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Abstract. The time-dependent (physical) spectrum of stimulated Raman
scattering (SRS) from a two-level system is calculated, proving the influence of
the spectral width T of the detector on the obtained spectral line shape. In
addition, the time evolution of the process leading to the Raman line is
investigated. For a partially excited system, the scattered field intensity exhibits
oscillations in time, and I is found to affect the amplitude of the oscillations in the
Raman line intensity. A numerical analysis of the result is performed for the case
of monochromatic external fields.

1. Introduction

Recently, numerous papers have been devoted to the time-dependent (physical)
spectrum (TDS). Its definition [1, 2], established in 1977, takes into account the
influence of the measuring device (the detector) on the spectral picture of the
physical processes involved; it also eliminates various drawbacks inherent in earlier
definitions, and permits the study of the time-evolution of the phenomena. Time-
dependent spectra have already been applied in studies of resonant Raman scattering
[1, 3], resonant fluorescence [4, 5], and super-fluorescence [6]. In [7], TDS has been
applied to a new interpretation of the probability distribution function in phase space
in quantum mechanics, whereas [8] provides the theoretical basis for time-
dependent correlational spectroscopy.

Here, making use of the definition of TDS, we carry out an analysis of the
spectral properties of the process of stimulated Raman scattering (SRS) on atomic
two-level systems. Next, with recourse to the time-dependent properties of the
spectrum, we study the process of the creation of the spectral line from the moment
the perturbation is switched on (£=0) until the steady state sets in. New effects are
found that are related to oscillations in intensity of the SRS spectral line on the
radiatively shifted atomic level. In fact, the spectral width of the detector not only
affects the measured spectral line-shape but also has an influence on the observed
dynamics of its creation.

Our analysis of the problem is quantum mechanical throughout. The SRS
process involves two strong external fields: a laser field () and a Stokes field (v,,).

+ This work was carried out within the framework of Project CPBP 01.06 (Subject 3.05).
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They determine the evolution of the two-level system (referred to henceforth as the
‘atomic’ or ‘scattering’ system). The evolution is described by the master equation,
derived for the atomic quantities on averaging with respect to the strong external
fields @, and w;, (See §2). The two fields concurrently cause a power shift and
broadening, leading to the emergence of a field due to Raman scattering on the
shifted levels of the system (figure 1).

The strong coupling between the external fields and the atomic system enable us
to deal with the scattered field as a perturbation which has negligible effect on the
scattering system. Thus, the correlation functions derived from the Maxwell
equations can be appropriately de-correlated, leading to the spectrum of the SRS
process (§3). Its numerical analysis is given in §4.
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Figure 1. Raman scattering (SRS) from two-level atomic system with radiation-shifted
transitions: A, , detuning of the frequency ,, from two-photon resonance; Q,
renormalized energy of the transition. The shift of the ground level is not shown.

2. The evolution of the scattering system

We consider a system of N non-interacting two-level atoms. The process of
Raman scattering is described by the effective two-photon process Hamiltonian
{9-13]:

H=hoS +hY w,4] 4, +hoaf a +hY (ga.47 ST +h.c.), 1)
k k

with §%, §* the collective spin operators of the atomic system; and 4;(4;"), 4,(4,) the
photon annihilation (creation) operators for the laser and Stokes field, respectively.
The coupling constant g,, involving the Raman polarizability M, ,, is of the form

2 .
&= " (kiR M,y exp ik — ). @

A similar, completely boson Hamiltonian has been applied to the description of the
statistical properties of the Raman process on phonons [14-17].

In equations (1) and (2) we have assumed all the fields to be polarized linearly in
the same direction, and that the scattering system of N atoms as isotropic. Thus, we
shall be dealing with the field quantities as scalars. Anti-Stokes effects will not be
considered.
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The operators characterizing the scattering system are to be obtained from the
master equation for the reduced density operator. The method of applying a
projection operator to the atomic system [18,19] involves the introduction of an
operator for the form P(...)=pg(0) Trg(...) and averaging the states of the whole
system over the initial values of the electromagnetic fields. When this is applied to
the Hamiltonian (1), it leads to the following equation of motion for the mean value
of an operator 1 which describes the atomic system:

A s s & a4
%=—Vk(ﬁL(<[[A,S*],S_]>+<[[A,S"],S+]>)
(4, 87187 +<(S*[S7, A1)

—n K4, 8718 ) +<(S7[S*, AD)

+i(ZQkOﬁL+QkO+QL+(D)<[SZ, AD, 3

where
Prow) = nkzo: ngo|zﬁk0(L)5(Ako), 4)
Doty = 2. |8kol  Pikorw AL , )

ko ko
and

A= 0L — 0y — 0, (6)
Moy = ETR (/A)R(())d,:)“‘)(ik“(u). (7)

Equation (3) has been derived with the assumption that a non-zero external laser
field w; and a Stokes field w,, are present at the initial time t=0. This equation, in
fact, can be seen to be correct if we make the following assumption: the band-widths
of the external fields are smaller than the energy separation of the two atomic levels.
This equation describes the evolution of the atomic system and gives the radiation
corrections to the spectrum. The quantities (4) and (5) represent, respectively, the
radiation broadening and the shift of the spectral line due to the individual fields.
Here, other effects that might lead to a broadening of the line (namely, atomic
collisions and Doppler broadening) are neglected, i.e. we consider field-stimulated
transitions only. The assumed model describes effects related to the presence, in the
atom, of a metastable excited level with a lifetime much longer than the times
characterizing the field-stimulated transitions.

Equation (3) provides an expression of the one-time atomic correlation functions.
By quantum regression theory [20], we can obtain multi-time functions from them.
In the present case, we obtain the two-time correlation functions:

(S (t+1)8* (1)) =(0, exp (—271) +a,) exp [(—iQ )], (8)
(S (t+1)87(1)) = (05 exp (—271) +0,4) +05[1 —exp (—271)] exp (= 271),  (9)
(St +1)8* (£)) = (06 exp (— 277) + 6) exp (i Q— ), o (10)

(S (t+1)SH )Y =agexp [— (Q+ Pt +1)], (11
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with
01=04—0, 0,=0,
oy=4—(07)?, a4=(07)?,
05=07(0,—0%F),  d6=<{S(0)S*(0))~a;, 12)
a,=07¢S*(0), a5 =<{S7(0)S(0)>,
ao={S7(0)S*(0)), 0, =<S0)),
e+ 1) g = Pt
® 7 ) z 2%
The expressions
V=2V + Vg + V0 (13)
Q=20 1, +Q, +Q, + o, (14)

describe, respectively, the total broadening and shift of the spectral line in the Raman
process. One notes that the effect of the two fields cumulate and that, moreover, a
component appears resulting from superposition of the effects of the two fields.
Similar expressions for the radiation corrections have been obtained earlier when
dealing with two-photon effects within the Heisenberg equation formalism, both
with regard to the Raman process [21] and two-photon absorption [22]. In our
approach to Raman scattering, the situation is the following: the scattering system,
subjected to the action of the external fields, is modified by radiation corrections and,
simultaneously, becomes the source of a scattered field. Since the two-photon
scattering process under consideration occurs by way of a virtual level, the picture
differs from that of Raman processes of the near-resonance type [23-26]. Moreover,
from the way in which we introduce the rotating-wave approximation (RWA) when
deriving equation (3) it results that we neglect any shift of the ground level.

.

3. The spectrum of the Raman process
The equations of motion of SRS corresponding to the Hamiltonian (1) are these:

&(t) = — i d(t) —iged (S (1), (15)

S*()=iwS* (1) -2 Y gtal (Na DS (), (16)
k

$:)=—i L (@O ()8 () - kel V&S (). (17)

The laser field being monochromatic and very strong, we neglect its variations in the
course of the scattering process, i.e. we have

ay ()= a (0) exp (—iwyt). (18)
Differentiation of (15) and the recourse to (16) gives

4 (1) = — w}a(t) — gd (1)@ + oL — ) S* (1)

=200+ g 3, gb ()80, (19
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Obviously, for the conjugate operators we obtain equations that are Hermitian-
conjugate to (15)-(19). One readily notes that (19) is equivalent to the following
Maxwell wave equation:

- 1 9% . 4n .
20 (YN BN =—__T)
VB - 23 EO )=, (20)
where
i 2nckh\/?
JOwW=—1 % (”f/ ) geexp (ik- 1)
x [ﬁL(t)(wk+ 0,8 (O+2+ DY gk,ak,(wﬁza)] 1)

is the displacement current operator, and

B ) =i Z <2nckh

The sum over k' in equation (21)—as one notes on comparison with (22)—is, in fact,
the amplitude of the scattered field. With this in mind and applying the expression
for the field induced by the displacement current,

1/2
> a,(t) exp (ik - r). (22)

r

we immediately obtain from equation (21) the following linear operator equation for
the scattered field amplitude:

EOW=A4,E0®)8* 1)+ A,E)S(¢). (24)
One readily notes that the term ~ &7 is a straightforward consequence of the
nonlinearity in the effective Hamiltonian (1) (see (16) and (19)). A linear

Hamiltonian would lead to a result involving terms ~S* and ~S~ only [19]. The
coeflicients 4, and A4, are of the form

k3
__sz< )gk(wk+wL ), (25)

1 _
A= =Y lal ), 26)

where r=|r| is the distance between the scattering system and the detector. Since
the laser field is monochromatic, its amplitude has the form

2nck
B ’(t)—1< nck, b

1/2
) a,(t) exp (ik - ). 27)

In (23), integration extends over the volume of the source. As when deriving
equation (3), the scattering system at the origin of the coordinates system is assumed
point-like, and retarded effects are neglected. The extent of the sample (in
comparison with 4,,) rules out any considerations of Stokes beam amplification in
the medium. The primary aim of this work is to elucidate the evolution in time of the
spectral line in the elementary scattering process. In deriving (24) we also neglected
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the field resulting from the vacuum solution of the Maxwell equations, since the
effects related to the presence of the strong external fields are predominant; in this
sense, the phenomenon under consideration has to be dealt with as SRS. The role of
spontaneous scattering and its effect on the evolution of SRS has been studied
thoroughly in recent years [27].

We now proceed to define the correlation function of the electromagnetic field
incident on the detector:

G(t, 1) =<ELL ¢+ DERL (1))
=B+ +ED0+ D+ EC+O)ED O+ B+ E ). (28)
The correlation function G(t, t) comprises a variety of components, describing the

intensities of the individual fields as well as their mutual correlation. We find from
the Heisenberg equations (15)~(17) that

CEP(E+DET @)y =(EM e+ 1)E (1)) =0, (29)

i.e. that there is no correlation between the stimulating and scattered Stokes fields.
Next, the assumption of zero correlation between the external fields @, and w,, leads
to

EPEADEDW) = B+ (1) =0. (30)
Thus, the problem reduces to the calculation of G(¢, 1) in the form
G(t, 1) =BV +DET @) +< Bt +0E (1))
+CEHE+DEC @)Y +EDe+DE @)
+(EM(t+1)ET@)). (31)

To achieve this aim, we have to de-correlate the atomic and field-E)(¢) variables.
This approximation is justified in our case since, at A, =0, the fields o, and w,, are
strongly coupled to the atomic system by way of the two-photon process. It is this
coupling that determines the evolution of the atomic system as described by the
master equation (3). The radiation shift is small (of the order of 1 cm ™! for a laser
field of 100 MW cm ™~ 2 and a Stokes field of 250 kW ¢m ~ 3 [28]) enough not to destroy
this coupling. In this situation the scattering process may be assumed negligibly to
perturb the evolution of the atomic system.
On insertion of (24) into (31) we now obtain

G(t,1) =G, (1, 1)+ G,(t, 1) + Gs(t, 1), (32)
where
G, (t, 1) =¢ra exp (I0 T) + Y. 6,7y, exp (1w, T), (33)
ko

Sy S et ) G

G,y(t, 1) =A e m exp (o 1) <1——A2<Sz(t)> 1—A2<.§z(t+‘c)>
Aleny
1—A3S (1t +1)8%(8))

STE+S(E+0)8T (1)) | (STOXS (t+1)S (1))
+< ATy T 1—a&Emny )A’] ¢

Gi(t, 1) =

exp (i 1) [<S—(t+r)3+(t)>
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and

2nckp b L A
Ly = %, A ggy= L Tr (PR(O)aako)aL(ko))- (36)

In (33), summation over k&, reflects the circumstance in which the external Stokes
beam is non-monochromatic. The first component of G(¢, 7) describes the external
field intensity (33); the second component (34) accounts for the mutual correlation
between the scattered field and laser field; and the third component (35) is the
correlation function of the scattered field.

If the beams w; and w,, are collinear, measurement will bear on the total
correlation function G(¢, 7) or on G54(%, 7) only, depending on the configuration of the
detector (figure 2). According to the configuration of the detector, we shall be
observing the spectrum of the process as a whole (configuration D, ), or the spectrum
of scattered light only (configuration D,).

We now have recourse to the definition of the time-dependent spectrum. Assume
the detector is set up to measure the electromagnetic field as a function of a frequency
D to which it can be tuned. In a detector having intrinsic spectral width I" we obtain
the signal (the measured spectrum) in the following form:

t

t—ty
S(D,T,t)=4TRe j dt, exp (—2T(1—t,)) j dt G(t,,7) exp (T —iD)t. (37)
0 0

The above definition takes into account that measurement starts at t=0. We now
insert the atomic mean values (8)—(11) into (33)—(35) and, next, the correlation
function into (37). We thus obtain an analytical expression for TDS in SRS
involving non-elementary integrals. Luckily, all the integrands can be expanded as
power series in 4,. The expansion coefficients are of the form 4,/(1—A4,67) or
A%/(1— A%(65+0,)). Owing to the fact that even at very high laser-field strengths
(n) we still have 4, <« 1, we are justified in retaining only the first two terms of the
expansions without incurring an error greater than 1 per cent (for the numerical
values assumed in our computations). On integration and after some cumbersome
transformations, we arrive at the TDS for the SRS process in the following form:

SMD, I, 0)=5S(D,I', )+ 8,,,(D, T, t)
+ Sl(D) r) t) +S2(D) F; t)
+.85(D,T,¢) (38)

2 D
2

Figure 2. Set-up for the measurement of the field scattered by the atomic system A: Dy,

detector collinear to the beams and measuring the total field in the process; D,, detector

measuring the scattered field (EVE(7) only.
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The first two components of (38) represent the shape of the external fields; in our
case, this gives the following expressions:

2r
SuD, T, ) =eLfir (39)

+(D—w)*

2r

SioDy T =g =y 37
0

(40)

Next, we have

"
S,(D,T, )= A;[‘” [X,(2) cos Qt + X7(2) sin Q¢
0

+ X5(2) cos (D— wy )t + X5(t) sin (D — wy )t + X5(2)]
+o 0 _[X(t) cos Qt + X;(t) sin Q1
+ X'5(t) cos Qt + X%(¢) sin Qt + X (1)]. (41

The expression (41) is the spectral counterpart of the correlation function G,(¢, 7).
The greatest component of the correlation function (the expression proportional to
{87 8*)) leads to the following spectral component:

Sy(D, T, 1)=o,[ Vi(t) cos Qt + V(1) sin Qr + Y, (1)]. (42)

The last two components of G5(t, 1) give

Sy(D, T, )=ty exp (— 2T't) {[0_(06Z1(t) + 05 Z4(1)) + 6 4 5, Z5(8)] cos Ot
+[6_(06Z() +05sZ5(1)) + 0 , 0, 25(t)] sin Ot
+0 _(06Z,()+05Z,(1))+0,0,Z¢(1)}. (43)
Here,
Q=D—w, Q. (44)

The analytical form of the coeflicients X;(¢), Y(f) and Z,(t) and the quantities
determining them, are given in the Appendix. The exact formulae show that, for an
atomic system in its ground state or excited state at 1 =0, the spectrum is described by
S,(D, T, t) alone. For partial population inversion at ¢t=0, the other terms of the
spectrum S(D, T, #) are non-zero and modify the Raman spectrum. The TDS also
provides a picture of the time-evolution of the SRS process. In the next section, we
perform a numerical analysis of the obtained spectrum.

4. Numerical analysis of S(D,T, f)

We consider the following situation: the two stimulating beams (the Stokes w,,
and laser w; beams) are monochromatic and collinear, and fulfil the condition
A,,=0. The detector is positioned in the direction of the collinear stimulating beams
(configuration D, in figure 2); obviously, it records all the fields occurring in the
process. Figure 3 shows the spectrum of the process as ‘seen’ by the detector D, at
t =07 for . =5000 and @ =100 (all quantities are in arbitrary units). The laser line
(wy) and Stokes line (w,,) are accompanied by the Raman-scattered line, originating
in the radiation-shifted atomic levels. Our numerical analysis concerns the Raman
line. Figure 4 shows the process of its creation from t=0 onwards.
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Figure 3. Spectrum measured by detector D;: L, laser line (w;, =5000); S, line of the
external Stokes field (w,, =y —w—A; ); R, SRS line (w0 =100; I"=1; 7 /73, , = 10; t=0-7;
0(0)= —1; A, =0). All quantities are in arbitrary units.

S{DAt)

'0.1 \ . D
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Figure 4. Time-evoluiton of the Raman line R. The conditions are those of figure 3.
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We deal with the case when, at t =0, the atomic system is in its ground state, i.e.
population inversion amounts to

6(0)=20,(0)= —1. (45)

At time t =07 the intensity of the Raman line attains its maximum value; after that, it
decreases slightly and becomes stationary. The tails of the line exhibit some
influence of the harmonic components of the spectrum which, at high values of time
t, quench out owing to the presence of damping factors. A similar effect of ‘wiggles’
has been obtained for the spectral lines of resonance fluorescence and super-
fluorescence [5,6]. The interpretation given is that of intra-detector transitions,
related with interference in the Fabry—Pérot interferometer The time-evolution of
the SRS spectral line is portrayed more clearly in figure 5, where the intensity of the
central part of the line is shown for D = w; —Q(Q =0) as a function of time. One notes
that the time-evolution of the line intensity is very strongly dependent on the
intensity of the external fields. For a strong laser field 7 (», =const.), the maximum
of the intensity curve tends to vanish and the intensity of the central part decreases.
This is due to the fact that, for strong fields, radiation broadening of the line is
considerable and at the expense of its central part. It is moreover worth noting that in
the case of strong fields the process leading to the emergence of the line proceeds
more rapidly (is shorter) than in that in weak fields. Here, we assume the intensity of
the Stokes field (w,,) to be much weaker than that of the laser field (w;) in order to
eliminate effects of higher-order Raman scattering (w,, =w,,— o).

The situation is much more interesting if the initial population inversion ¢(0)
corresponds to partial excitation of the atomic system at £ =0. All the components of
S(D, T, t)are then non-zero, and the picture of the creation of the Raman line is quite
different. The scattered light intensity exhibits oscillations: figure 6 show the initial
evolution of the line intensity for several values of ¢(0). The amplitude of the
oscillations grows with increasing initial population inversion.

S((A)L_Q, 1, t)

100} 0
15

20

50

100

50 -
L i t
0 07 1

Figure 5. Intensity of the line R in its central part (D= w; —Q) versus the time, for different
values of the ratio 7y /#,,. The other conditions are those of figure 3.
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We also performed a numerical analysis for the effect of the detector on the SRS
process. In our case it was a Fabry—Pérot detector (cf. equation (37)); the influence of
its spectral width T on the SRS line-shape is shown in figure 7. With increasing I" the
line exhibits diffluence, as would be expected. The same has been proved for
resonance fluorescence [5]. Moreover—and this is a new finding of especial
interest—I affects the observation of the time-dependent (dynamical) changes in
intensity of the SRS line. From figure 8, the magnitude of I affects the amplitude of

S((A-)L"S_?j, t)

, -1.0
100 | i -08
-05
000

50 -

. t
0 05

Figure 6. Influence of population inversion o(0) on the process leading to the Raman line R.

S(Dr.07)
au.

Il

wW-2
Figure 7. Shape of the spectral line R as a function of the spectral width I'.
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Figure 8. The oscillations in intensity of the line R for different values of T.

the oscillations in intensity of the scattered field measured by the detector. Also, the
greater I the shorter is the time required for the mean intensity of the line to become
maximal.

It should be stated once again that the above concerns the picture of the process as
‘seen’ by the detector. Naturally, the properties of the latter are unable to exert an
influence on the course of the scattering process itself.

5. Summary

The two-photon process, in our case SRS, when measured with a physical
detector, is found not to be an instantaneous event but rather to evolve in time. The
formation time of the spectral line is finite. We carried out a numerical study of the
time-evolution of the Raman line both with regard to its spectral properties and with
regard to the time variations of its intensity, and determined the effect of the external
fields as well as the parameters of the scattering system on the creation process of the
SRS line.

For a partially excited scattering system we obtained a line of oscillating
intensity, with an observed oscillation amplitude dependent on the spectral
properties of the detector. Thus, the measuring device affects not only the spectral
properties of the observed SRS line but also the time-evolution of its intensity as
well.

Our calculations concerned the case of a two-level system without damping, with
higher-order effects and anti-Stokes effect neglected. Work along these lines, taking
into consideration the above effects, is proceeding.

Appendix
The explicit form of the coeflicients X,(¢), Y(t) and Z,(¢) and the quantities
determining them are

q1 q3 - - 99 q7
1‘{/ Y= = ——— — i d —3 4 TATTTAT T T — y
1) <M} M%>exp( 7 +dexp (=37 )<M}M§ M%M%)
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" q
Xl(t)=<%42 Ml exp (—7jt)+dexp (— 3yt)<M1M W‘ilj“;[z)
3 1 3

ex It
X’z(l)_ p]i41 ) Ml 111),
3
exp (=TIt

1" q8
)= | =+ —
2() Mt M} q2>,

exp (—2I't) < q9d>
Xy(t)=— =g T8
’ M 3T
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