1y 8,) }
+ >BD sinh Dt , (47)
i} L+
($;8;),= &2—5——13 [cosh Dt — cos Et] e ", (48)
K e—Zwt
(S785), = 1B {Z(u12 + iA)[cos Et — cosh Dt]
_ D? +4i(Au,; = v,82,,) sinh Dt
D
E?—4i(Au,, — 7,0
_ i( uéz Y2212) sin Et} , (49)

($381),=((S78:))*. (50)
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Eqs. (47) and (48) describe the probabilities of finding atom 1 and atom 2,
respectively, in their excited states at time ¢. From the form of these equations
it is obvious that the probabilities contain some oscillatory terms with the
oscillation frequency E. These oscillations are superimposed on a smooth
exponential decay and remain in the formulae even for identical atoms. For
identical atoms, however, the sum of the two probabilities exhibits no oscilla-
tions'*). This means that the excitation is transferred back and forth from one
atom to the other with the frequency E =242,,. It is also clear from eq. (48)
that atom 2 can be excited due to its interaction with atom 1 only (y,, #0
and/or (2, #0). If the two atoms are not identical the situation is more
complicated and we will discuss some consequences of the fact that the two
atoms have different transition frequencies and/or different linewidths.

First, we consider the angular distribution of the radiation intensity from the
system of two nonidentical atoms. Expression (25) for the intensity can be
written in the form

IR, 1) = I(R, )R(R, 1), (51)

where If(ﬁ, t) is the intensity radiated by free atoms, which in the case when
initially only atom 1 was excited is given by

I(R, 1) = yu(R)e ™" . 52
1

The radiation pattern introduced by eq. (51) describes the deviation of the
radiation emitted by interacting atoms from that emitted by independent atoms
at the same moment of time . Thus, the radiation pattern R(R, ) provides a
measure of the cooperative behaviour of the two-atom system. Of course, for
independent atoms RRR, ) =1.

If, at t =0, only atom 1 was inverted, the radiation pattern R(R, t) takes the
form

1/2
Y>
u12+A +< ) (7%2"'9?2)

o —2ugt " )
RQR,1)=c {[ < B
72) (Vi — 492;5) 5.
<71 ——— g5 cos kR-r,,
v\ Ay + upy) 5
- (;) — 5 sin kR - '12] cos Et
i

1
+ YBE [”12E2 —44A(Au,, — v,0,)
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2 a, (7% v, 2
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1
v, \12 R
72) (Ayp + U @dp)sin kR - ry,
1

cosh Dt

(
|
(
_ (ﬁ)”z(mun - 40,)cos kR -1, | B!
|
(
(

172
Y A
* 72> [4712(Auy, = 11, 80,) + -leDz]Sm kR-r,
1
Y. " sinh Dt
2 2 ”
+ _1) [492,,(Auy, — v124,) — 112D 7] cos kR - rlz] >BD }
(53)

To visualize the behaviour of the radiation pattern given by eq. (53), we have
plotted R(, t) in figs. 3-5, with 6: the angle between the observation direction
and the vector ry,, for r;, = A;,/12 and various v,, ¥,, 4 and ¢.

Fig. 3 shows that, for p Lr,, the radiation pattern is spherically symmetric
at t =0 and becomes nonspherical for ¢ > 0. During the emission process this
pattern oscillates in time as is shown in fig. 4; however, the amplitude of these
oscillations is different in different directions. From fig. 4 it is seen that for
identical atoms (v, = 7y, and 4 = 0) the radiation pattern decays monotonically
in time. It is also evident from figs. 3 and 4 that for nonidentical atoms the
radiation pattern (53) can become considerably greater than unity meaning
that during this interval of time the atoms radiate at a higher rate than
independent atoms. This gives clear evidence of the cooperative behaviour of
the atoms. It may seem puzzling at a first glance that nonidentical atoms can
radiate more collectively than identical atoms, but this is a consequence of
activating the transition |—)—]0) which, interfering with the transition
|+)—|0), gives quantum beats and an enhanced radiation rate at time ¢
(R(6, t)>1). If the transition dipole moment u is parallel to the vector r,
connecting the two atoms, the radiation pattern R(8, ¢} becomes asymmetric as
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Fig. 3. Angular distribution of the radiation pattern for only one atom initially excited, with
atomic separation r,, = A,/12, A =10, v, = 2v, and different times.

time elapses, as is shown in fig. 5; however, it should be kept in mind that in
this case there is no radiation at all for 8 =0, & because 6 = ¢ and u(R) =0.
So, in this case, the concept of radiation pattern becomes rather artificial.
We now proceed to illustrate the influence of differences between the atoms
on the total radiation intensity I(¢) defined by eq. (26). Using egs. (47)-(50),
we find that for two nonidentical atoms the total radiation intensity takes the

form

RO, - o= A/12 — &=§ .A=0
2.2+ / \ @ =n/2 --= 7,72y ., 4=0
YA IO, 2
oA N Hir, —= §=2%,4=10
18- | A
14f
1.0
06!
02 VX — ;
1 ; 1 L NS LN N e
0 0.1 02 03 0.4 05 06 0.7 08

Fig. 4. Radiation pattern as a function of time v for only one atom initially excited, with
Fia=A/12, @ =@/2 and different transition frequencies and natural linewidths. Here, © is the

angle between r,, and the observation direction R.
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Fig. 5. As in fig. 3, albeit for &, and &, parallel to r,,.

() = e—zwz{[yl _ AR AT AZ);‘ 2y,40, + Vzniz]cos Et
71(”%2 + 7%2 + Az) +2y,40,, + 729%2
+ [ Tt B ]cosh Dt
i [(yiy5 — sz)Ez + 4N A+ v, 020) (v, 0, — Auy,)]
sin Et
BE
n [(yat4y, — 'Y%z)Dz - 4(')’1%2’) Y12820,) (V12 2, — Auyy)) sinh Dt} ‘

(54)

In figs. 6-9 we have plotted the total radiation intensity I(z) given by eq. (54)
for several values of y,/y,, A and different interatomic separations. In the case
of nonidentical atoms, we find a pronounced deviation from the exponential
decay law. The pronounced sinusoidal modulation (quantum beats effect) is
clearly visible in the graphs. The frequency of this modulation is dependent on
the interatomic interaction and vanishes for large interatomic separations (see
fig. 9). This oscillatory behaviour of the total radiation intensity arises due to
interference between the two possible transition amplitudes (|=) or
|¢.)—10)) (see fig. 2) that contribute to the spontaneous emission. There are
two possible mechanisms leading to quantum beats in such a system. One,
consisting in opening the channel |—)— |0) when the two atoms have the same
transition frequencies (A =0) and their transition dipole moments (or line-
widths) are different, is illustrated in fig. 6. The other, consisting in a mixing of
the states |+) and |—) (when A # 0) leading to the new states |, ) and |¢_)
both of which are coupled to the ground state |0), is illustrated in fig. 7. It is
seen that when the interatomic separations are small and the atom which was
initially in its ground state has a natural linewidth larger than the initially
excited atom i.e. when the total radiation intensity for some periods of time
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Fig. 6. Normalized total radiation rate as a function of time v, for only one atom initially excited,
A=0, r, = A,/12 and different natural linewidths.
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Fig. 7. Normalized total radiation rate versus v,z for initially one atom excited, v, = v,, 1, = A/12
and different transition frequencies.
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Fig. 8. Normalized total radiation rate versus v for initially only one atom excited, with
dipole—dipole interaction ignored.

becomes greater than its initial value. This means that the emission is super-
radiant. Superradiant behaviour can also appear if the atoms have the same
natural linewidth, but this can occur only if the atoms differ considerably in
their transition frequencies (see fig. 7). This collective effect is absent in the
case of two identical atoms (y, = vy, and A = 0) as well as in the case when the
dipole—dipole interaction {2,, is ignored, as is convincingly shown in fig. 8. For
identical atoms the subradiant state |—) is disconnected from the other states
of the system (although it stores one half of the initial population) and we have

1(t)
HUL = 2
2 ‘ 574
nLh N — =l
TS AVAN “o7 2= A /8
A ‘\\ —= fip= A /12
1'2—1 /'I \ l'\\ \
i/
08
0.4
\'I A \'v'/ 1 \-u{;l\’.{"/“l-\'/‘ N

1 .
0 07 0Z 03 0Z 05 06 07 08 it

Fig. 9. Normalized total radiation rate as a function of time v for initially one atom excited,
A= -5, y,=2v, and different interatomic separations.
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the transition |+)—|0) only and, of course, there are no beats in the total
intensity'*).

As we have shown, in the case when initially one atom was excited, both the
radiation pattern R(6, ¢) can become larger than unity and the total radiation
intensity /(¢) can become larger than its initial value 1(0). The radiation pattern
R(6, t) may be said to describe the instantaneous collective behaviour of the
system while the total radiation intensity /(¢) can be said to describe its global
behaviour; thus, for initially one atom inverted, the system can radiate
superradiantly in both the instantaneous and global sense.

The quantum beats effect has recently been the subject of theoretical as well
as experimental investigations with regard to numerous optical
processes” ™' ),

4.2.2. Initially both atoms excited

When initially both atoms were excited, we have A,=D,= G, =1, and
from the general solutions (37)-(40) we arrive at the following formula for the
radiation pattern:

64'y12ef4wt
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where
X= Dz(%Ez - 7%2) - (W2 - ”fz)(Ez + 4”?2) +164y,,80,,u,,
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and the primed quantities are obtained by the mutual interchange E *2D%in
the above formulae. The intensity radiated by free atoms when both atoms
were initially excited is obviously equal to

LR, )= u(R)(y, ™ + y, &™), (56)
The formula for the total radiation intensity I(¢) is in this case the following:

128W’)’12[')’12W2 = 0,(Auy, — v,40,,)] o
(D* — 4w*)(E* + 4w?)
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! WI
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with
Q= Dz(%Ez - 67%2 —2v%) — 8W2(-Q§2 + AZ)
+32y,0,,(Auy, — v,0y,) ,
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W= D*(y1, - ul,) + 4D’ [y1,(25, + 3w*) + ul,(w’ — 4%)]
+ 16WZ(AL‘lz = Y282,)(Auy, = 3y,0,,), (58)

and, again, the primed quantities are obtained on performing the interchange
E’=D"

The above formulae are very extensive and complicated but are explicit
analytical formulae describing the radiation from two initially excited, noniden-
tical atoms. The radiation pattern given by eq. (55) is illustrated graphically in
figs. 10 and 11. Fig. 10 shows that even for nonidentical atoms the radiation
pattern starts out spherically symmetric, but later becomes nonspherical,
although the asymmetry is not very pronounced. It is seen, however, that for
nonidentical atoms the radiation in the directions with ® = 0 and = is different
in contrast to the case of identical atoms"). It is also evident from fig. 11 that,
contrary to the case when only one atom was initially excited, the radiation
pattern for short times ¢ is greater than unity even for identical atoms. Its value
can be greater or smaller if the atoms are not identical, depending on the
values of the parameters. For large A, slight oscillations can occur as it is seen
from fig. 11. :

The total radiation intensity I(¢) given by eq. (57) is plotted in figs. 12 and 13
for r;, = A,/12 and various vy,/y, and A. One notes that the total radiation
intensity is always lower than its initial value and decreases monotonically in
time. Some weak beats can appear for strongly different atoms, but one never
gets an increase in I(z). The explanation for this behaviour may be given in
terms of the eigenstates of the system as a whole (fig. 2). Initially the system is
in the state |2), and as time elapses it decays through the states |*) to the
ground state |0). For identical atoms the state |—) will never be populated,
and we have downward transitions via the |+) state only. For nonidentical
atoms the subradiant state |—) acquires some population from the state |2) as
time elapses. However, at the initial stage of the evolution we have a system

525 12F AL
A '-'10 e ﬂ|2=}\°/[0

RiGY

I
i | ]
-2 -08 -04 0 04 08 12

Fig. 10. Angular distribution of the radiation pattern R(@, t) for initially fully inverted system,
T, = Agl4, v, =2y, A= 10 and different times y,z.
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Fig. 11. Radiation pattern in the direction @ = /2 as a function of time y,¢ for fully inverted
atomic system, r;, = A,/12, g1lr, and different transition frequencies and different natural

linewidths.

with the common upper level [2) which does not give quantum beats. As the
states |+) become populated in the course of evolution, the possibility of
interference leading to quantum beats appears. This explains the existence of
small beats in I(¢).

Thus, it can be said that for both atoms excited the system can radiate in a
superrradiant way in the instantaneous sense (R(©, t) > 1) but not in the global

2% r r12=)\°/12
20 A=0 — & h

08

04

1 L L 1 L 1 ] 1 T ——

0 01 02 03 04 05 06 07 08 nt

Fig. 12. Normalized total radiation rate versus vy,¢ for initially fully inverted system, r,, = A,/12,
A =0 and different natural linewidths.
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Fig. 13. Normalized total radiation rate versus ¥, for initially fully inverted system, r,, = A,/12,
v, =1,, and different A.

sense (I(¢) is always less than /(0)). Thus, the radiation from a system of two
nonidentical atoms depends in an essential manner on the initial excitation of
the system.

5. Spectral properties of the radiation

In this section we investigate the spectral distribution of the radiation defined
13
as

ar [ a0, (EO®R - BV @R ) e 0) (59)

0%8

D(w) = Re{ f dt

where integration d{2, is over all directions, E*)(R, 1) are given by eq. (24),
and t' =t+ 7 (v>0).

In the case when the radiation is initially in the vacuum state |{0}), we have
from eq. (24)

d(w) = Re{f dtfdt’ él v, (S (OS] (1)) e‘i‘"(‘*")} . (60)

In order to obtain the spectral distribution of the radiation it is necessary to
know the time correlation function for the atomic dipole moments. We obtain
this correlation function from the equations of motion (13) which lead to a
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results:

closed set of four equations of motion for the correlation functions. Solution of
this set of equations by the Laplace transform method leads to the following
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> |
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where A, =(ST(0S7(1)),  B,=(S;{(1S; (1)),

Dy = (5, (1)S; (1)),
Go(S, (S, (t)) and H,= (S7(t)S;()S;(¢)S; (t)) are given by eqgs. (29),

(61)
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(37)-(40) and their values depend on the initial conditions. s, s,, 53, 5, are the
four roots of the equation

[(s + 7y, +14)(s + 3, —i4) — ]

X [(s + 2y, + v, —iA)(s + y, + 2y, +i4) — k**] = 0. (65)

The roots can be expressed in terms of the parameters w, 4, u,,, v, and {2,
and are given by:

Si,=—wk [(uy, — iA)2 + (v, t+ inu)z]l/2 >
(66)
S3.= 3wz [(uy, + iA)2 + (72— i~Q12)2]1/2 .

A. When initially only one atom was excited and the other was in its ground
state, and assuming strong interatomic interaction (b, > 1), we obtain from
eq. (60) and eqgs. (61)-(64) the following formula for the spectral distribution
of the radiation field:

P(v) =

1 {W+n(71n+7’12)+(71n+')’12)V n’+1
(n°+1) (w+ iD)Y + (v - JE)

" wtn(yn+y,) = (hnt+ )V n’+1
(w—3D)’ +(v+3E)

y (w’ - iD*) + (v* — iE’) }

[(w+ DY’ + (v = 3E)[(w = ;D) + (v + 3E)’] )’

—2(uy, + ny,)

(67)

where v = w, — w, and n = A/{},, provides a measure of the nonidenticity of
the atoms. The spectral distribution of radiation (67) is illustrated in fig. 14. If
Q),, exceeds A appreciably (n<1), the atoms evolve as identical, and our
spectrum is identical with that obtained by Lehmberg").

In this case the spectrum consists of two peaks located at v = = £2,,. The
broader peak is due to the transition |+)—]0) and the narrower peak to the
transition |—)—>|0). This narrow peak has a width practically equal to zero
confirming that the probability of transition |—)—|0) is practically equal to
zero for two identical atoms. A different situation occurs if the atoms are
nonidentical. For n =1 the peaks have widths w* ;D and are located at
v=+2V20,,. In this case the probabilities of transition |+)—|0) and
|- )—|0) are practically identical and the spectrum becomes symmetrical, as is
evident from fig. 14.

For n>1, ®(v) takes the form
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Fig. 14. Spectral distribution of radiation for inmitially only one atom excited, r,, = A,/12 and

different natural linewidths and different transition frequencies.

2y
[yi+(w=-o)]"

D(v) = (68)

Here, we have a single Lorentzian peak, as the atoms radiate independently.

B. If both atoms are initially excited into their upper states, the spectral
distribution of the radiation takes the form:

1 w_ 1
)= 57 e s D T T O T
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where
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The spectrum now contains two double peaks, and some nonresonant terms
appear. These peaks are easily understood on referring to the energy-level
diagram of the system, fig. 2. Transitions from level |2) to level |¢_) and from
level |, ) to level [0) occur at the same frequency w, + ; E. Simultaneously,
transitions from level |2) to level |, ) and from level |¢_) to level |0) occur at
the same frequency w, — 3 E. However, centred at each of these frequencies
there are two lines having different widths due to the different lifetimes of the
two states involved. For n<1 the spectrum is the same as for identical
atoms’*). For n =1 it consists of two practically identical peaks signifying that
both transitions [2) — |, ) —|0) are equally probable. If n is much greater
than unity (n > 1), the spectrum consists of two identical Lorentzian peaks with
the widths vy, and v, located at the frequencies w; and w,, respectively, as the
atoms radiate independently.

The changes in spectral distributions confirm that for nonidentical atoms the
transition |—)— |0) becomes important and equally probable as the transition
|+)— |0) leading to quantum beats in the radiation intensity.

6. Conclusions

We have solved the problem of spontaneous emission from nonidentical
atoms assuming that the atoms have different transition frequencies and
different natural linewidths. Starting from the Hamiltonian for N nonidentical
atoms coupled to the continuum of quantized electromagnetic modes we have
derived, within the Born and Markoff approximations, the equations of motion
for the atomic operators. We have used these equations in our considerations
of the spontaneous emission from a pair of nonidentical atoms the separation
r,, of which is comparable to the resonant wavelength A,.

The temporal evolution of the atomic populations, the angular distribution
of the radiation intensity, the total radiation intensity (rate) and the spectral
distributions are found with the following initial conditions, a) only one atom
excited and b) both atoms excited. We have found that in the case a) both the
radiation pattern R(@, 1) and the total radiation intensity I(¢) exhibit oscilla-
tory behaviour due to the quantum beats effect. A distinguishing feature of a
system of nonidentical atoms is the presence of superradiant behaviour both, as
we say, in the instantaneous (local in time) sense (R(6, t)>1) and in the
global sense (I(¢) > I(0)). This means that nonidentical atoms are apt to radiate
more collectively than identical atoms. This may seem somewhat strange at a
first glance, but becomes understandable if one keeps in mind that for initial
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conditions a) one half of the initial population is stored in the subradiant state
|-) (see fig. 2), which state practically does not radiate if the atoms are
identical and becomes active if the atoms are not identical. The interference
between the transition amplitudes from the superradiant state |+) and the
subradiant state |—), giving the quantum beats effect, can also lead to the
increase of the total radiation intensity above its initial value for certain values
of the parameters.

In the case b) the situation is different. The radiation pattern R(®, t) can
become greater than unity, meaning that in the local instantaneous sense the
radiation is superradiant. In other words, the system radiates at a higher rate at
the time ¢ than it would radiate at the same time if the atoms were indepen-
dent. This is true even for identical atoms and differs from the case a) where it
could happen only for nonidentical atoms. In the case b), however, there is no
superradiant behaviour in the global sense i.e. the total radiation intensity I(z)
can never be greater than its initial value I(0). In the representation of
collective atomic states, the system starts from the common state [2) and
decays via the states |¢.) to its ground state |[0). The configuration with a
common upper level does not lead to quantum beats. After some time, when
the states |, ) have acquired some population, the possibility of interference
of the two transition amplitudes to the common ground state |0) arises. This
explains the existence of weak oscillations in figs. 11-13.

We have also shown that the spectral distribution of the radiation is similar
in both cases and consists of two peaks located at w,*+ 3E with the widths
w = 3D, respectively. When the interatomic distance is much smaller than the
resonant wavelength, the spectrum for identical atoms has one Lorentzian peak
located at +(2,, with linewidth twice greater than that for isolated atoms. For
nonidentical atoms the spectrum consists of two Lorentzian peaks the widths
and intensities of which are practically identical. This confirms that for
nonidentical atoms we have two possible transition frequencies between the
collective states of the atomic system.
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