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MOLECULAR KERR RELAXATION THEORY FOR NONDIPOLAR LIQUIDS
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The time variations of the difference in refractive index in optical birefringence are calculated for a liquid composed of
nondipolar anisotropically polarizable molecules acted on by reorienting pulse fields. The molecular dynamics is based on
Sack’s equation, taking into account small inertial effects (a modification of the Smoluchowski rotational diffusion equation).
The tiine variations in birefringence are analyzed for rectangular and cosine pulse shapes on the basis of Sack’s equation and
are plotted for a gaussian pulse on the basis of Smoluchowski’s equation. Measurements are proposed of the birefringence
component with frequency 4« related to the square of the electric anisotropy reorientation parameter of the molecules.

1. Introduction

The general molecular theory of electro-optical effects in isotropic dielectrics has long been at the centre
of interest. Its various aspects have been dealt with in a number of monographs [1-3].

The relaxation theory of Kerr's effect [4-8] induced in liquids with nondipolar anisotropically
polarizable molecules as proposed by us takes small inertial effects into account. The molecular dynamics
model assumed will be that of Sack’s equation [9] — a modification of Smoluchowski’s equation of
rotational brownian motions. Sack’s equation has been applied by Coffey [10,11] in the theory of dielectric
relaxation and Kerr relaxation and, recently, in that of third-order nonlinear electric polarization in liquids
[12]. On omission of small inertial effects Sack’s model reduces to the Smoluchowski model widely used in
the description of dispersion and absorption in both linear [13,14] and nonlinear [15,16] phenomena of
molecular optics. Although they do not take into account the intermolecular interactions so highly
important in liquids [17], they nonetheless provide a qualitatively correct picture of the rotational
relaxation of molecules in a liquid and macromolecules in a solution [18-20].

We consider the rise and decay of birefringence, induced by rectangular and sine pulse electric fields.
Moreover, we perform a graphical analysis of the time variations of birefringence induced by a gaussian
pulse within the framework of Smoluchowski’s model.

In part, our results have been reported in the Proceedings of the Conference on “Ultrafast Phenomena
in Spectroscopy ‘85", held at Reinhardsbrunn, GDR [21].

2. Theory

We consider an isotropic liquid of density p composed of N nondipolar noninteracting molecules,
having the linear polarizability components a.g. The liquid is acted on by two electric fields: a weak

* This work was carried out under the Research Project CPBP 01.06 and has been presented in part at the Conference “ Ultrafast
Phenomena in Spectroscopy” at Reinhardsbrunn, GDR, October 23-26, 1985.
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measuring field with the optical frequency E(t)=E, cos wr and a reorienting field E,(¢) = E,g(1)
sufficiently strong to induce nonlinear polarization and reorientation in the molecules. E,(¢) is assumed as
applied in the Z-direction of laboratory coordinates, whereas the measuring field E(r) as directed (i)
along the X-axis and (ii) along the Z-axis.

For axially symmetric molecules with optical polarizability components ay, a  respectively parallel and
perpendicular to the axis of symmetry, classical molecular electric birefringence theory predicts [1-4] the
difference in light refractive indices, at the two experimental configurations, to amount to

An=n—n, =Clay—a }{Py(cos 8)),. (1)

Above, P,(cos 8,) is a Legendre polynomial of the second order, §, = 8(¢) is the polar angle between the
symmetry axis of the molecule and the laboratory Z-axis and, for the Lorentz local field model,

C=(2'np/n)[_%(n:+2)]2, )

where n is the weak-field refractive index.

Statistical averaging (1) is performed with an appropriate model of the molecular dynamics in the
medium. The method leading to the solution of Sack’s equation, as well as the averaging procedure, are
given in the appendix; here, we give but the final result:

An(1) = C(ay—a )|+ fgdn() + sha®Bn(1) +...], 3

where we have introduced the parameter of reorientation of the molecular anisotropy of polarizability in
the reorienting field:

q=(lay— o, |/2kT)[3(n?+2)]’E2, (4

where a; and a, are the polarizability components of the molecule (parallel and perpendicular to its axis
of symmetry) in the presence of the reorienting field, k& is Boltzmann’s constant, and 7 the absolute
temperature of the liquid. The time dependence of the birefringence is inherent in the relaxation functions
Ay;(t) and By,(t). We shall calculate them further on for rectangular-shaped and cosine reorienting fields.

3. Rise in birefringence for rectangular reorienting pulse

Consider a rectangular pulse, switched on at =0,
g(t)=u(t)=0, 1<0; g(t)=u(t)=1, O0<t; g(t)=u(t)=4%, t=0, (5)

where u(t) is the unit step function. By egs. (A.10) and (A.11), and with the initial condition A,,(0) =
B,,(0) =0, we obtain the relaxation functions of rise in birefringence in the following form:

Ap()=1-30+ /&) exp(—t/_ 1) — 31—~ &/8,) exp(—1/ ., 7,), (6)
By, (1) =Cz(—"'2[1 - exp(—t/_'rz)] - +"z[1 - CXP(_’/+”2)]

+2¢/85 [exp(—1/_m) — exp(—1/ . 7))

-3+ g/8)rexp(—t/ ) + 31— ¢/8) 1 exp(=1/,7)}. (M

These formulae involve two modified rotational relaxation times of birefringence | 7,, _17,, equal to:

2m=2/(E£6); & =80 -28kT/15)'?; ;= 6KT/IE,. (®)
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Thus, the rise in birefringence on applving the pulse (5) at ¢ =0 is dependent on exponential functions
with the relaxation times ,7,, _7. The nonlinear term related with the square of the molecular
reorientation parameter g is moreover dependent on functions that are products of the time ¢ and an
exponential r exp(—1/, ), 1 exp(—t/_7), thus 1 exp(—t/, 7). The birefringence increases from the
initial value An(0) = 0 up to a steady-state value An(s.s.) for _7, < ¢, equal to

An(ss) = EC(ay—a,)[2a+ Faa(n=m)+..]. 9
The modified birefringence relaxation times , 7, can also be expressed in the approximate form

m=n/(1+6y), ,n=[6v/(1-6v)]n, (10)
where the results obtained with Sack’s equation (A.2) are valid for small inertial effects, i.e. if

y=kT/I£* < 1. (11)
In (10), =, is the well-known birefringence relaxation time [4-6]

#=47,=1/6D = I£/6kT, 5 (12)

7, is Debye’s dipole relaxation time, and D is the coefficient of isotropic rotation diffusion of the
molecules. Within the framework of Smoluchowski’s rotational diffusion model we make use of the
formulae (A.12) and (A.13) corresponding to the assumption of y = 0 in egs. (6), (7). This leads to

Ayt y=0)=1—exp(—t/7), 13)
By(t; y=0)=1—(1-1t/7) exp(—1/m), (14)

since now 7,0, _1 > 1.
On neglecting small inertial effects, the formulae (3), (13), (14) lead to the following expression for the
time-rise in birefringence

An(t; y=0)=4C(ay—a,){q[1 —exp(~1/m)]

+4q*[1 —exp(=1/m) + (1/7) exp(=1/m)] }, (15)
whereas the steady-state birefringence is [3]
An(s.s.; y=0)=125C(a”—al)(j;q+{Tq2). (16)

Fig. 1 shows the normalized birefringence rise function

An(t; y=0) -1- 1F fq(1/7—1)
An{s.s; y=0) 1+ 4¢q

1.(1) = exp(—1/7) 17

plotted versus the time ¢ for some values of the polarizability anisotropy reorientation parameter ¢. One
notes that the deviations {rom exponentiality are insignificant.
4. Rise in birefringence in a cosine reorienting field

We shall now consider the case of a cosine pulse

g(1) = }|exp(—iwt) + exp(iwt)] u(t). _ (18)
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Fig. 1. Time dependence of the normalized Kerr effect rise function 5, (¢) for some values of the reorientation parameter g.

With regard to {A.10), (A.11) we obtain the steady-state birefringence relaxation functions A;,, By,
Ayy(ss.) = 3o {_m[1 +r_p(w) cos(2wt ~ Y_2)] — + [l + ma(w) cos(2wt -¥2)l}, 19
Byp(ss.) = %c%{‘f}[l + %’322(“’)] - +"'22[l + %’222(“’)] - +“'2—Tz[’2zz(°’) +rip(w)+ 2]

+_n( = m)ropn(w) cosQut =y )+ n(in T _y)ry (@) cos(2wt — )
+2_12r? 0 (w) cos(2wt — 293} + 2, mirh (w) cos(2wt — 245,)

+ -"2’—24("’)[_"’2’-22(“’) cos(4wt =¥ 2= ¢ _m)

+ 4 mrp(w) cos(dwt — o — ‘Pzz)]

+ +'Tz"24("~’)[+”'2’22("’) cos(dwt — Y34 — V) — - 1ar_5 (@) cos(4wt — o — \P—zz)] } ,
. (20)

where .1, ¢, are given by egs. (8).

From egs. (3), (19), (20) we note that in the steady state of birefringence there appears a component
with frequency 4w related with the squared optical anisotropy of the molecule [6] (beside the components
with frequency 0 and 2w). The birefringence is dependent on the modified dispersion functions

Fiam(w)= (l +mzw2i'rzz)-l/2, (21)
whereas the individual birefringence components oscillate with phase shifts ¢ , ,,, given by

COS\Pizm:"iz”.(“’)’ sin ‘Pizm=m"’1"2’12m(‘*’)' (22)

Thus, if small inertial effects are taken into account, the steady-state magnitude as well as the dispersion
and absorption properties of the birefringence undergo a modification, and the shape of the oscillations
becomes dependent on two modified rotational relaxation times, ;7.
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Let us now consider the rise in birefringence due to the pulse (18) as described by the Smoluchowski
model. By (A.13), (A.14), with the initial conditions A,(0) = B,,(0), we get

24,(85 y=0) =1 = exp(=1/7) + ryp(w)[cos(20t = ¥5,) — rpy (@) exp( —1/7,)]. (23)
4B, (1 y=0)=[1+rd(w)][1 - exp(—1/7,)] + ryp{w)[cos(2or — ¢,,) — ry(w) exp( —t/7,)]
+r222(w)[cos(2wt = 25,) — rh(w)(1 = 4072 ) exp( —-t/‘rz)]
+(2wn) "2 (w) sin 20t exp(—t/7,)
+ 41 () rg () [€03(400 ~ Y2 = 20) = a(@)aa(@)(1 — 8677 ) exp(~ 1/
+2r)(t/n) exp(—1/7,) (24)

involving the following dispersion factors and shifts in phase:

(@) = (1 4+ m2%%2) ™%, sin gy, = monn,,(v), (25)

well known from the classical theory of nonlinear relaxation processes, related with nonlinear third-order
polarization in liquids [15). The birefringence increases up to a steady state, described by the functions

2455(s.5.5 Y=0) =1+ ry(w) cos(20t ~ ¥3,), (26)
4By(ss.; y=0) =1+ 3} (w) + ry(w) cos(2wt — V2) + r5{w) cos(2wt — 2,,)
+ 1 @)na(@) cos(dwt — Py — ¥y, @n

One notes that, in the steady state, the birefringence term linear in q consists of a frequency-independent
part and of a part which oscillates proportionally to cos(2wt — ). The term proportional to ¢? is
moreover characterized by the presence of a component with the frequency 4w. Egs. (26), (27) result
directly from (19), (20) on putting y = 0.

If reorientation is caused by an optical field, wr, = 60, and the relaxation functions of the optical Kerr
effect take the form

245( v=0; 0, =0) =4B,,(1; y=0; wry=0) =1 —exp(~1/7). (28)
Eqgs. (26), (27) prove moreover that, in the steady state of birefringence, the 2w component

An**(s.s.; y=0)= #C(ay~a I (w){£q cosut ~y,,)

+4rq*[cos(20t = ¥2,) + iy (@) cos(2et — 29,)] } (29)
is accompanied by a birefringence component with the frequency 4w: .
A"M(S-SJ Y= 0) = I{Kc(au —a ;)‘12’21(‘*’)’24(“’) cos(4wt — Y2 —¥aq) (30)

dependent on the square of the parameter g2. The time-rise of the 4w component is described by the
formula

An*e(t; y=0)= T}‘Sc(au —a,)q’rp(w)r(w)

X [005(4""; Y ~yy) — ’22(‘*’)’24(‘*’)(1 - 8‘*’2"’22) exp(—t/7, )] . (31)
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Predictably, measurements of the 4w component can provide -information concerning the influence of
the square of the reorientation parameter ¢? on the optical birefringence of liquids.

5. Birefringence in a gaussian reorienting field

For the case of a gaussian laser pulse

g(1) = exp| =4 In(2)(1/75)7]. (32)
where T;; is the pulse half-width, egs. (A.13), (A.14) lead to

At y=0)= -‘:—/1 exp[~4 In(2)(u/T, ) — (t—~u)/1-2] du. (33)
By(t; y=0)= izfl exp[—4 n(2)(u/T5) — (1 - u)/'rz]
Ty Y=o

Xf_uwexp[—4 I0(2)(u/Tg) = (u =) /7] du, du. (34)

Eqgs. (33) and (34) enable us to calculate numerically the shape of the time variations of the birefringence
relaxation functions for different values of the pulse half-width. The results of our calculations are plotted
in figs. 2 and 3 showing the shapes of 4,,(#; y=0) and B,,(¢; y =0) given by formulae (33) and (34), for
values of T ranging from 0.67, to 157,. The response of the system in its dependence on Ty is well
apparent. It differs markedly from the gaussian reorienting pulse shape (32), especially if 7, is comparable
with T or longer. Figs. 2 and 3 moreover show that the characteristic delay of the maximum of the
response functions (33), (34) with respect to the stimulating pulse increases with increasing relaxation time.
This is due to the presence of memory in the system.

t

Fig. 2. Time dependence of the Kerr effect relaxational re- Fig. 3. Time dependence of the Kerr effect relaxational re-

orientation function A;,(¢) for some values of the gaussian orientation function B,,(¢) for some values of the gaussian
pulse half-width. pulse half-width.
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6. Decay of birefringence on removal of the reorienting pulse

One obtains the relaxation function of birefringence decay due to removal of the reorienting pulse g(¢)
at the moment of time ¢, by putting g(r) =0 in eqs. (A.lO)«(A,lZ). This leads to the equation

d’A/di* +EdA/de+ (6kT/1)A=0 (35)

for our two relaxation functions A,,(ty <) = By (1, <t)=A(t).
For the sake of simplicity, we make the assumption that the pulse was sufficiently long for the liquid to
have attained its steady-state birefringence An{s.s.), given by the initial conditions

Ap(ss) =1, Bp(ss)=ay(,m—_7).

The solutions of eq. (35) then take the form
Ap(to <) = 3(1+4/6;) exp(—1/_m) + 3(1 - §/4,) exp(—1/ 1) =1 - A, (1), (36)
Bp(to<t)=cy[ m CXP(T’/-Tz) = nexp(=t/.m)]. (37)

The decay is the sum of two exponentials involving the two modified relaxation times , 7, and _7,. If small
inertial effects are neglected, egs. (36), (37) go over into the well-known result of Benoit [22]:

Ap(to<t; y=0)=Bp(to<1; y=0)=1—exp(—1t/m) (38)

for birefringence decay described by a single relaxation time 7,.

7. Discussion

The above theoretical analyses are especially important in connection with the development of a new
technique for producing arbitrarily shaped, high-rate optical pulses [23,24]. This achievement can have an
important impact on such diverse fields as optical digital communication, where the optical Kerr effect is a
most important one; as well as laser fusion. Until now the precise shape of the pulses was not controllable.
The new technique [23,24] allows the pulse shape to-be controlled even on the femtosecond time scale.
Recently, experimentalists were able to demonstrate the formation of pulse sequences and most recently
the creation of a *‘square” optical pulse [24]. This brings our analyses close to reality for not only gaussian
shape but also rectangular or cosinusoidal shapes of the reorienting pulse, as stated above.

Attention should be drawn to the latest work of Evans and co-workers [25,26] on molecular dynamics
simulations of rise and decay transients in liquids applying the model of 108 C, triatomics interacting with
a 3 X 3 site—site Lennard-Jones potential. In some cases, the results of Evans et al. as well as those of
Coffey, Rybarsch and Schrder [27] do not confirm the conventional view on rise and decay transients
based on Smoluchowski’s model of rotational brownian motions. Thus, e.g., ref. [25], the rise and decay
transients of induced birefringence differ essentially from exponentiality and are oscillatory in shape.
Similar results have also been obtained in refs. [26,27]. Accordingly, we treat the application of Sack’s
equation including small inertial effects to the relaxational theory of the Kerr effect leading to rise and
decay transients in the form of superpositions of exponentials as a new theoretical approach which can
contribute to the explanation of experimental results.
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Appendix
The statistical average in (1) is defined as

(Py(cos 8)), = f:"‘d¢f0“1>l(cos 8)/(8, 1) sin 8 d8, (A1)

where f(0, 1) is the statistical distribution function searched for, describing the probability of the molecule
having the orientation @ at the moment of time . The function is to be calculated from the Sack equation

la2f+af_kT{Li(Sinaaf)+l[auaf 1 a( 814)f

o2 T T TE\sing 30 36) T k713696 T sing a6 5" 955

}. (A2)

which is a modification of the Smoluchowski equation for rotational brownian motion of geometrically
spherical molecules in liquids. Here, / is the moment of inertia of the molecule, u=u(8, E,,(1)) its
potential energy in ‘the reorienting field E,,(r), ¢ a friction constant which deiermines the rate of
approach to the equilibrium distribution in velocity -space [9], k¥ the Boltzmann constant and T the
absolute temperature. Moreover,

kT/I¢=1/6m,, (A3)
where 7, = }7p is the well-known relaxation time of rotational birefringence [4-6}, and T, Debye’s dipole

relaxation time [1-3]. We have recourse to the Maxwell-Boltzmann equilibrium distribution function in a
static reorienting field:

(8, 0) = exp[ — u(8, 0)/kT](f02"fo"exp[ ~u(8, 0)/kT] sin 8 d8 d¢)_1, (A.4)

which, on the assumption of a small value g <1 of the polarizability anisotropy reorientation parameter,
can be written in a satisfactory approximation as a series expansion. The change in potential energy of a
dipolar axially symmetric molecule in a reorienting field E,(0) directed along the Z-axis is:

u(8,0) = —4(ay+ 2, ) EZ — $(a — a, ) Py(cos 0) EZ, (A5)
and the expansion of (A.4) is of the form:

£(8,0)=(1/47){1 £ 3qP;(cos 8) + &4 P,(cos 8) + $P,(cos )] }. (A.6)
We thus search for a time-dependent statistical distribution function f(#4, t) in the following form:

f(8, 1)=(1/4n){1¢ %quz(')Pz(CO'S 8) + &47[ By() Po(cos ) + 3By (1) Py(cos 9)] b (A7)
whereas

u(8, 1) = — $(ay+ 20, ) Eg*(1) ~ $(ay— ) Py(cos 0) Eg(e). (a9)

The unknown reorientation functions A4,,(¢), By(#), By (t) are determined inserting (A.7) and (A.8) into
(A.2), differentiating, and having recourse to the orthogonality properties of Legendre polynomials:

[ Picos 8) P, (cos 8) sin 0 46 =26,,/(2)+1). (A9)
0
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On equating the terms at the same powers of the expansion parameter ¢ we arrive at the following
equations: ) : ; Co : :

A%, /det + £ d A, /de+ (6KT/T) Ay, = (6kT/1)g* (1), (A.10)
d2B,,/d12 + £ d By /dt + (6kT /1) By = (6kT/1) Ay, (1) g (1), (A.11)
d%B,, /41> + £ dByy/dt + (20kT/1) By = (20kT/1) Ay, (£)g*(1). (A.12)

whence we calculate directly the required relaxation functions for different reorienting pulse shapes g(1).
It is worth noting that the function B,(t), in an approximation to E;, contributes nothing to the
birefringency. On neglecting small inertial effects — this amounts to rejecting the terms in the second
derivative in egs. (A.10)—(A.12) — one arrives at the equations of the Smoluchowski model of rotational
brownian motion [6-8]:

m dAy/dt+ Ay =g*(1), (A.13)
7, dByy/dt + By = Ay, 8%(1), (A19)
7y dByy/dt + Byy= Apg2(t), 7, =1/20D. (A.15)

In fact, egs. (A.13)—(A.15) are particular cases of the more general equations of Watanabe and Morita [6]
for arbitrary values of q.
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