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Intermolecular light scattering
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1. Introduction

The theoretical foundations of molecular light scattering are due to the insight of Lord
Rayleigh, Smoluchowski and Einstein. The subject has since been dealt with in a
number of monographs (Cabannes 1929; Born 1933; Fabelinskii 1968: Crosignani et al
1975; Berne and Pecora 1976; Long 1977; Kielich 1981). The scientific relevance of
elastic light scattering resides in the ease with which it permlts the elucidation of the
molecular-statistical structure of matter.

1.1 Studies of integral light scattering

As predicted by Lord Rayleigh, light scattering by gases and rarefied systems is a source
of information regarding the electronic structure of the individual atoms and-
molecules. The fundamental results of Smoluchowski (1908) and Einstein (1910) have
disclosed the stochastic mechanisms of light scattering consisting of spontaneous
fluctuations in number density or concentration as well as those of other thermodyna-
mical properties. The fluctuations are generally isotropic in nature; hence, the light
scattering process too is isotropic, conserving not only the frequency of the incident
light wave, but also its state of polarisation.

Depolarisation of scattered light is caused essentially by anisotropic fluctuations.
According to Born (1933) and Cabannes (1929), such fluctuations are due to intrinsic
anisotropicity of the optxcal polarizability of the molecules or, after Yvon (1936, 1937),
to anisotropy induced in the polarizability of correlated atoms (see Fixman 1955;
Theimer and Paul 1965; Macrakis 1967). In a given thermodynamical state of the
substance, the two preceding mechanisms leading to anisotropic light scattering are
modified by angular correlations between the molecules (Benon and Stockmayer 1956;
Kielich 1958, 1960a).

According to Yvon (1937), statistical translational fluctuations of the dipolar type
modify the polarizability of an atom in a fluid causing it to become a function of the
density as the result of two- and three-body radial correlations. In addition to these
modifications due to long-range forces (Mazur and Mandel 1956; Linder and
Kromhout 1970; Frommhold and Proffitt 1978), one generally has to deal with changes
in the polarizability of a pair of atoms caused by a short-range overlap effect (Levine
and Birnbaum 1971; Lim et al 1970; O’Brien et al 1973; Oxtoby and Gelbart 1975;
Hilton and Oxtoby 1981). These binary collision-induced variations in polarizability of
the atoms lead to collision-induced light scattering as first observed by Thibeau et al
(1968) and by McTague and Birnbaum (1968, 1971). This new kind of collisional
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scattering by gases will be considered briefly, since reviews on the subject have been
written recently by Gelbart (1974), Knaap and Lallemand (1975), Tabisz (1979), and
Frommbhold (1981).

When Yvon's theory is extended to molecules having intrinsic optical anisotropy,
orientational as well as cross translational-orientational fluctuations have to be taken
into account, considerably affecting the depolarisation of scattered light (Kielich
1960a,b, 1968a,b, 1971a,b). In the case of polar molecules, agreement between theory
and experiment can be enhanced by taking into consideration angular dispersional,
electrostatic and inductional binary and ternary interactions (Kielich 1967, 1968a,b;
Kielich et al 1972; Kielich and Wozniak 1974; Wozniak and Kielich 1975, 1977).

In recent years, numerous authors have discussed anew the applicability of the
dipolar approximation of the electric molecular field and its utility for the interpret-
ation of the newest experimental observations of scattered light in dense fluids
(Felderhof 1974; Ladanyi and Keyes 1976, 1977a,b, 1978; Keyes 1979).

Moreover, the scattered light intensity has been studied though its dependence on
the local field model (Kielich and Pieczynska 1970; Burnham et al 1975; Sullivan and
Deutch 1976; Keyes and Ladanyi 1977; Ladanyi and Keyes 1979; Breuer 1980) and
multiple scattering (Frisch and McKenna 1965; Boots et al 1975; Gelbart 1979; Keyes et
al 1979; Hynne 1980).

Undeniably, with regard to atomic gases, the electric-dipole approximation suffices
to achieve an acceptable degree of accordance with experiment though e.g. for helium
gas considerable discrepancies (Barocchi et a 1978)and good agreement (Le Duff 1979)
have both been reported. However, this is no longer the case when one deals with
molecular substances, and higher multipole contributions from the molecular electric
field, causing additional variations of the molecular polarizability, have to be included
in the calculations. This has first been done by Bullough (1962) for molecular refraction
and by Kielich (1965a,b) for distortional electric polarization and more recently, for
light scattering, by Pasmanter et al (1976) and Kielich (1980). In general, one cannot
neglect the contributions from nonlinear multipole polarizabilities (Kielich 1965b,
1980; Hunt 1980; Hunt K L C, Zilles B A and Bohr J E 1981, private communication).

1.2 Studies of spectral light scattering

Beside the integral intensity studies touched on in the preceding sections dealing with
the influence of molecular correlations on the process of light scattering, recent years
have witnessed rapid progress in the domain of the spectral distribution of scattered
light. Thus, beside intermolecular infrared absorption spectroscopy (Van Kranendonk
1974), a new field of intermolecular scattering spectroscopy has arisen (Van
Kranendonk 1980) and become a source of valuable information concerning, in
addition to translational and rotational motions of the individual molecules, the
dynamics of momentary assemblages of molecules correlated in time and space.
The stochastic foundations of the spectral theory of light scattering are, in fact, those
of Van Hove’s (1954) and Vineyard’s (1958) theory of neutron scattering by atomic
fluids (Powles 1973; Copley and Lovesey 1975) extended by Steele and Pecora (1965) to
the case of x-ray and slow neutron scattering from fluids composed of non-spherical
molecules. Here, the problem consists in the formulation of one-, two- and many-body
space-time correlation functions, permitting the determination of the dynamical
fluctuations in number density, the stochastic treatment of which is due to
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Smoluchowski (1906, 1915) in his kinetic theory of translational Brown motions, and
has been extended by Chandrasekhar (1943) and Kac (1959) and, more recently, by
Brenner et al (1978). Besides the kinetic-microscopic treatment of light scattering
(Gabriel 1973), thermodynamical-hydrodynamical approaches also exist (Mountain
1977); the two points of view merge in the general theory of irreversible processes,
proposed by Mori (1965).

The detailed studies of Starunov et al (1967) as well as Stegeman and Stoicheff (1968),
of the fine structure of the lines of light scattered from a laser beam in molecular liquids,
have disclosed the presence of a doublet in the depolarized part of the spectrum. Laser
spectroscopy has made it possible to carry out precise observations of the doublet in the
scattered spectrum in numerous liquids consisting of optically anisotropic molecules.
For an extensive discussion of these studies we refer the reader to the monographs by
Fabelinskii (1968) and Atakhodzhayev and Tukhvatulin (1981) and the reviews by
Fleury and Boon (1973) and Ytarova (1980); also, we refer to the experimental results of
Stegeman and Stoicheff (1973), Alms et al (1973a,b), Dardy et al (1973), Bruining and
Clarke (1976), and Frohlich and Posch (1978). '

According to the thermodynamical theory of Leontovich (1941) and Rytov (1957),
the occurrence of the Rayleigh wing and its doublet is due to light scattering on
fluctuations of anisotropy and on deformations of shearing waves in liquids. Starunov
and Fabelinskii (1974) have performed an analysis of the complete structure of the
scattered light spectrumon the basis of Rytov’s theory (1970), involving two anisotropy
relaxation times.

Ben-Reuven and Gershon (1969) have formulated a molecular-statistical spectral
theory and have applied it in their description of the depolarisation of the Rayleigh line
wing on the microscopic level. Other forms of the theory have been proposed by
Anderson and Pecora (1971), Keyes and Kivelson (1971, 1972) and Gierke (1976). In
liquids, rotational molecular motion is dependent on correlations between the
molecules and, in accordance with the Keyes-Kivelson theory, the reorientational
relaxation time in the presence of binary correlations. 1, is related to the uncorrelated
single-particle reorientational time 7, as follows:

t. _1+fN

7, 1+gN’

where f and g are, respectively, the static and dynamic pair orientational correlations
parameters. The above relationship is the subject of numerous studies (Bauer et al 1974,
1975; Patterson and Griffiths 1975; Wang et al 1976; Cheung et al 1976; Rouch et al
1976; Jones and Wang 1977; Alms and Patterson 1978; Higashigaki et al 1978; Perrot et
al 1978; Lund et al 1979; Hilbert et al 1979; Cox et al 1979).

The effect of molecular fields on the spectral distribution has also been discussed
(Hellwarth 1970; Keyes et al 1971; Keyes and Ladanyi 1977; Bancewicz 1979), as well as
that of angular correlations (Knast and Kielich 1979; Gtaz 1981) and other
mechanisms (Bucaro and Litovitz 1971; Van Konynenburg and Steele 1972; Dili et al
1975; Rosenthal and Strauss 1976; Bancewicz and Kielich 1981),

Also, spectral research has proceeded in simple gases under pressure (Thibeau et al
1970; Keijser et al 1974; Berrue et al 1976; Madden 1978; Medina and Daniels 1978;
Alder et al 1979; Ladd et al 1979; Posch 1979, 1980; Ghaem-Maghami and May 1980;
Guillot et al 1980; De Santis et al 1980; Medina 1981), in atomic liquids and ones
composed of spherical-top molecules (McTague et al 1969; Fleury and McTague 1969;
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Gornal et al 1970; Ho and Tabisz 1973; Schoen et al 1975; Posch and Litovitz 1976;
Ladd et al 1980; Varshneya et al 1981), and in liquid mixtures (Tabisz et al 1972;
Ackerson and Hanley 1980).

1.3 Outline of the present review

The above is ample evidence that theoretical and experimental work on light scattering
in atomic and molecular media proceeds untiringly and that the number of papers and
communications on its various aspects is increasing. Since some results are still
theoretically and experimentally controversial, there is an urgent need for a com-
prehensive, general theory of light scattering well suited to concrete situations in which
various molecular correlations are apparent. Accordingly, we shall attempt to propose a
uniform though rather formal approach to the foundations of integral and spectral
scattering theory. To insure generality and compactness of the mathematics, we shall
essentially make use of Cartesian tensor formalism in the approach initiated by Jansen
(1958) in his theory of electrostatic multipole interactions and extended by others
(Kielich 1965a—f, 1966a,b; De Groot 1969; Stogryn 1971, 1972).

Similarly, as in the complete electromagnetic theory of the refractive index (Vezzetti
and Keller 1967; Kielich 1965¢c, 1966a) and optical activity (Kielich 1975), we consider in
general, multipolar electric and magnetic scattering processes separating the intensities
into irreducible isotropic, antisymmetric and anisotropic parts. With this aim, we givea
systematically developed theory of interactions between electric and magnetic multi-
poles and external as well as internal electromagnetic fields. This enables us to
determine generally the changes in multipolar electric and magnetic polarizabilities of
molecules induced by space- and time-fluctuations of the multipole fields. These
changes, resulting in general from many-body correlations, are determined by the
perturbation method. The procedure outlined permits the calculation of pure
contributions of the type 00, 11, 22, 33 etc. and, moreover, of cross contributions 01, 02
and so forth to the scattered light intensity. Especially relevant to antisymmetric
scattering are the mixed electro-magnetic and magneto-electric multipolar polarizabi-
lities. In addition to this direct influence of molecular correlations, light scattering is
indirectly dependent on them by way of the statistical distribution function, permitting
the determination of the mean scattered intensity. These indirect temperature-
dependent contributions are calculated by thermodynamical perturbation calculus.
The results are expressed in a notation applicable to systems of N like, as well as N
unlike scattering centres.

2. Interaction of electric and magnetic multipoles with electromagnetic field

We consider an assembly of N interacting microsystems (atoms, molecules or ions)
subjected to an electromagnetic field with electric and magnetic vectors at the position r
and time ¢:

E(r,t) = ——i——;—t A(r,t)—Vd(r,1t),

H(r,t)=Vx A(r, 1), (1)

where @ (r, t)and A(r, t)are the scalar and vector potentials at the space-time point (r, ¢)
and V is the derivation operator.
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Let the ith microsystem consist of n; point particles (nuclei and electrons)
with electric charges e,;, masses m, and positional vectors R, (s=1,2,...n,
i=1,2,... N). For convenience, we introduce the set of independent coordinates

l',- = Z msiRsi/zmsi and rsi = Rsi - l'g, (2)

where r; is the (relative) position vector of the sth particle with respect to the center of
mass of the microsystem i whose position is T; (figure 1).

The Hamiltonian of the spinless microsystem i, in the nonrelativistic classical case, is
(Heitler 1954):

Hi = i {eﬂd)(Rsl’ t)+2 3 [cp.ﬂ esiA(Rsht)]z}’ (3)

s=1

in which p,; is the generalized momentum operator of the sth particle of the
microsystem i.
The total Hamiltonian of an assembly of N microsystems is

N
HN =Y H, )

i=1
The Hamiltonian (3) can, in the well known manner, be resolved into a nonperturbed
part H{® and perturbed Hamiltonians of the first and second order of the form

1 n
ngl) = _Z Z [p.n A(Rsn t)+A(Rsu t) P.ll]+ Z i(b(Rsi’ t)’ (5)

s=1M s=1
H®?= Z ‘u A(Rsn t)- ARy, t). (6)
s—l

In the general case when the scalar and vector potentials are not constant within
the region of the microsystem (the field is generally nonhomogeneous throughout

e R Ryl=IF+E-Fl ey

0

Figure 1. Interaction of two non-overlapping microsystems i and j separated by the vector
distance r;; =r,—r; and of linear dimensions very small compared with the distances
{r| » |r,;| and |r;| ® |r,;| at which the electric field is studied.
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the region of a microsystem), one can expand @ (R,;, t) and A (R, t) in series in powers
of Ty (|| < [r.]):
21
¢(ri+rsh t) = Z ;Tr:i[n] V?d)(ri’ t)»
n=0 "

1
Atrg, )= Y —eh[nlVIA @, 1), ™
where the symbol [n] in Jansen’s (1958) notation denotes n-fold scalar contraction of
the product of two nth rank vectors rl; and V7.
By the expansions (7), the first-order perturbation Hamiltonian (5) can be
represented in the form of a multipole expansion (Kielich 1966a);

n; @ 1
Hg“ = 3=Zl esid)(ria t) - ngo m {Mgl)[n] E(")(ri’ t) +
+ MO [n]H" (r, t)}, ®)

in which the first term represents the potential energy of the total charge of the
microsystem in a scalar potential ®(r;, t). The second term describes interaction
between-the 2"-pole intrinsic electric moment of the microsystem i

n,
Mg:) = z eyrg Y(")(rs.‘) 9

s=1
and electric field vector of degree n at the point (r;, t)
E®(r, 1) =V} E(r,1). (1a)

In the definition (9), Y™ (r) is an operator of degree n having the properties of spherical
harmonics and determined as follows (Kielich 1965c¢):

Y®(r) = nTlrn—{(2n—— re, .o, —Q2n=-3)11r2Y Uy, ..o,

+ . (=D =2k - 1)1 r2
ZUlz...Uzk‘lyzkr2k+l...r,|+ ...} (10)

where U, , denotes the unit tensor of rank two,and . U, ,r; . . . r,, etc. are sums of the
terms obtained from the one written out by interchanging the suffixes 1,2, ... n. The
number of terms in the last sum in (10) is equal to n!/{2* (n —2k)!k!}.

The third term in the Hamiltonian (8) represents interaction between the 2"-pole
intrinsic magnetic moment of the microsystem i (Kielich 1965c):

n;

) FEYM(r VX E, 11
mi (n + l)C = e.ﬂrsl Y (rll) X rsl ( )

and the magnetic field vector of degree n at the point (r, t)
H®(r, 1) = VI7'H(r, 1) = VI x A(r;, 1). (1b)

With respect to (7), the second-order perturbation Hamiltonian (6) is obtained as
follows (Kielich 1965c):
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1 2 x 1
2) - __
HP= =3 L, L Gnoii@n -0t
H)(r, 0)[n,] AL [n,] H™ (x, 1), (12)

where we have introduced the tensor of rank n, +n,

"

)4 () _ e Ue” i pmtmay ) Vg
" I Dt D@ Lm0

-Y®(r,)- Y*)(r,) U} (13)

determining the multipole (dia) magnetic polarizability operator of the microsystem i.

Our multipole expansion Hamiltonians (8) and (12) obtained by the Cartesian tensor
method can be given immediately in spherical tensor representation (Gray 1976; Gray
and Stiles 1976).

3. Long-range multipole forces
We shall now discuss the perturbation Hamiltonians (5) and (6) from internal fields

existing in an assembly of interacting microsystems. Neglecting retarded time effects,
we have for the scalar and vector potentials

(bmt Rsl o
( ) Z 2 |Rsl Rujl

JFiu=1
. R
AR, = e (14)
,;: uil |Rll Rujl
where, by (2) (also see figure 1):
IR.n'—Ruj| = |rij+rsi—rujl' (28)

In the special case of nonoverlapping microsystems when |r,; +r,;| < |r;;| we can
expand (14) in the form of a double Taylor series (Jansen 1958):

@ ( l)n

[Ri—R,| "= ¥ Z o nl r; [n] ("‘)Tgh)["z] L (14a)
n=0n,=0 ny-n,
wherein the tensor of rank n, +n,
(ng)Ti(;'z) —_ v:llv;l; |rij| -1 _ (__ 1)"‘ +n, (nz)'rj(:lx) (15)
describes (2"-pole) — (2™-pole)-type interactions between microsystems i and j distant

by r;;.
With regard to (4), (5), (14) and (14a) we obtain for the total first-order perturbation
Hamiltonian resulting from internal long-range forces (Kielich 1965¢, 1966a):
i 1
HY = 2 —— MW (n)
mt = IZ {"Z (2n 1)” Mei [n] FOe (l',-)+

o

+ 5 G MR ), 6



410 Stanistaw Kielich

where we have introduced the electric internal field of degree n at the centre of the
microsystem i due to the intrinsic electric multipoles of the N —1 surrounding
microsystems of the assembly:

FQ(r,) = Z Z 1)" (")T("')[n,]Mg!'). 17

JjFi n,—l

Similarly, the magnetic internal field of degree n at the centre of the microsystem i is
(Kielich 1962, 1966a)

(n) ) (1) = Z Z — 1)" (n)T(m)[ 1] M’(:I‘) (18)

FEA n,=l

On substituting in (16) the fields (17) and (18), we obtain in explicit form the
Hamiltonian (Kielich 1966a):

o (_1)"2
HY--1F¥ T3 ¥ @0, DT 2ny ~ DI

i=1 jgin=0n=0

AMEI [, JTT [0, IMEY + MED [, JOT [0, IMEP}, (19)

where the first term arises from electrostatic interaction between the intrinsic electric
multipoles of an assembly of N m,icro-systems and the second term arises from
magnetostatic interaction between the intrinsic magnetic multipoles of the micro-
systems (see also Chiu 1979).

In the same way, we obtain expressions for the higher-order intermolecular
Hamiltonians (Kielich 1965¢; Stogryn 1971, 1972).

The application of these general expressions, such as (19), to concrete special cases is a
rather straightforward procedure and the results are given in many papers (see e.g.
Kielich 1972; Isnard et al 1976; Galatry and Gharbi 1980). Tables of non-zero and
independent tensor elements of the electric quadrupole, octopole and hexadecapole
moments for all point groups have been published by Kielich and Zawodny (1971) (see
also Kielich 1972, 1981). Also, the numerical values of these multipoles for various
simpler molecules are available (Stogryn and Stogryn 1966; Kielich 1972; Birnbaum
and Cohen 1975, 1976; Isnard et al 1980; Birnbaum and Sutter 1981).

Expressions for the molecular interaction Hamiltonians in terms of irreducible
spherical multipole tensors have been given by Gray (1968), Riera and Meath (1973),
Moraal (1976) and Leavitt (1980).

4. Multipole electro-magnetic polarizabilities

4.1 Induced multipole moments of a microsystem
Let us consider a microsystem acted on by the electric and magnetic fields
E(r,t) = E(w, k) exp {i(k r — i)} +C.C,
H(r,1) = H(w, k) exp {i(k - r —wt)} + C.C. (20)

of a monochromatic light wave vibrating with the frequency @ and having the
propagation vector k.
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Assume the microsystem, prevxous to applying the fields (20), to have occupied one of
its energy levels E, = fiw,. We assume this as the ground state and denote the
eigenfunction correspondmg thereto by |I/° (r). The quantum state of the microsystem
in the presence of the fields (20) is given by the vector of state qu (r, t) >, which has to
fulfil the Schrodinger equation:

l‘h%lwa(r, )y ={HO+HY+H®+ .. }|¢,r 1)), (21)

where the perturbation Hamiltonians of the microsystem are given by (8) and (12).
We express the wave function of the perturbated microsystem ¥, (r, t) in terms of the
following expansion:

Yylr, 1) = ;ckg (OY (1) exp (—iw,t), 22

where the coefficients for a transition of the microsystem from the quantum state |g ) to
the state |k ) under the influence of the perturbation are functions of time and can be
expanded in a series, as follows:

GO =c RO+ O+ O+ ... = io P (1) (22a)
e

The solution of the problem is dependent on the initial conditions assumed, and we
write in the zeroth approximation (Louisell 1973)

D (t) = & exp (—Tt/2), (22b)

since even in the isolated case the levels of the microsystems almost always possess a
finite width for various reasons; I'; ! is the lifetime of the quantum state |k .

. With regard to the initial condition (22b) we obtain, by (21) and (22), the following
equation determining the transition coefficients for p = 1,2, 3 . . . (Plociniczak 1980):

i 5‘3- ) = ~ih e+ T {HP O+

+HP @O+ .. .}cE~ V() exp (iwy?), (23)

where the matrix elements of the perturbation Hamiltonians H{!’(¢), . . . are defined as
usual.

The form of the equation of motion (23) is consistent with the approach of Orr and
Ward (1971).

Now our problem consists in calculating the electric or magnetic multipole moment

M®_ () induced in the microsystems by the fields (20). By quantum-mechanical
statlstlcs we have

M® (r, 1) = Zp, J"P‘(r OMP, ¥, (r, t)d1, (24)
where p, is the statlstlcal matrix in the quantum state g.

By the definition (24) and expression (22), the induced electric or magnetic multipole
moment can be expanded as follows:

MC, ()= Y MO, @r )2, (25)

p=0
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where the pth order induced moments are given by

14
ME, (0P = 3 3 p el (0)* CkIME,|1) el (0). (26)
q=0 gki
Restricting our present considerations to the first-order Hamiltonian (8) with time-
dependent fields of the type (20), we obtain from (23):

1 CKHED @))g>

i oay,—w—il, exp [i(wy, —w +il,/2)t] + CC, (23a)

Ckg) (t)
where HV(w) is the Fourier frequency transform of the Hamiltonian (8) and
I, = (I —1I,)/2 determines the level widths of the microsystem for the transition
Ck|+-1g>. |

By (23a) with (8) we obtain from (26) for the linear (first-order) electric multipole
moment of the microsystem (Kielich 1965c, 1975)

e o]

MO @0 = ¥ (WAL (@) [n, ]E®(r, 1)+

w2, @n =D
+® A®) () [n, JTHO(r, 1)}, 27)

where the tensor of rank n+n,

MOk Ck|M@eD
,.,ZP {(gl [k k| l9>

Wy — 0 —il},

AP (@) =
gk
(glM"‘"Ik) (k[M("’!g)

Wyt +il,

} exp(—1TI,1) (28)

défines the linear 2"-pole electric polarizability induced in the microsystem by 2"-pole
electric transitions.

Similarly, the tensor ®A"1)(w) determines the linear 2"-pole electric polarizability
induced in the microsystem by 2"-pole magnetic transitions and can be obtained
immediately from (28) on replacing therein M) by M (™),

On replacing in the expression (27) the index e by m and m by e as well as E® by H™
and vice versa, we obtain automatically the expression for the linear magnetic multipole
moment.

42 Variations in polarizability tensor due to multipolar fields

Generally, in a condensed system such as a compressed gas or a liquid, even in the
absence of external fields (20), molecular multipole fields (17) and (18) exist owing to the
presence of intrinsic or induced multipole moments (9) and (11). In the presence of
external fields E, (r, t) and Hy (r, t), the molecular fields F,, (r) and F,,, (r) undergo a
change as the result of polarization of the microsystems of the medium, and have to be
replaced by molecular fields

FO(r, 1) = ): Z S T (@) [0, JME(x, 0),
]# in = l 1)"
FR 0 = ng n,z_ 1 (2n 1)" s T (@) [ My, 1) (29)
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which, in general, are functions of E(r, ¢t) and H({r, t).
In (29), the interaction tensor has the form

w)? w

which, for (w/c)|r;;| < 1, reduces to (15).

Hence, in a condensed medium, each (e.g. the ith) microsystem is acted on, in addition
to the external fields E(r;, t) and H(r;, t), by the multipole fields (29). Consequently, the
total multipole moments of the ith microsystem are now functions of the effective fields
E,(r, t)+ F.(r, t)and Hy (1, t) + F,, (r, t). On restricting ourselves to a linear approxima-
tion we have by (27) and (29) for the total electric multipole moment of the ith
microsystem (neglecting inhomogeneity of the external electric field i.e. writing E® = 0
for n> 2 and external magnetic field H™ = 0):

© 1
M. )= MD(r)+DAD () . I
MO (r, t) = ME(r) + DAL () Eo (r;, t)+n,z=1(2nx—l)!! x
x {MA8)(@)[n, JFMUr, )+ DAL (@)1, JFE(r, 1)}, (31)

where the total multipole electric and magnetic fields are of the form (for simplicity, we
have omitted the higher order terms) (Kielich 1965a):

F® =F® S o (=
(r;, t) (r.)+j§' HIZ_ G =D X
x OTM) (@)[n, ] "WAY (@) E@;, )+ ... 32)
" ; (=y™
re0= s ¥ 5 gt
x OTE(w)[n, ] WAL (@) E(r), 6)+ (33)

The expressions (31)-(33) lead, for the electric dipole moment induced in the ith
microsystem immersed in a dense medium, to

M, (r;, t) = T1; () Eo(r;, ), (34)
where )

! ®
I, (w) = M (@) + M (@) + M@+ ... =} M(0)? (33)
p=0
is the second-rank tensor of linear electric dipole polarizability of the ith microsystem
in the presence of fluctuations of the multipolar electric and magnetic fields.
In the zeroth approximation we assume no long-range multipole field to be present,
so that the second-rank tensor

I, (@) = QAR (@) = A.(0) + (353)

represents the linear electric-dipole polarizability of an individual microsystem (one-
body contribution).

The successive terms of the expansion (35) determine variations in dipole polariz-
ability of the first, second, . . . etc. order perturbations due to the action of the electric
and magnetic multipole ﬁelds (many-body interaction contributions). In the first-ordet
perturbation we have (two-body interaction contribution)
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N ® ) (_1)"1
M=% ¥ X G Tien =i

JEin =1n=1

x {QAD @)1 T (@)[n,] ™AL (@) +
+ QAW (@)1, ] T (@)[n,] A ()} (36)
In the second-order approximation the linear dipole polarizability variations are
given by (three-body interactions contribution)

(_1)n2+n‘
I, (w)(z)_ Z Z Z Z ISR (2n4_1)!!x

JEik#j n =1 n,=1
{g”A,(,'i'" (@)[n,] (nl)T}nz)(w)[nz] (”I)A‘”J)(w) +

+ AN @[ 1T @) ] AL (@) + ..}

x [n3] “”T}i‘"(w)[m] ("‘)A(”(w) (37
The perturbation expansion (35) with (36) and (37) in the electric-dipole approxima-
tion represents the well-known result of Yvon (1936, 1937) and Kirkwood (1936).

4.3 Contributions from nonlinear multipole polarizabilities

We now consider the further contributions to the effective polarizability (35) from
induced dipole moments of the second and third orders given by (26) for p = 2 and p
= 3, respectively. The electric multipole moment resulting from second-order perturb-
ation theory is given, at the frequency w, by:

MO, 0 =2 ¥ ——— (B () +

1 a0

2 Z_ . (2n1 -

+®Bot ”(w)} [14+n]E(r, )F)(r) +
1

(m) gn, +ny)
+3 Z_l nz_l @y — DG, —D <Beet @I+,
x {F("’)(l'i, OF8 (0) + FM @) Fi (@, 1)}, (38)

where the n + n, + n,-rank tensor ™, B * ") () defines the second-order nonlinear 2-
pole electric polarizability induced in the microsystem by 2™*™.pole electric
transitions.

The electric multipole field existing at the centre of the ith microsystem immersed in
the medium when the external field is absent is now of the form (Kielich 1965a)

P2 a0

FO(r) = FO(r, +ZZ Z Y ¥ ox

jEikgin=ln=1n=1

(__ l)n, +n,
X
Q2n, — 1)1 2ny — YN 20y — DN
x T [0, ]")AL (@)[n, 1T 5 [n, IME) (x,), (39)

where F{J2(r,) is given by (17).
We see from (38) that the external electric field E,(r, t) in cooperation with the
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multipole electric field (17) or multipole electric fields (32) and (17) causes nonlinear
multipole polarizabilities which lead to an additional contribution to the linear effective
polarizability (35) (Kielich 1965, 1980), namely to the two-body contribution
(=1)™
)y 2 (g +ny)
el(w) Z 2 Z (2n, _ 1)"(2'12 — 1)" { ¢B¢¢l ((D)+

]¢1n,‘ln,=l

+ WB ()} [1, ] OITED [n, ] ME(r,), | (40a)
as well as the three- body contribution
( . 1)n3+n.

ez(w)‘z"‘ Z Z Z zl(Zn,—l)" = >

j#lk#;n,-l

x {UBLH " (@) + B (@)} [n, ] T [n,] x

X ‘”’ZAi'}”[na] “’”T}:"[m] M&)(r,) +

1 N N ® @ (__ l)"’+"‘ ( )
+- . (le)B n,+nz ((1)
2 igi kgj ..,21 Z= g @ny =Dt 2ng -1l )

x [+ 1} { VTG @)[n3] AL (@) TG [, IME) +
+ (”1)'[‘(”3)[" ]M("’)(r )("I)T(”"(w)[m] ("‘)A‘”(w)} (40b)

Similarly, the expression (26) leads to the third-order electric multipole moment
induced at the frequency w:
el S(1,ny,n,)
®M(p 13 =
M, 1) Z X Gr D)@, -1

n—ln—l

x @ C.‘,i:?"' +"’)(w) [1+n+ "2] Eo(r, t) Fg"l)(ri) F () +
1 [+ o] s o
Lk 2
x Mot "z+"=’(w)[n, +n,+n, JF™M (@, )F&)(r,) F&) (r),

@1

where S(n,, n,, n,, .. .) is a symmetrizing operator consisting in summation over all
permutations n, n,, N, . . .
In (41) the (n+n, +n, +n,)-rank tensor M CfLt"+1) describes the third-order
nonlinear 2"-pole electric polarizability produced by 2" * ">+ "_pole electric transitions.
In particular, we obtain by (39) and (41) for the second-order contributions

S, ny,n)(— 1)t
He.-(w)%l' Z Z > - Z; (2,,1_1‘)"2 @n, ~ )11

1# ik#tin =1
x QCLEM " @)1y +n, ] T IME (r;) "TH)

S(ny, ny, ny)
 2ny =20, — N (20,5 — 1)"

nM8

x [n, ] M9 (x,). 42)

44 Cross magneto-electric contributions

Generally, one has to take into consideration in the equations of motion (23) both the
electric and magnetic parts of the perturbation Hamiltonian. As a result, in addition to
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the induced purely electric and magnetic multipole moments M (r, t) and M®(r, t)
one obtains, respectively, the additional mixed muitipole moments M. (r, t) and
M) (r, t). In second-order approximation, M®,(r, /) consists of a part dependent
on]y on the square of the magnetic field strength and a cross part dependent on the
electric and magnetic fields simultaneously. The latter contribution is of the form

MU 5, ) = (B @)+

21(2n1—1 I

(8] I

+® Bl(:‘ell+l)(w)} [1+n]Eo(r, O FI(x) +

1 .
Z Z (2n, — Y (2n, — 1) (B

no=1n=1

% Fi’ll)(ri’ t) F'(:z)(l-‘,)+ (n:B'(':uéiMz)(a))[n, + nz] X

) @)[ny +n,] x

x FQ@) Fi (@, 0}, 43)

where the (n+n, +n,)-rank tensor ™BU,*") defines the second-order nonlinear
2"-pole electric polarizability due to 2™-pole electric and 2™-pole magnetic transitions.

By (18) and (43) we obtain one of the more important cross electro-magnetic
contributions to the first-order variation in electric polarizability:

(-p™
I, () = WRU+n) 4
@ J;l "1251 nzz—l (@ny =11 2ny — N {
+WUBL (@) [, ] T [, IMP (). (44)

Analogously, one obtains multipolar mixed electro-magnetic contributions in the
third approximations of perturbation theory (see Kielich 1965b).

5. Fundamentals of the statistical-molecular theory of light scattering

3.1 The electric and magnetic multipole fields of the scattered wave

The Liénard-Wiechert potentials generated by a point particle s of the microsystem i at
the space-time point (R, t) are (De Groot 1969)

e.
OR, 1) = |
Rsi+(Rsi.Rsi )/C Ret
1 e.R.
AR, )=~ —-2 3 __ s 45
R t) = Ry Ry Ry | “3)

where the subscript ‘Ret’ indicates that the position R,; and velocity Rsi must be taken at
the retarded moment of time (see figure 1)

t =t =Ry(t)e = t —|r,(t) +r,(t")|fc. (452)

On expanding the potentials (45) in a series in powers of r,; and taking into
consideration (45a) we obtain by (1) for the electric and magnetic radiation fields in the
wave zone i.e. at distances from the radiating microsystem considerably exceeding the
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light wavelength (r; > 1) (Heitler 1954; Born and Wolf 1968):

1 ..
Ei(r, 1) =37 {Fix [r; x Z(t)]} ger

ctr
1 .
H5(r,t) = ey {r X Z(t)} gees . (46)
where
L=t—rc (46a)
The Hertz vector
Z(t)=Z,0t)+Z,(t) 47
consists in general of a part accounting for electric multipole radiation (Kielich 1965c)
] 1 an -1
t.}) = —_— . pr1 — —— () L; 7
2= T Grrpmiestt =g MP ), (47a)
and a part accounting for magnetic multipole radiation
a0 1 - f an -1 .
)= — n - X ——M™)S @7
Zot)= = ¥ et 1] {r. X 25T M) . (4Tb)

5.2 Relation between electric fields in a medium and in vacuum

In the semi-macroscopic approach, we consider a macroscopic sample of volume ¥,
electric permittivity tensor & and magnetic permittivity tensor u immersed in an
isotropic continuous medium with the scalar permittivities &5 and p,. The electric field
of the light wave in the surrounding medium being E, (r, t), the mean macroscopic
(Maxwellian) field E(r, t) existing in the sample will in general differ from Ey(r,t). The
relation between the two fields is dependent on the structure and shape of the sample
and the conditions in which the scattered light is observed. Generally, the two fields are
related by the tensor R, () as follows (Kielich 1972): V

EO (l', t) = Re ((l)) E(l‘, t)’ (48)
where '
R, (@) =¢5 ' {gU+L-[e(w) —¢, U]} (48a)

Here, L is a symmetric field depolarization tensor, dependent on the shape of the
sample, and defined so that its trace shall equal unity: L: U = L,+L,+L,,=11ts
principal values are (¢ = x, y, 2):

I by reryr.ds
T2} (24 [ I+ I+ (I + )P’

Iy, Iy and r, denoting the principal semi-axes of the ellipsoid. In particular, for a
spherical sample r, =r, =r, = r and L = { U, whence the tensor (48a) reduces to

R, (@) = [e(w)+ 26, U]/3e,. (48b)

If moreover the permittivity of the sample is isotropic & = ¢U, one has the well known
relation:

R, (0) = [e(w) + 26,] U/3¢, = R, (w)U. (48¢c)

(g T2
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If the sample is a cylinder, the axis of which is directed along the x-axis, one has L, = 0
and L, = L, = 1/2. For a circular oblate disc L, = L,=0and L, = L.

By analogy to (48) we define the relation tensor R,, (@) between the magnetic vectors
Hy(r, t) and H(r, ¢t).

We now assume that the scattering sample of volume ¥ contains N microsystems,
correlated stochastically in time and space. The electric field of light scattered by the
spherical sample and observed at a large distance r in the surrounding medium is (in a
satisfactory approximation)

N A N
ES(r, 1) = R,(05) ¥ ES(r,t)= [ﬁ@%ﬁﬁ] Y ESr, o), (49)
i=1 0 i=1
where £(ws) is the electric permittivity of the isotropic sample at the vibration frequency
w;s of the scattered light wave.

5.3 Intensity of scattered light

We shall now consider the integral intensity of the light scattered by the volume V in
order to determine the component thereof transmitted by an analyzer at the point of
observation (figure 2). Let the direction of the vibration transmitted by the analyzer be
that determined by the unit vector esperpendicular to the vector of observation r. Since
now e r = 0, the component of the electric field (49) in the direction of the unit vector
es is, by (46),

N
ES®0 6= ~ 5 R@) ¥ 20)e, 45a)
i=1

The intensity of the light scattered by the volume ¥ and transmitted by an analyzer
outside the sample at r is defined as follows:

D4

SCATTERING
SAMPLE

LASER

POLARIZER A=t

ANALYZER DETECTOR

Figure 2. Laser light scattering experiment. The incident laser light beam has the frequency
o, propagation vector k and polarization vector e, whereas the scattered beam has the
frequency w,, propagation vector k, and polarization vector e,; Ak = k, —k is the scattering
vector and 6 the scattering angle.
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o) = 5= e ES 0, 1) ES 1, 1) €, (50)
where the symbol { ) denotes appropriate statistical averaging.
Substituting (49a) in (50), the fundamental equation for the scattered intensity takes
the form

R:(“k)
3

fnc <Z ) e,-i(t.-)*i(t,-)~e:‘>, (50a)

i=1 j=1

Ie,(r) =

where the Hertz vector is given by (47).
Since by assumption V' < 43, we can restrict our considerations to light scattering of
the electric dipolar type. We now have by (34), (47) and (50a):

Ie,e(r)=Q(w,)Io< Y Y [eMi(w)* e*]x

i=t1 j=1
x [e-M,;(w) e*] exp (iAk'rU-)>, _ (50b)

where I, is the incident light intensity existing within the scattering sample and
Q(w,) = (1/r*)(w,/c)* R? ()R} (w).

In the case of an isotropic medium and when the external field is absent, the
probability for all directions of the unit vectors e and e, is the same, so it is useful first to
perform unweighted averaging in (50b) over all-possible orientations of e and e, with
respect to the fixed system of reference (X, Y, Z):

I (r)= Iise+1a|ltis+lanis (51)
ee e, e,

ee s

where we have the intensities of isotropic, antisymmetric and anisotropic scattering,
respectively, in the form

Ig, =31Q(w)1,S%|e, e*|?, (51a)
1355 = 10 (w,)[,S*™™5(1 — e, e|?), (51b)
I3° = Q@) [o5*5 (3 + 3|e,  e|> — 2|, e*|2). (51c)

Above, we have introduced the constants

Sis=< D Hgi(w)*ne,-(w)CXP(iAk'l’.—,—)>, (52)
i=1j=1
N N
samiS=< ) n:,.miS(w):n:;'“S(w)exp(iAk-r,.,.)>, (53)
i=1 j=1

N N
S = < Y Y {Mu(@)?*:11,;(0) - 311,(0)*I1,;(w)} exp (iAk-r,-,-)>, (54)

i=1 j=1

characterizing the molecular-statistical mechanism of isotropic, antisymmetric and
anisotropic scattering,
Here, we have introduced a scalar polarizability:

nei = %ne" : U. (528.) .
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The mathematical form of the scattering constants (52)-(54) follows from the
definition (h = 0, 1, 2):

<«
N N
SM.= < Y ¥ N®(w)*: N (w)exp (iAk- r,j)> (55)
i=1 j=1

in agreement with the fact that a second-rank tensor can be represented in the form of
the sum of three irreducible components:

M=MO+%+0% = 3 0%,
h=0
where I =T1U is an isotropic tensor (h=0), IT'" an antisymmetric tensor (h=1) and
TI® an anisotropic tensor (k = 2). So, in this way, we can denote S = 5, gantis — g1
and $* = S (see Placzek 1934).
With regard to the perturbation expansion of the polarizability tensor (35), we
rewrite the scattering constants (55) as follows:

SW= Y S = SP4SPSP4 ., (55)
p=0
where
P N N
sW=3% < Y ¥ ﬂ‘e';’(w)“":Ht’;’(w)“"“’exp(mk-r,-j)> (55H)
q=0 i=1 j=1

is the h-scattering constant of the nth approximation. In general, the above statistical
averaging should be performed with the grand canonical statistical ensemble

e, Q" = Quexp{— (UY+ H")/kT}, (56)

where, in addition to the long-range interaction Hamiltonian of muitipole interactions
of N microsystems, we have the potential energy U " of short-range interactions of the
N multipolar microsystems.

The various kinds of molecular energies have recently been reviewed by Ratajczak
and Orville-Thomas (1980).

6. Angular distribution and polarization states of scattered light

Let us assume a set-up in which the incident light propagates along the Z-axis of
laboratory coordinates XYZ, attached to the centre of the scattering volume V'
(figure 3). The scattered light is observed in a distinct set of laboratory co-ordinates
X'Y'Z'. As the plane of observation we chose the Y'Z’-plane, which coincides with the
Y Z-plane. Thus, © is our scattering angle, subtended by the axes Z and Z.
Generally, we express the versor e of the incident wave electric field E = Ee as
follows:
e=xsin¥ +e“ycos¥, (57

where ¥ is the angle between e and the Y Z-plane, and A is the phase shift of the
Y-component of the field E(x, y, zare unit vectors in the direction of the axes X, Y, Z of
the laboratory frame).

The unit vector e, defining the polarization of the scattered beam in co-ordinates
X, Y, Z can in general be written in a form similar to (57):
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X
e
y . ,
k YA X
eS
O™~ /s
Ke
¢
¢ r
O Z‘
ot

Figure 3. Systems for the determination of the angular distribution and polarization states
of scattered beams.

e, = xsin ¢ + ¢*(y cos ® — zsin ®) cos ¢, (58)

¢ being the angle between e, and the Y'Z’ plane.
. Equations (57) and (58) account for all possible states of polarization of the incident
and scattered light. For example, at A = 0 the incident wave is linearly polarized at an
arbitrary angle
=xsin¥+ycos'¥. (57a)
If the y-component of the field is shifted in phase by A = + n/2, we have for elliptical
polarization .

e, =xsin¥+iycos'¥, (57b)

. where with regard to the angular momentum convention a phase shift + n/2 refers to
right circular polarization of the wave and —~=/2 to left circular polarization. If in
addition ¥ = n/4, then (57b) gives for a circularly polarized wave

s = (Xtiy)/ 2. (57¢)
It is our aim to determine the angular distribution and polarization state of the
intensity scattering components (5ia)-(51c).
6.1 Linearly polarized incident light
For linearly polarized incident light, we have by (57a) and (58)
le,"e*|2 = |e," €|? = sin? p cos® ¥ + cos? O cos? ¢ cos? ¥ +

+4sin2¢ sin 2¥ cos & (51c)
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and obtain from (51a)-(51ic) for the vertical and horizontal scattered intensity
components (see figure 4)
VV = é ( )S(o), iﬁy = iﬁu =0,
Hu = 30(w,)$ cos? ©, (59a)
Iaynytis =0 Iamls Ianus - lQ(w )S(l)
I =4 Q(@,)8V(1 - cos? ©), (59b)

W= %0, s,
I?,n‘l,s ams __% Q(w )slz)
I3 = 450 (@,)S® (3 + cos® ©). : (59¢)

Defining the depolarization rates as D, = I%,/I%, and Dy = I%5/I%y for incident
light polarized vertically (¥ = 90°) or horizontally (¥ = 0°), respectively, we obtain by
(59a)-(59¢):

35 4 551

105@ + 45" (60)

y =

352 4 55
1059 ¢cos? ® + 581 (1 —cos? @)+ SP (3 +cos’ @)

Equation (60a)is similar to the result derived by Placzek (1934) for Raman scattering.

Dy(®) =

(60b)

6.2 Circularly polarized incident light

In the case of circularly polarized incident light (57c) we obtain by (58) from
(S1a)y-(51c):

1%, = 1Q(w,) S (sin? ¢ + cos® © cos? ¢ + cos O sin 2¢ sin 5), (61a)
127 = %0 (w,)SM(2 —sin? ¢ —cos? @ cos® ¢ + cos O sin 2¢ sin 8),  (61b)
::‘f, = £ 0(w,)S?(6 +sin? ¢ + cos? O cos? ¢ F 5cos O sin2 ¢ sind). (61c)

X 2

/O { W
Y ks

Figure 4. The incident light beam propagates along the Z-axis with intensities I, or I,
where the indices ¥ and H denote vertical and horizontal polarization, respectively. Scattered
light observation is performed along the Y-axis, with first indices ¥ or H standing for the
vertical and horizontal component of the scattered beam intensity I°5.
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The depolarization ratio is usually defined as the ratio of the lowest I 5, , and highest
I3, possible values of the scattered intensity (see Born 1933). We obtain by (61) at
é=0and ¢ =0° or ¢ = 90°:

108 +68@ 4+ (108© — 580 4 §P)cos? ©
1089 4 551 4+ 78@ '

For incident light circularly polarized in the right sense only (e = + 1), we obtain by
egs (61)for 6 = +n/2, p =n/dand e, = +1:

D, (©)= (62)

1%, = 40@,) S (1 £cos O, (632)
1T, = %0(@,)5[4 - (1 Fcos ©)2], (63b)
17 = 1450(w,)S® (13 F 10 cos © + cos? ). (63¢)

The reversal ratio is by definition the ratio of that part of the scattered intensity
whose sense of circular polarization is contrary to that of the incident wave and the part
whose sense of circular polarization coincides with the latter (see figure 5). We thus
have, quite generally,

s
R. = I3y,

3y~ S
Iilil

ki

and obtain by (63) for right-circularly polarized incident light:

405 sin* ©/2 +205)(1 —cos* ©/2) + $®(13 + 10 cos © +cos? ©)
4059 cos* ©/2 + 208V (1 —sin* @/2) + S (13 —10cos © +cos? @)

R., (@)= (64)

In the case of forward scattering (® = 0°), eq. (64) reduces to (see Placzek 1934)

15,(6)

R(4) =
13,00

Figure 5. Geometry for the determination of:the reversal ratio, on the angular momentum
convention. Under the action of the right circuiafly polarized incident beam [, , propagating
along the Z-axis, two circularly polarized components appear in the scattered beam, the one
right-circular I3, , and the other leftcircular 15, , .
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68(2)
105(0) + 58 + S(Z) ’

which in some special cases yields results well known from the literature (Bom 1933;
Long 1977).

R, (09 = (64a)

7. Application to isotropic scattering

The subsequent discussion of our theory consists in applications of the scattering
constants (52)-(54) to particular situations, disclosing the optical properties of the.
microsystems as such, as well as the micro-structure and thermodynamical state of
various substances. We first proceed to consider the isotropic scattering constant (52).

7.1 Microsystems exhibiting constant polarizability

If the scattering medium is but a moderately condensed one, the effect of the long range
intermolecular field on the polarizability tensor of the microsystem may be neglected in
the expansion (35), and the expression (52) may be written in the zeroth approximation
as follows:

N
Sk— 3< ¥ f A;Aejexp(iAk-rij)>, (65)

i=1 j=1

where A4,; denotes the mean electric polarizability of the isolated ith microsystem.
We decompose the scattering constant (65) into an incoherent part (i = j)

S8inc =3 Z |4 |? (65a)
describing scattering by statistically independent mlcrosystems and a coherent part
i#J)

sin Akr;;

SEeon=3( Y ¥ 4% ”> (65b)

© <1—1]#1 Akrii

describing scattering by stochastically correlated microsystems.
If all the microsystems present within the scattering volume V are of one kind

A= A,; = A,, then (65a) and (65b) may be rewritten as follows:
= Sl (65¢)
SE con = S8 inc T (AK), ‘ 65)

where we have the integral parameter

sin Akr
['Ap) = ‘[ jj‘{ (2)("12,91,92) } Akr = dr,,dQ,dQ,, (66)
ry2

introduced by Zernike and Prins (1927) in their theory of x-ray scattering by liquids.
Above, g¥(ry,, Q,;, Q,) is the binary correlation function for microsystems 1 and 2
having orientations £, and Q, at the distance r, ,, and p = N/V is the number density
of microsystems.
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In the absence of phase interference (when the wavelength is large with respect to the
intermolecular distance) (66) yields

L@ =N"'((ANY> -1, (66b)

where the mean square fluctuation of the number of microsystems is given by the
Smoluchowski-Einstein formula

C(AN)Y*) = Vp*kTf;

with Br—the isothermal compressibility coefficient of the medium.
In the case of compressed gases, we have by (66) the relation

r©)= —-4B(T) (66¢)

between I'(0) and the second virial coefficient of the equation of state of the real gas

2IIN
B(T) = —--d—j Jf{exp[ u(ryz, Qy, Q)/kT] -1} r2,dr,,dQ,, dQ,,
(67)
where u(r,,,Q,,Q,) denotes the total potential energy of interaction of the two
microsystems.

Hence, it is obvious that coherent isotropic scattering is accounted for directly by the
second virial coefficient (67) only if the microsystems exhibit a polarizability that is
unaffected by the presence of their neighbours. Perturbation series expansions of the
second virial coefficient (67) for general multipole interactions have, of course, been
considered by many authors (see eg Kielich 1965f; Stogryn 1969; Moraal 1976; Singh
and Singh 1976; Isnard et al 1980).

7.2 Microsystems with variable polarizability

In a sufficiently condensed medium, the polarizability of a microsystem is affected by
the presence of the intrinsic fields of its neighbours.

Let us first calculate the contribution to (52) for the case when the statistical
averaging is performed with the distribution function (56) in the absence of tensorial
interaction

[ QY =Q7"f(x" (56a)

so we have only radial molecular interactions described by the potential energy U, (r™).
Under the assumption of (56a), the first approximation of (55b) vanishes. In the
second approximation we have by (52) and (55b):

S%)S. coh = + S 20’ (68)
where we have, in the absence of interference effects,

N N
= 3< )3 H‘e‘?’*ﬂ‘fj’>, (68a)

i=1 j=1
Po= <Z )3 H“"H“’> : (68b)
i=1 j=1

and S%, is dcfined similarly to Sis,
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7.2a. Linear multipole polarizabilities: By (37) we obtain from (68a) for the cross 02
approximation for the two-body correlations contribution (omitting for simplicity the
magneto-electric terms)

2 20 uh? (2n 4 2u)!

=X X o T <

n=1u=1 (2n (2n+ 1) [(2“) ]

(£ 5 antagoaginee oA +

i=1j#i

+ Agu) ((I)A(n)[n + 1](H)A(l))} r‘2(n+u+l)> (69)

and, for the three-body correlations contribution:

1S5, = 2 (n+1)'(2n+1)(2 )'< Y Z Z X

n=1 i=1j#i k#j#i

rr;
X (A% + A%+ AR AGAZD Ay (ryr) ™" P, (~—- “)>
r,-jrj,‘

LY 0 n+u 2 N N N;V
i3y 27 4(nlu!)? (2n + 2u)! <§ 5 Y

Qn)! 2n+ DI Qu)' ]2

n=1u= 1 Lj#i k#j#i
X A;{“’A‘e'}’[n-i— 1]""A“’}A‘z"’r"z"'+“+”> (70)
Here,
1
AGD = 5 VAR [2n] U (71)

is the mean value of the 2"-pole electric polarizability of the ith microsystemand P, , , is
a Legendre polynomial of degree n+1.

The contribution (69) is similar to that obtained previously by Kielich (1965a, b) for
molecular refraction and distortional electric polarization but the contribution (70)
differs by the last term, proportional to r 2" *** 1.

If the higher-order terms are neglected, we obtain from (69)

2S5, = 2< EN:I g AX{[A.(A,;: Aej)+(Aei:Aei)Aej]ri;6+
i=1j#i
+[Aa(VAD : D AD) + (VAR DADR) A, i+
F[AGOAD DAY+ (VAD: DAD) A, ] 0+
+3[AD A A ) + (A A)AG r® +
+ 29§[AL?)((1)AL§) (Z)Ag) ) + ((I)Ag) :(Z)A(eli))A(‘t)]r— 10 + . }> ,
(69a)

where VAP and @AY are the linear electric dipole-quadrupole and quadrupole-
dipole polarizabilities and, by (71), A% is the mean electric quadrupole-quadrupole
polarizability.

As a particular case of some interest we shall consider that of axially-symmetric
molecules with centers of inversion for which (69a) yields in a good approximation
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zsi:2=6< ST AR A AgTAu (14 26) 4 A1 +26)]r S +
i=1j+#i

+3[ AW AL (1 +2K3) + AL(1+2k2)AD T r7 8 + . }> , (69b)

where k= (4,—A,)/3A is a parameter determining the anisotropy of dipole
polarizability with Ajand A4 ,, respectively, the polarizability in the directions parallel
and perpendicular to the molecule’s symmetry axis.

In the same manner we can particularize the three-body contribution (70); e.g. we
have for the electric dipole approximation

386, = Z Z Z {3(A;+A:j+A:k)AeiAejAek
i=1j 1 ke#tjs#ti

Tiy T >+Ae,Aek(A,j:Aej)rj‘,f}>. (70a)

ru Jjk

X '(rijrjk)_3P2<

In the calculation of the contribution (68b) we restrict ourselves to the electric dipole-
dipole approximation in the mutipole expansion (36) and obtain for the two- and three-
body interactions

sti=4( 3§ 5 1O04L DD, + DDA+

i=1j#1i
+7(DZ‘,~2DE.~)(D2‘,-iDe,-)}r56>, (72a)
i %< Y Z Z {AXA + A, A%} (DY:D,;) x

i=1j#i k#gj#i
X (r.,r,k) <'—"5>> (72b)

rit ik

with

D,=A,—-4,U (71a)

the deviation tensor of linear dipole-dipole electric polarizability.
Applying the preceding expression to axially-symmetric molecules, we obtain:

,Sis = 12 < Z Z | 4|2 | Ae;|* Qi+ 267+ 3K x})r,-}6>, - (72)
l#l
sti=#( 3 T tnaatanlaf e
jEEk#Ej#EI
X (riyr50"> P2< "’i>>. (72d)
e
In the approximation (11), the four-body contribution is zero:
WS =0, (72¢)

whereas in the approximation (02) we have:
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N
S5 =06 <z Z Z Z A% A jApAg X

i=1jskiktjriltkstjsi

| TR ¢
xrpirad Py (#» (72f)
Jk Tkl

On proceeding to the next higher dipole-quadrupole approximation in the expansion
(36) we obtain, beside the two-body contribution provided by (69a):

$5=2( T 3 (AP OAD @A)+

i=1j#i
3 (‘“Afi’E‘Z?AS’)AZA.ZJ}N;&>, (69¢)

the following contributions arising from (68b) for the two- and three-body interactions
(Kielich 1980)*

N N
2 ls %('1)< Z Z {IAeA'|ZG_(i3’3)+_22§(D:i:Dei)K5'3,3)}rl';8> (72f)
i=1j#i
JS¥ = %%< ST L RGP Aurgte P;(——f—“)> (72g)
i=1jtiktjei rur_;k
S5 =0, (72h)

where the molecular parameters G and K!*? are in general rather highly
complicated combinations of scalar products of the tensors ‘VA® and @AM and we
refrain from adducing them in explicit form. We shall consider these fomulae
again in §8.

7.2b. Nonlinear multipole polarizabilities: We now consider the higher contributions to
(68) from the nonlinear multipole polarizabilities (40) and (42). By (42) we obtain for the
two-body contribution (Kielich 1965b)

2 2" (nlu!)? (2n 4+ 2u)!(2n + 3)
L ~Gmi@n+ D)@ Gu + 1)

®
_—_%Z

®

< i i 2(n+l)(M(u)[u] M(u)
=1j#i
+(M(u)[u] M(u) 2(n+l)}ri;2(n+u+ 1) >’ (73)
where
1
Cgi(n+1) = nt3 uU: “’CL{,:"*"’[Zn]U" (74)

is the mean nonlinear (third-order) multipole electric polarizability.

* The scattering constants defined by (52) and (54) as applied here are in excess of those used in a previous
paper (Kielich 1980) by factors of 3 and 30, respectively.

~
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In the case of axially-symmetric molecules possessing only the third-order mean
dipole-dipole polarizability C'¥, the expression (73) becomes

02 = % Z n+1)< Z Z (4) (n))2 ML’:’)ZC(4)}r—2‘"+2)>
n=1 f=1 js#i
] (73a)
where, by (9),

M = Z e Py(cos ©) (%a)
s=1
is the 2"-pole scalar electric moment of an axially symmetric ith molecule.
By (40b), we obtain for nonlinearly polarizable dipolar and quadrupolar molecules,
respectively (Kielich 1980)

N N
258 = 2< Yy Y A:‘,-(Ae,-+A,,-)(U:“;B‘,‘e;'”-M‘e§’)r,.;6>, (752)
=1 1#:
N
osz—— < Y Z AX (A + A ) (U WBL P - MP)r; > (75b)
i=1j#i

The molecular parameter U: VB *1D- M intervenes in Dc electric field-induced
second-harmonic light generation (Kielich 1969, 1979; Hauchecorne et al 1971)
permitting the determination of the value of the nonlinear (second-order)dipole-dipole
electric polarizability tensor ‘VB{L* Y, if the intrinsic electric dipole moment M is
known. The new contributions (75a) and (75b) are of interest as containing the first
power of the tensors ‘B * 1 and B{1* 2 and not their square, as it is the case for the

is contribution (Kielich 1960, 1968). So the formula (75b) provides an indirect method
for the determination of the value and sign of the second-order nonlinear dipole-
quadrupole electric polarizability or the intrinsic quadrupole electric moment M&.

7.3 Temperature-dependent contributions arising from electrostatic multipole
interaction

Hitherto, in the foregoing calculations, we considered the approximation (56a) when
the distribution function depended only on the positional variables r" of the molecules.
Generally, the total interaction energy consists, besides U, (r"), also of that part of
Vi = v@", Q) which depends both on the positional and orientational variables r
and Q of the molecules. In the case of weak tensorial interactions between the
microsystems, i.e. when simultaneously ¥, < U, and ¥, < KT, the Boltzmann factors
in (56) can be expanded in power series in V/kT. In particular, restricting the problem
to the first approximation of statistical perturbation calculus, the exact distribution
function (56) can be replaced by:

f(r",ﬂ”)=Q"Nf(rN){1—E%(Vn—<Vn>)+ } (56b)

This expansion leads to further contributions to the scattering constant (52), which
are dependent explicitly on temperature. However, we shall restrict these sup-
plementary calculations to the first approximation resulting from (55b):

S = S 4S8, (76)
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Usually, electrostatic multipole interactions in (19) play the predominant role and we
obtain for dipole-quadrupole type interactions with regard to (36) and (56b) (Kielich
1980)

. 1 N N
28011y = “gﬁ< > ¥ A%+ A5 (D, :MP) x
i=1j#1
x [U: (VAD + DAW). MB]r;® > (77)

The above contributions attract our attention because they involve the first power of
the tensors VAP and @AY and not their product, as it is the case for the contribution
(69a).

On inserting (19) into (56a) one obtains by (40a) for the two-body contributions
(Kielich 1965b)

2" (ntu!)* 2n+2u)!
L @)l @2n + D)) Qu+ 1)

i ™8

. 1 o
25:)51(1) ZTT— Z
n=

1 u
N N
< S5 A%{(U: DB [n]ME) (MO [IMY) +
i=1ji
+ (MPLME U OB GIME e ) )

On expanding this general expression to within the term in quadrupole moments we
have

. 2 N N
28010y =—< Y Y AN{[(U:VBLY-MP)MLY-MY)
3kT i=1j#1i

+ (ML MY (U VBT M) r® +
+[(U: 0B D M) (MP: M) +
+ (M M) (U B M) + (U: BT ME) M- M) +

+ (M- ME)(U: VB M) e+
28 (li (1+2) 2) 2) 2)
+~3—[(U: eBeei :Mei )(Mej :,Mej )+

LY

+ (M :MP)(U:VBL 2 M@)]r ;10 > (78a)
In a similar way we can calculate some other contributions to S i,s, also dependent on
T~?for p > 2 (Kielich 1960b).

8. Application to anisotropic (depolarized) scattering

8.1 Zeroth approximation of the theory

In the zeroth approximation the polarizability tensor of a microsystem is independent
of the electric field of the surrounding, neighbouring microsystems, and the anisotropic
scattering constant (54) becomes
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N N
sg"i3=< Yy ¥ D:‘,.:Dejexp(iAk-r,.j)>, (79)
i=1 j=1
where the deviator defined by (71a) differs from zero only if the molecule is,
intrinsically, optically anisotropic.
In the absence of interference effects we obtain immediately from (79) for the
incoherent and coherent parts of the anisotropic scattering constant
N N
S?iirslc = Z D:‘i:Dei = 6 Z lAel'|2 Kiz’ (793.)

i=1 i=1
. N N
Stcon = < > > D.’!‘.-IDe,->, (79b)
i=1j#i
where
. D%:D,

ki= 6|4 (80)

is the parameter of optical anisotropy polarizability of the ith molecule.

The expressions of (79) and (80) are valid for any molecular symmetry, whereas they
undergo considerable simplification if the scattering molecules are assumed to possess
the axial symmetry:

N N
g = 3< Y Y A%A,xx;(3 cos? @,.,.—1)> (81)
, i=1j#i .
with ©;; denoting the angle between the axes of symmetry of two mutually interacting
molecules having the orientations Q; and Q;.

Obviously, in the absence of molecular interactions, the coherent scattering
constants (79b) and (81) vanish.

For molecules of the same species (81) reduces to the well-known result

SEmSs = S8 J 4, (81a)
where _ '
ine = 6N |4, |2 %2,
and
JA = ‘%p J‘Jv(3 COSZ @12 - l)g(z)(rlz, Ql’ Qz)drlzdnl sz (82)

is the angular molecular pair correlation parameter.

The influence of various angular molecular correlations (dispersional, electrostatic,
inductional, etc.) on anisotropic light scattering has been discussed by many authors
(Benoit and Stockmayer 1956; Kielich 1960a, 1967, 1968b; Pecora and Steele 1965;
Kielich and Wozniak 1974; Wozniak and Kielich 1975; Gray and Gubbins 1975; Hgye
and Stell 1977; Ladanyi et al 1980). On the other hand, the parameter (82) accounting
~ for these correlations is accessible to determination from experimental data (DeZeli¢
1966; Kasprowicz and Kielich 1968; Lalanne 1969; Fechner 1969; Lucas and Jackson
1971; Kielich et al 1972; Alms et al 1974; Wréz 1975; Tancréde et al 1977a, b; Bertucci et
al 1977; Battaglia et al 1979; Madden et al 1980; Vereshchagin 1980).
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8.2 First approximation of the theory

We now restrict our considerations to the dipole induced dipole approximation in (36)
and obtain by (54) for arbitrary molecular symmetry

N N N
Sanis — —< >y 3y ¥ D’;,.:(A,,--“’Tj-}"-Ae,‘)exp(iAk'r,-j)>. (83)
i=1j=1ketj

For molecules possessing the axial symmetry (83) yields for two-body contributions
(Kielich 1971a; Kielich and Wozniak 1974)

. N N
So1° = 3< Z Z {2A:iAejxi(1 —K)[Aa(l +x)—
i=1j#i

Agk;](3cos? ©;—1) 13 +24%5 A 06 [ A (L + k) +

+4,;(1+x;)](3 cos §;cos 8;cos ©; — cos® @, )r;;*} >, (83a)

where 0; and 8; denote the angles between the symmetry axes of molecules i or j and
the vector r;;. The three-body contribution is calculated in the paper of Kielich and
Wozniak (1974).

In the case of a one-component system, (83a) reduces to

S&s = 123N {(1 —K) J o, + 26 (1 + 0K, ), (83b)

where the radial-angular binary correlation parameters (Kielich 1971a)

1
Jra= EP f (3cos? @, —1)ri;’ g (ry5, Ry, Q;)dr, dQ, dQ,,

1
Kpi= Epf (3cos®,cos @, cos O, —cos? ®,,) x

Xr79%(r,,Q,,Q,)dr,dQ,dQ, (84)

have been calculated for special molecular models (Kielich et al 1972; Wo#niak and
Kielich 1975). Obviously, the above parameters are defined so as to vanish in the
absence of angular correlations.

Similarly to (77), we obtain for the dipole-quadrupole approximation (Kielich 1980):

Zs(a)l;i(sl) 5kT< Z Z {[D Ael M(Z))][U:((l)Ag‘zi)-{-

i=1j#i
+PAL) MY+ [D5: (VAP + DAD) MU x

X (De,-iMﬁ’)}l'i}s>- 85)

By (40a) and (19) we obtain for dipolar nonlinearly polarizable molecules (Kielich
1960b, 1968a):

258 =5 3 % (M9 D3 ME)U: B M) +
i=1j#i

+25(D%: 1B Y- MY (MY - M“’)}r.-}“>- (85a)
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Analogous calculations, somewhat less complicated, can be carried out for other
models of correlating polar molecules (Kielich 1960b, 1968a, b; Kielich and Wozniak
1974; Wozniak and Kielich 1975; Frenkel and McTague 1980).

8.3 Second approximation of the theory

8.3a. Contribution from linear multipole polarizabilities: We shall now proceed a step
further, and shall take into account the Yvon-Kirkwood translational fluctuation effect
for molecules with intrinsic anisotropy. We obtain, by (36) and (37) in the electric dipole
approximation for the two-body contribution:

Sams < Z Z {12|A2,Ae,‘2 5[|Aei|2(D:j:Dej)+

i=1 j=1

+(D%:D,)|4,;|* ]+ 3 (D%:D,)(D}: D)} r;;® >

8%15 =< Z Z {2[D (Dei'Dei)+2Aei(D:i:Dei)]Aej+

i=1j#i
+3L(D:i : Dei)Agj +T§5(D:i : Dei)(D:j : Dej)}ri;6 > (86)

Similarly, we have for the three-body contribution

N N N
s ams__12< Z Z Z (A:,Aek'f'Ae;A )[IAeJ|2

i=1jsiksj#i

7 I,.'T,
+ — (D* r>3r:3p ij ik >,
60 ( ej eJ )] ij Jk r.’j rjk

<Z ) {20(D%: Do) A+ Ai(DY: D)} Auy

i=1j#iksji

xri’r ,;3P2<r ":)>’ (87)
ij

and for the four-body contribution

N N
s = <z LYY ARAANALx

i=ljrikdjrilakejsi

i l'
xri’ry Pz(r"r >> (882)
ik’ jl .

(88b)

anis __
4202 _0

On addition of (86) and (87) as well as the respective contributions 28308 and ;530 w
obtain the previously derived results for S3% + S21% + $3%s (Kielich 1968a, equatlons
A8-A.10).

For axially-symmetric molecules (86) and (87) reduce to a simpler form:

¢ 513
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. N N
51 = 6( T % 24303 )+ BRI )

i=1j#1

2Sanls=_5_< Z Z |Ae||2{(20’4e‘+AeJ)Ae’K2+
i=1j#i

+ IOAe,-Aejx?+§A3,-Ki2xf}r,-;6>, (86a)

N N N
3s;";is=1z< ST T (A% At AAR) A X
i=1j#iktjei

7 r;;'T;
. -3 ij “jk
<1+10 ) ERe Pz(’u’jk)>’

6
: 3';S=‘< ST Y (20Au A Aald )
5 i=1j#iks#jsi

T,
p3r3p, | > 87

The contributions (86a) and (87a) jointly give the results derived by Kielich (1968a)
for liquid mixtures. Applied to one-component fluids, they give the formulae evaluated
numerically by Wozniak and Kielich (1975).

Recently, Cox and Madden (1980), applying the spherical tensor method, have
calculated the contributions S, and 523 only, for the case of a one-component fluid.
Their formulae, compared with those resultmg from (72a) and (72b) for S}, and (88),
(86a) and (87a) for $2%%, as applied to molecules having identical real polarizabilities a
= A; = A; = A, and anisotropies y = 3A K;=34;x; = A — A, are found to differ
only in numerlcal factors at the term y* = (3AK) Obv1ously, for weakly optically
anisotropic molecules, this term is of no relevance.

Taking into account the terms with dipole-quadrupole polarizability in the
expansions (36) and (57) we arrive at the following binary and ternary contributions
(Kielich 1980):

st =05 5 (A RO D000 )

=1j#i
N N
2S5 =2 < Y ¥ (D5:(VAD:PAD) A+ 15 (D W,-‘3'”}ra“>’
i=1j#1i
(89b)
Sams o * p(3,3) 4P rl'j'rjk
3 Z Z Z AeIPJ Aek ru jk 3 7 ) (89C)
i=1j#ikejti ij'jk

where the molecular parameters P$¥, 0> and W*? are given by appropriate
combinations of products of the tensors VA2 and DAY
For tetrahedrally-symmetric molecules (e.g. CH,) we have:

3,3) _ 3,3) _ p3,3) . nG3.3) 3,3 2
GS‘ ’—Kﬂ- )__P( ) Q( ) W( ) — (Ag‘ly)z)

so that formulae (72f) and (89a) go over into those of Buckingham and Tabisz (1978)
derived for binary collision-induced rotational Raman scattering by tetrahedral
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molecules. It is noteworthy that the contributions (72g) and (89c) can be positive or
negative, depending on the three-body interaction model applied and thus can cancel or
raise the two-body interaction contributions (72f) and (89a). It is also of interest that
the cross contributions (69c) and (89b) are non-zero only for two-body interactions;
thus, they can play an important role if (72f) and (72g), as well (89a) and (89c¢), cancel
out mutually.

In the case of anisotropic axially-symmetric molecules of one species (e.g. CO,), (72b)
and (39a) lead to the recent results of Amos et al (1980) for the binary collision-induced
Raman scattering.

If the terms with the quadrupole-quadrupole polarizability tensor ‘¥ A are taken
into account in the expansion (37), one obtains by (55b) for two- and three-body
interactions (Kielich 1980)'

<Z . {[l4al? + 35 (D% D,)][(DY:DAS): UT+

i=1j#i
+ 36-5 [D (Del Del) + ZA (Del Del)] A } r; >

s ams__ _%< Z Z Z {A [(De, (Z)A(z) U]+

i=1jtik#tj#i

+3 (DX: D) A} ri* P (' L )> 90)
. ru r}k
8.3b Contributions from nonlinear multipole polarizabilities: For nonlinearly polariz-
able molecules with an intrinsic dipole moment M} the first approximation of (40a)
leads to previously calculated results for S,, (Kielich 1960b, 1968a); however, the
second approximation of (40b) yields the following two-body contribution (Kielich
1980):
ams < Z Z {A (Deu (l)B(1‘+1) M(l))

i=1j#i
+333 (D: D) (U: B - M)} rj; > 1)

For molecules having an intrinsic quadrupole moment M? and the nonlinear
dipole-quadrupole polarizability !)B{." 2, (40a), (40b) lead, in the two-body approxi-
mation (Kielich 1980), to

'zsz:x;is__._s3 < Z Z {[3LBLF 2% ()BU+D)
i=1j#i
—(U: (l)B(elelfrZ))* H(U: (I)B(l +2))] (M(Z_) . M(Z)) +

eel

[(3U13 (l)B(1+2) U1 (I)B(1,+2) M(z’][(3U (I)B(1+2)

eei eej

—U,,: WBLYY) M(:)]}r—lo> '

N N
2583 =2 <Z 2 {A%(D,;:UBL Y MP) +545(D2:D,,) x
i=1j#i

X (3Uy3: OBAS Y — Uy, - OB ) M ) > 92)
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The last formulae provide an indirect method for the determination of the sign of the
intrinsic quadrupole moment M2,

By the expansion (42), similar calculations yield successively for the two-body
contribution from interaction between an intrinsic dipole or quadrupole moment and
induced third-order dipole moment (Kielich 1960b, 1968a):

2Sams= < Z z {C(4) M(l) D* M(l))
i=1j#i

+5(DY:CUL Y U)(M:}’-Mz}’)}r.;“>, ®3)

1S3 = < % ¥ {20CH[DY: (MY M)+
i=1j#i

eeei

7D CET ) MM ) o9

9. Linewidth broadening in quasi-elastic scattering by correlated microsystems

This section is aimed at presenting a stochastic treatment of the spectral distribution of
light scattered by systems of atoms and molecules, correlated in time and space.

9.1 Time-correlations intensity of scattered light

Similarly to the integral intensity of scattered light (50) we can introduce the following
time-correlation intensity of scattered light (for processes stationary in time)

2
I (rt) = I;é“’a)< Zl Zle ZEZ(t+1) e*> (95)
\ & 2

With regard to the theorem of Wiener and Khinchin, the Fourier transform of the
time-correlation intensity (95) determines the spectral density

S, (Ak, w)= (21'[)"'Jj+ wlel(r, tyexp [i(w,t —Ak-r)]dt dr. (95a)

= ®

The range of applicability of this theorem to time-dependent spectral processes has
been the subject of an analysis by Eberly and Wodkiewicz (1977).

Restricting the problem to electric-dipole scattering in the wave zone, we write (95)in
the form

Iee(r, t) = Q@) o, t)< i i [e, TL (7, Q0)* e*] x

i=1j=1
x [e*-T1,(r}, Q%) e]exp [iAk- (r} —r,)]> 96)

where the position and orientation of a microsystem i is given at the moment of time ¢
by the variables r{ and Qf, and

Io(r,t) = Igexp[itk-r—owt)].
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On decomposing the effective polarizability tensor II(r, Q) into three irreducible
tensors and on averaging in (96) over all possible orientations of the microsystems, we
obtain respectively for isotropic, antisymmetric and anisotropic scattering (Kielich et al
1981)

I r, 1) = $Q(@) o (r,1) SV (Ak, t) e, e*|?, (96a)
IR(r, 1) = $Q(@,)o (r, £) SV (AK, £)(1 — e, ¢[*), (96b)
121, 1) = 35 Q(@,)o (r, ) S? (Ak, ) 3 + 3¢, €] —2[e,- e*|?). (96¢)

Above, we have introduced the time-dependent correlation functions (h =0, 1, 2)

N N
S®W(AK, 1) = <Zx 'Zl oY), QY)*: I (%, Q%) exp [iAkw(r?——r})]>
i=1j=

07

characterizing the molecular-statistical dynamics of isotropic (k = 0), antisymmetric
(h = 1) and anisotropic (h = 2) scattering.

9.2 Correlated molecules without change of polarizability

If the molecules are correlated statistically but if we neglect the changes in their
polarizabilities caused by the molecular fields (the zeroth approximation), we obtain
from (97)

S® (A, z)=< i ﬁ AP (Q0)*: AP Q) exp [iAk~(r?—r;.)]>. (98)

i=1j=1
In particular, for anisotropic scattering, we get:
S (AK, t) < Y Z D,(Q0)*: D, (Q})exp[iAk- (1! —-r§)]>. (98a)
i=1 j=1 ;

9.2a Correlation function of isotropic scattering: In the case of atoms and isotropically
polarizable molecules we have by (98) isotropic scattering only, with the correlation
function

S‘°’(Ak, t)=3< Y Z A:iAejexp[iAk~(r?—r§)]> 99)

i=1j=1
which, for like correlating microsystems, reduces to
SO(Ak, t) = 3N|A,.|*F (Ak, ¢). (99a)

Here, we have introduced the well known intermediate scattering correlation
function

F(Ak,t)=N'1< i i exp[iAk-(r?——rﬁ)]> (100)
i=1j=1

discussed in the theory of neutron scattering.
After Van Hove (1954), we introduce the space-time binary correlation function

G2 (ry, 13, 1) = Gy (rf, 14, 1) + G (K], 15, 1), (101)

where the self-correlation function G, (r?, !, t) determines the probability of finding a
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selected molecule i at the point r{ at the moment of time ¢ if it is known to have occupied
the point r{ at the moment of time ¢ = 0. Similarly, the distinct correlation function
Gp(r?, r}, t) expresses the probability of finding a molecule j at the point r/, if the fixed
molecule i was at r? at ¢t = 0.

By having recourse to the Van Hove function (101) we can split (100) into two parts
(see Powles 1973), a self-correlation part, describing incoherent scattering

Finc(Ak, 1) = V7! IIGXP [iAk-(r} —r})]Gs(x?, v}, t)dr? dr} (100a)

and a distinct part, describing coherent scattering on stochastically correlated
molecules

Foon(Ak, t) = % Jjexp[iAk-(r? —r)]Go(rd, i, t)dr) drt. (100b)

It is important to find a reasonable and physically plausible analytical construction
of Gs and—especially—Gp. Here, of essential interest to us is the interval of
intermediate times of molecular relaxations (107 !3 < ¢t < 10~ % sec), for which one may
apply the solution on the model of diffusion of translational or rotational molecular
motion.

On the assumption of the Einstein—Smoluchowski free translational model, we have

Gs(r?, v, t) = (4T1D,1)" 32 exp (— |ri — r?|2/4D, ). (102)
Thus, the incoherent scattering function (100a) finally takes the form
Finc(Ak, t) = exp (—|Ak|? Dp2), . (103)

where Dy is the coefficient of translational diffusion of Brownian particles.

The calculation of the coherent scattering function (100b) is by no means simple for a
lack of the analytical form of the distinct correlation function G . In some cases use can
be made of Vineyard’s (1958) convolution approximation

GD(r?9 r_'j’ t) = JQ(Z)(Tg)Gs(T?a l’;, t)dl’? (104)

and we reduce the coherent scattering function (100b) to the following form (see e.g.
Nijboer and Rahman 1966):

Feon(AK, £) = T3 (AK) Finc(AK, 1), (105)

where the integral parameter I'J, (Ak) is given by (66).
By (99a), (103) and (105) we can write finally

SO(AK, 1) = 3N|A4,|? Fine(AK, 1)[1 + T3 (AK)]. (106)

9.2b Correlation functions of antisymmetric and anisotropic scattering: In the case of
anisotropic molecules we have to replace the Van Hove function (101) by the
generalized space-time correlation functions;

G(Z) (rl’ Q‘l)’ I, QZ’ t) = Gs(l'?, Q?, l';, 9:9 t)+ GD('?’ QO l" Q;, t)- (107)

i j’
invol\}ing additionally the molecular orientation varibles Q; and Q;.

Regrettably, as yet, not much is known concerning the analytical form of (28) and
hardly anything concerning G, (Rowlinson and Evans 1975; Evans 1977; Williams
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1978). We now proceed to introduce certain model assumptions to simplify our further
caiculations:

(i) the translational and rotational motions of the molecules are mutually
independent,

(i) after Vineyard (1958), the molecules interact with one another at the moment of
time t = 0 only, whereas at ¢t > 0 they are statistically independent and move in
conformity with the laws of self-diffusion.

With the above assumptions and applying a procedure due to Steele and Pecora
(1965), one can expand (107) in a series in spherical Wigner functions Dy, (Q):

Gs(r?, Q0 1}, QL 1) = 2 Suw(rl, t)B:m(Q?)E:m’ (QH*, (107a)
JKMM'
GD(I"-O, Q?, rfi Q;a t) = Z Z g.:(“l‘{‘_l(luj (r:ja t)
JKM, 1 KM,
X Eﬁ,u.(i"ﬂ?)ﬁﬁ’jul("ﬂ})*, (107b)
where
— 2J+1\2
D@ = (%) Dl

The analytical form of the functions

B

J
Suw (rii, t) and gK,-hll,-,Kle(r:j’t)

can be specified for a given model of the molecular motions, the simplest model of this
kind being that of translational-rotational diffusion. In this case we have

Sitw (055, 8) = 8,0 G (2, ¥, 1) exp (—t/,), (108)

where Gg(r, rl, t) is given by (102) and 73 denotes the Mth component of the
rotational relaxation time of the J th order which, for symmetric top molecules, is given
by

Tu={JU+ 1D}, + M* (D}, — DY)}~ (109)

D{, and D%, being the principal values of the rotational diffusion tensor.
The expansion coefficients of (108b) can be expressed as follows (Steele and Pecora
1965):

I¥hee k0, (FLj ) = eXp(— t/13) f Iiin, k,m, EH G (2], 15, 1) drf. (110)

Our problem becomes quite simple on transforming the Cartesian tensor AP Q)
occurring in (98) to spherical representation and we obtain by (107)-(109) for the
antisymmetric and anisotropic scattering functions (Knast and Kielich 1979).

S(AKk, 1) = NFy, (Ak, t) ZA; (AG* ALY exp (= t/T3)[6 yur + T (AK)],
M
(111)
S@(Ak, t) = NF,,o(Ak, 1) %{ (AED* ALy exp(—t/12) [ 0 + L (AK)],
(112)
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where we have introduced a generalized Steele and Pecora (1965) radial-angular
correlation parameter,

Mk =y S0 rg’N’_M L (113)
N 2J+1 Jg oMM Akr,
If Ak r < 1 (short-range correlation), (113) reduces to the Steele (1965) parameter
, O,
Dym (0) = %—27‘;1— L gizj,_u, —wa (riz)drg,, (113a)

which has been calculated numerically for concrete models of interacting molecules (see
e.g. Kielich 1967, 1972; Ananth et al 1974; Wozniak and Kielich 1975; Hgye and Stell
1977; Gtaz 1981).

In the absence of molecular interactions, the parameters (113) vanish and the time
correlation functions (111) and (112) describe incoherent antisymmetric and aniso-
tropic light scattering

Sihe(Ak, 1) = NFic (Ak, ) Y | AS? exp (—t/1},), (111a)
M

SEHAK, 1) = N F (Ak, 1) Y | 432 exp (—t/13). (112a)
M

9.3 Contributions from multipole polarizabilities

The results of recent experimental and theoretical spectral studies are evidence of the
‘importance of contributions from multipolar polarizabilities (see e.g. Kielich 1963,
1968; Pasmanter et al 1976; Buckingham and Tabisz 1978; Tabisz 1979; Posch 1979,
1980; Shelton and Tabisz 1980; Cox and Madden 1980; Amos et al 1980; Kielich et al
1981). These contributions bear on the anisotropic as well as the isotropic scattering,
inherent in the time-correlation functions (97) and are determined with complete
generality by the expressions derived for effective polarizabilities derived in §4. Since
the latter, in spite of the compact Cartesian tensor notation applied, are rather complex
mathematically, we shall restrict ourselves here to writing the lower-order contri-
butions to the correlation function of isotropic scattering. By (97), it can be written
explicitly in the form:

N N
SO (Ak, z)=§< Y Y (ML Q%: U}* x

i=1j=1
x {1 (r}, Q): U} exp [iAk- (r) —r})]> (114)

With regard to (36) we thus arrive at the following contributions from linear multipole
polarizabilities (on neglecting magneto-electric terms):

0 @© (__l)nz
O (AK. 1) =
R T M e T
N N N
X < Z Z Z A:(Q?){“gAi""(Q;)[n,]‘""T}i”x
i=1j=1kej

x [n,]"AM(Q4)}: Uexp [iAk- (r? —r§)]>, (115)
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2 s (_l)n,+n,
Z= Z=:1 @n =1 @ny -1 X

L

< 53 T 3 (A@m T «

i1 j=1keilsj
x CAL @)} U {APIQ)) g ] T 19 n,] x

ulr-

x AMD (@)} Uexp [iAk-(r?—r;)]>. (116)

To derive the coherent contributions to (114) of the same order of magnitude one has
to take into account, beside the currently considered contribution (116), moreover
mixed contributions originating in the second-order change in the effective polariz-
ability (37) (omitting magneto-electric terms):

O © ( - 1)"2 +n,

(4] P
Sorak0= % X G TOn @

x< i ﬁ ﬁ Y AXQ)){MAM QY [n, ] x

i=1j=1ketjlfk

X (nl)T}r;‘,)[nz] (n2) A () Q%) [ 5] eI 8, ] x
x JADQf )} : Uexp[iak- (r? —r'j)]>. (117

Obviously, the contribution S (Ak, t) is of a similar form.

All these contributions determine isotropic coherent light scattering and can be split
in the standard manner into components due to two-, three- and four-body
interactions. Obviously, in this way, the spectral distribution is determined by new
angular correlation functions. The only complete to-the-end analyses are, hitherto,
those of Bancewicz (1979, 1980)and Frenkel and McTague (1980) for ax1ally symmetric
molecules in the dipole-induced dipole approximation and of Posch (1980) for
tetrahedral ones in the dipole-quadrupole approximation. A discussion of the angular
correlation functions for higher dipole-quadrupole, quadrupole-quadrupole and
dipole-octupole approximations has been given quite recently by Kielich et al (1981).

Asin the case of integral scattering, an important role is played by contributions from
nonlinear multipole polarizabilities in that of spectral scattering. As an example, we
adduce the following first-order contribution which, by (40a) and (114), has the form

1 a© 0 (—'1)"2 y
2,21 =1 (2ny — DN (2n, — )N
N N N
x< Y Y Y AXQ{UNBLTM(QY) +
i=1j=1k#]j
+ OB D@} [n,]IT n[,,Z]M(nz)(Q,) x

) (AK, t)—-

X eXp [iAk-(r?—rj-)]>. (118)

(and likewise for S{%).
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The expansions (40b), (42) and (43) permit the determination of second- and higher-
order contributions to (114) due to the nonlinear multipole polarizabilities.

Finally, it may be worth stressing that the correlation functions of isotropic
scattering (115)-(118) and analogical functions of anisotropic light scattering (not
given explicitly in this review) contain all multipolar contributions, readily adaptable to
various molecular symmetries of the spherical top and symmetric top kind. On
applying reasonable model assumptions their mathematical form simplifies con-
siderably. Their numerical evaluation is easy to perform since, as stated above, the
numerical values of the electric multipoles and nonlinear polarizabilities of many of the
simpler molecules (see e.g. Kielich 1972, 1981) as well as their multipole polarizabilities
(Amos 1979; Rivail and Cartier 1979; Espinoza et al 1979) are known.

The angular dependence of the correlation functions (115)-(118) assume a simple
and at the same time elegant form if the Cartesian tensors are written in irreducible
spherical tensor representation. With the spherical representation of the many-body
distribution functions e.g. (107a,b) available, the calculations can be easily carried out
to the end leading to results which are well adapted to numerical treatment.
Nonetheless, the analytical expressions for the individual contributions are still
mathematically bulky and we refrain from adducing them here.

10. Concluding remarks

Sections 7-9 contain but some of the more important applications of the general theory
formulated in §5 comprising material hitherto not discussed in detail. The general
expressions, of a high degree of complication from the mathematical viewpoint, reduce
to a simpler form when one or another model is adopted. We then have to deal with
rather straightforward problems, the concrete solutions of which are dependent on
specific data available from the literature, thus (i) the mutually independent and non-
zero tensor components of the intrinsic multipole moment and multipole polarizabi-
lities for the various point groups in Cartesian representation (see e.g. Kielich 1972,
1981) or irreducible tensor representation (Gray and Lo 1976), and (ii) the possibility of
calculating the radial binary, ternary averages (r;;"), (rj"ri">, etc. for concrete
models of the equilibrium correlation functions g{¥, g(3), ..., considered in the
statistical theory of fluids (Ananth et al 1974; Blum and Narten 1976; Stell and Weis
1977; Larsen et al 1977, Wertheim 1980; Steinhauser and Neumann 1980; Haile and
Gray 1980). Such concrete light scattering calculations have been carried out for atomic
fluids and ones composed of spherical top molecules (Kielich 1960b, 1971b; Ralph and
Gray 1974; Graben et al 1975; Alder et al 1979; Balucani et al 1979) as well as liquids
with polar molecules (Wozniak and Kielich 1975, 1977).

The detailed treatment of these problems involves the finer fluctuational effects
discussed on an advanced level in recently proposed molecular-statistical theories of
the electric polarization of atomic and molecular fluids (see e.g. Titulaer and Deutch
1974; Hgye and Stell 1980; Hgye and Bedeaux 1977; Wertheim 1978, 1979; Felderhof
1979; Fulton 1979).

With regard to spectral studies, a considerable difficulty in the way of concrete
applications of the formulae given in §§7-9 consists in the lack of analytical expressions
for the time-space many body correlation function. Since Vineyard (1958) proposed his
well known approximation of the binary correlation function, attempts have been
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made recently aimed at determining the three- and four-body space-time correlation
functions analytically (see e.g. Groome et al 1976; Gubbins et al 1978; Knast et al 1980).
Our stochastic approach to scattered spectra taking into account changes in
polarizability induced by space and time fluctuations of multipole fields involving,
beside G{P(r,t), the higher many-body correlation functions G{3)(r, 1), G{Ri(r, 1)
enables us to gain simultaneously information regardmg these functions inaccessible
from other studies.

We have given considerable attention to the analysis of the cross contributions Sy,
So2, - - -, often neglected when analyzing experimental results. We have shown them to
be of the same order of magnitude as S, ;; they are all the more interesting since they can
be positive or negative, according to the electrical structure of the molecule and the
model of ternary molecular correlations adopted. Obviously, we have by no means
given all the possible contributions (e.g. the magneto-electric contributions, discussed
in §4, are omitted) it being our sole aim to point out the potentialities inherent in the
theory outlined above. The latter proves especially efficient in applications to two- and
three-component systems, one component of which is composed of atoms and the
others of spherical top (e.g. tetrahedral CCl, or octahedral SF), symmetric top (axially
symmetric N,, CO,, C4Hy etc.), or asymmetric top molecules. In these cases, the
spectral structure is described by new time-correlation functions. Clearly, the study of
the Fourier transforms of these correlation functions is made easier by the use of the
elegant formalism of irreducible spherical tensors (Chiu 1970; Ozgo and Kielich 1976;
Jerphagnon et al 1978; Tough and Stone 1979).

The by now well tested intermolecular (linear or two-photon) light scattering
spectroscopy discussed above provides the foundations for the multiphoton scattering
molecular spectroscopy developed more recently (Kielich 1981, 1983).
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