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Abstract. Spontaneous emission from two non-identical two-level atoms is
examined from the viewpoint of quantum beats and super-radiant effects. Our
analytical solution, illustrated graphically, shows that the total radiation rate
exhibits temporal sinusoidal modulation (beats). The beats result from the fact
that the atoms have different transition frequencies and different natural
linewidths. For small interatomic separations, the total radiation rate is greater
than its initial value. This ‘super-radiant’ property is absent in the case of non-
interacting atoms, as well as for two identical atoms. In the case when the atoms
are separated by distances much smaller than the resonant wavelength, the
population trapping effect can take place in such a system.

1. Introduction

Collective spontaneous emission, or super-radiance from a large number of
atoms has been studied in many theoretical and experimental papers [1-4]. The
phenomenon itself is intrinsically interesting because it very subtly blends the
quantum and classical aspects, as well as the spontaneous and stimulated aspects of
atomic emission. To understand collective radiation effects from a macroscopic
system of atoms it is necessary to have a microscopic formulation of the interaction
between the atoms and the electromagnetic field. Therefore, it seems useful to study
the radiation from a system comprising a few atoms. The spontaneous radiation from
two and three atoms has been investigated by many authors [1, 5-8]. Coffey and
Friedberg [9] and Richter [10] have shown that the atomic configuration for a three-
atom system has a strong influence on the total radiation rate. In some special cases
the emission can be greater than its initial value. The emission is then referred to as
super-radiant. Recently, Blank et al. [11] have shown that this effect, for atoms
located in an equidistant linear chain, appears for six or more atoms. Coffey and
Friedberg [9] have also considered the effect of inhomogeneous broadening of the
atomic transition on the total radiation rate for two and three atoms. They have
shown that in this case the total radiation rate is always lower than its initial value,
and exhibits no temporal sinusoidal modulation (beats).

Milonni and Knight [12, 13] considered the effect of the retardation times on
various spontaneous decay probability amplitudes for the case of two identical, as
well as non-identical, atoms. The spontaneous decay probability for a system of two
non-identical atoms has also been calculated by Varfolomeev [14].

T This research was supported by Research Project CPBP 01.06 and was presented in part
at the International Conference on “Trends in Quantum Electronics’, Bucharest, 2—6
September 1985.
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In the present paper we investigate the collective spontaneous emission from
two non-identical two-level atoms assuming them to have different transition
frequencies and different natural line-widths. We start from equations of motion
(quantum Langevin equations) describing the time-evolution of the atomic
operators. These equations are equivalent to a generalization of Lehmberg’s [8]
master equation to the case of non-identical atoms. The time-evolution of the atomic
variables is dependent on the parameters A, and u,, which describe the difference
between the atomic energies and that between their natural linewidths, respectively.
This time-evolution is dependent also on the collective parameters y;, and Q,,,
which describe collective damping and the collective shift in energy levels. These
two collective parameters, which provide a measure of the magnitude of interatomic
interaction, determine the collective properties of our system of two non-identical
atoms. We apply the solution of these equations of motion to derive the total
radiation rate and discuss the possibility of a population trapping effect in such a
system.

2. The equations of motion and their solutions

In the present paper, we consider two non-identical atoms separated by r,,,
coupled to each other via retarded dipole—dipole interaction and to the electromag-
netic field vacuum, leading to spontaneous emission. Each atom is approximated by a
two-level system: the ground state |1); (z = 1, 2) and the excited state |2);, connected
by an electric dipole transition. The atoms are assumed to have the transition
frequencies w,; and w,, respectively, and the corresponding natural linewidths 2y,
and 2y, .

The time-evolution of the atomic operators is described by the following
equations [15]:

d
Esf(t) = —(y1 +1A1,)S1 () — (15 +1Q4,)S; (1)
+ 20712 +iQ12)ST ST )S; (1) + 2E§(ry, ) [ST(1)ST (1) — 1]

4 L 1)
asz_(t) = =2 —1A13)S5 (1) — (12 +1Q,)ST ()

+2p12 +i42) ST (DS (DS (1) + 2B (ry, ST (0S5 (1) — 3]

where S} and S;” =[S;"]" are the raising and lowering operators of atom i (i = 1, 2).
The equations for S} (¢) and S; () are the Hermitian adjoints of equation (1). In
equations (1), A;, =4(w, — m,); 2y, and 2y, are the Einstein 4 coefficients for the
atoms 1 and 2, respectively. The collective damping y,, and frequency shift Q, , that
arise from the retarded dipole—dipole interaction between the atoms have the form:

Y12 = _%\/(Vﬂ’z) Imf12(k”12),}

2
. Q, =3V (172) Refy,(kryy), @
with S
1
Sialkry) = — {[fh = (g 7y0) (B f”‘)]k
Y12

i
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where [i; and 7, are unit vectors along the transition dipole moment of atom i
(i =1, 2) and the vector r,, = r, — r, respectively (r,, = |r{,]).

When deriving equations (1), we have assumed that |A,,| <« ©, =+(w, + w,) and
that the rotating-wave approximation (RWA) is valid. The atomic operators of
equations (1) are slowly varying parts of the operators

gli,z(t) = Sf,z(t) exp ( Tiwyt), 4)

where the mean frequency w, =1(w, + ;) is used to eliminate the rapid oscillation
of both atoms.

Equation (3) describing the retarded dipole—dipole interaction between the
atoms is quite general. In our further calculations, we assume the two dipoles are
parallel ({i; = i,) and k = wy/c. In particular, for identical atoms, y,, and Q,, are the
same as those obtained by Stephen [5] and others [1, 6—8].

Obviously, in a gas sample, there are pairs of atoms with various values and
orientations of the interatomic distance r,, and f, ,(kr,,) should be averaged over all
orientations and interatomic distances in order to be applicable to such a sample. To
make our model as simple as possible and, at the same time, compatible with results
reported already [12—14], we prefer, however, to deal with just two atoms separated
by a well defined distance r,,. In practical terms, this can mean two colour centres in
a crystal lattice rather than a gas sample.

The field operator E§T(r;, t) in equations (1) denotes the positive-frequency part
of the vacuum field and, in the transverse mode decomposition, is given by

2 1/2
E§(r,, 1) =z(%) e,2,0) exp [i(q-r; — 0,0)], (5)

q

where V7 is the normalization volume, e, the unit polarization vector and a, the
annihilation operator for the gth mode.

In the case when the radiation is initially in the vacuum state {{0}>, we have
E§H(r;,)|{0}> =0 and equations (1) lead to the vacuum expectation values for the
atomic correlation functions.

For two non-identical atoms, equations (1) lead to a closed set of five equations of
motion for the vacuum expectation values, which we can write in matrix form:

d .
—X=4X
ar , (6)
where Aisa5 x 5 matrix:
—2y, 0 — (P12 +18y,) ~ (Y12 —18¢,) 0
0 : —2y, — (P12 —1Qy2) — (712 +1€;5) 0
—(12+1Q1;)  — (12 —iQy,)  —(yy + 72 —2iA,) 0 4y,
=12 —1Q15) = (y12 +iQy,) 0 —(7y+ 72+ 2iA,) 4912
0 0 0 0 —2(y, +VZ)J

(N
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The vector X has the components

~

X, =(S{S;),

X, =81 55,

X, =S85, T (8)
X, =<(S3Sp>,

X5=(S{875;5:>. |

As is obvious from equation (7), the fifth equation is decoupled from the
remaining four. This allows for an exact solution of the above set of equations.

In the case when initially (z = 0) atom 1 was in its excited state |2}, and atom 2 was
in its ground state |1),, the solutions of equation (6) are

2 2
(SHOST®D = exp[— 11 +72)1] {%(1 _ Al_zgi’i> cos Et

1 A2 3 E*—4A,(A — 7.9
+E<1+ 12;1‘12)003th+”12 12(2312’412 Y12 12)sinEt
D24+ 4A,,(A —7,,Q
+“12 + 12§B1l;“12 712812) sinth}, ©)
+ - 191, +Qf,
Sz 0S5 ()= ET[COSh Dt —cos Et]exp [ —(y, +y)t], (10)
iQ — t
<S1+(t)S;(t)>=(y12+l 12)6’;‘;[ (y1+y2)]{2(1412+iA12)[cosEt—costh]

D+ 4812 —7159Q45) sinh Df — E? —4i(Apu15 —71,9Q45) sin Et},
D E
(11)
(S (DST @) = ST (DS (1))>* (12)

and {S{ (1S3 (S, (1S (1)) =0.

In equations (9)—(12) we have introduced the notation
w12 =32 — 1),
B=[(A1,+Q}; +7; +uf2)> —4(Aoy00 + 11,9,,)2]Y2,
D =[—2(A1, +Qf, — 71, —ui,) + 2B]'2,
E=[2(A}, +Qf, — 1, —ul,) + 2B]'2.

(13)

The parameters u;,, B, D and E define the time-evolution of the system. The
parameter D, together with the overall damping factor exp [ — (7, + 7,)], describes
the decay rates of the particular terms, and the parameter E describes the frequency
of the modulation. If the atoms are far apart (y;, =0,Q,, =0), we have D=7y, —y,
and K = w, — w; and the atoms evolve independently of each other.

If the two atoms are identical (u;, = A;, =0) we have B=Q2, +y?,, D=2y,,
and E=2Q,. In this case, it is clear from (9)—(12) that the probability of finding
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atom 1 (2) in its excited state {S7 (£)S1 (£)D ({S7 (1)S5 (£)) oscillates with frequency
E=2Q,, in such a way that the oscillations cancel out if we take the
sum of the two probabilities (see [1]). The sum of the interference terms
{STS5 (D)) + (S5 (£)S1 () has no oscillating terms either. So, the populations of
the individual atoms oscillate, whereas the total population decays monotonically.
Owing to the dipole~dipole interaction, the population is transferred back and forth
from one atom to the other. Here, the dipole~dipole interaction parameter Q, , plays
a role similar to that of the Rabi frequency in the atom—field interaction. In fact, the
two-atom system Hamiltonian can be diagonalized including the dipole—dipole
interaction, giving the eigenstates |0 = |1),(1,, |+ > = (1//2)(12>1 11>, +[1>112),)
and [2) =[2),|2), with energies E, =0, £, = h(w, + Q,,) and E, = 2hw, (see figure
1(a)). The difference in energy between the states |+ is precisely 24Q;,. So the
oscillations that appear in (9) and (10) for the case of two identical atoms are of a
dynamical nature and can easily be explained in terms of the states and energies of the
system as a whole.

If the atoms are non-identical, we have to use the general expressions (9)—(12) to
describe the time-evolution of the system. The oscillations in (9) and (10) no longer
cancel out mutually, and the sum of the interference terms (11) and (12) also exhibits
oscillatory behaviour. This time-evolution is quite complicated and not easy to
interpret. However, if we assume Q,, ~ A, > y,,, 1, (strong dipole—dipole interac-
tion and a large difference between the atomic transition frequencies) we have
BrQ2,+ A2, Dx4(y;,Q1, —u,A;,)/E and E = 2/(A?, + Q2,). One can readily
check that in this case the oscillating terms in (9) and (10) cancel out approximately
(the remaining terms are of order B~ !). We now have a situation similar to that of
identical atoms, except that the frequency of oscillations is now E = 2./(A?, + Q3,).
What clearly distinguishes this case from the previous case is the existence of the
strong oscillating term —1[Q,,A,,/(A2, + Q2%,)] cos Et in the interference terms (11)
and (12). Thus, one can expect quantum beats to appear in the spontaneous emission
from such a system. This is the subject of the next section. Here, we would like to
note that if A, # 0, the states | + ) (the super-radiant and sub-radiant state) are no
longer eigenstates of the two-atom system. The Hamiltonian of the system can be
re-diagonalized including A, ,, giving the new eigenstates [¢,. > =C,|+ >+ C,|F)
with the energies E, = h(wy+ /(A?, +Q2,)) as shown in figure 1(b). The
coefficients C; and C, are C; = a/\/(a* + A?,) and C, = —A,,//(a* + A%,), where
a=Q, +/(A}, + Q%,). For an S?-conserving system of two identical atoms the
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Figure 1. Energy levels and possible transitions for the two-atom system: (a) identical
atoms; (b) non-identical atoms.
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sub-radiant state | — ) is decoupled from the other states. Since both the states |¢ ;>
include the super-radiant state |+ ), the transitions from both states to the ground
state are allowed. This is a typical configuration of levels for the production of
quantum beats.

3. Total radiation rate
Our objective is to calculate the radiation intensity I(R, #) at a point R in the wave
zone which is proportional to the normally ordered one-time correlation function of
the electromagnetic field
R%¢

IR, 1) = CEC(R, 1)-E(R, ). (14)

27w,

In equation (14) we have introduced the factor (R*¢/2nw,) so that I(R, £) dQ d¢ is
the probability of finding one photon inside the solid-angle element d{2 around the
direction R in the time interval dt at a time ¢ in the far-field zone of the radiation
emitted by the atomic system.

The positive frequency part of the field operator E*)(R, ¢) in the far zone R » 7 5,
Aand t > R/cis given by the expression [1, 8, 15]

ECY(R, 1) = E{V(R, £) — <&>2 22: [R: x (R; x )]
c i=1 R

Since the field is initially in the vacuum state, the vacuum part E{*)(R, ) does not
contribute to the expectation value of the normally ordered correlation operator in
equation (14) and we obtain for I(R, t) the expression

exp(—ikR r)S7(1). (15)

i

2 -~
I(R, 1) = w(R) Z 207" (ST (OS] (1)) exp (iR v ), (16)
i,j=
where - 2
w(R) = 3sin ®’ (17
8w

with @ the angle between the observation direction R and the atomic transition
dipole moment u.

On integrating over all solid angles dQ, equation (16) yields the total radiation
rate I(¢) given in photons per second:

2
I(2) = Zl 2y, ST BS; (1), (18)

ij=
where y;; is given by equation (2). Using (9)—(12), we find that for two non-identical
atoms the total radiation rate has the form

Pi(uiz + 32 + AL) + 27124,,Q, + 7,91,
B cos Et

I(t) = exp [ (y1 +72)t] {[Vl -

2 2 2 2
+ + AL + 27,,A,,Q Q
i [h 4 Yi(uis + 7912 12) = 7128128212 + 72 12:|costh

n (V112 — VIDE? + 471015 +712Q12) (71295, —u10A,)

sin Kt
BE
4 (yruq, — y%2)D2 - 4(V1A1zB';)?12912)(V12912 —uyAr,) sinh Dt}. (19)
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First of all, we shall discuss the solution (19) for some limiting cases of
interatomic interactions and differences between the atomic transition frequencies.

3.1. ThecaseQy, > Ay,, V12, Uy, of strong interatomic interaction

In this case the interatomic separation is very small in comparison to the resonant
wavelength and the differences between the transition frequencies and natural
linewidths of the atoms are small, so that equations (13) give B~Q2,, D~ 2y,,,
E~2Q,,, and from equation (19) we have

Kty =exp[—(y; + 7 )t]{(ys — y,) cos 2Q, ;¢
+ (y1 +72) cosh 2y ,t— 2y, sinh 2y, ,2}. (20)

Equation (20) shows smooth exponential decay with the decay rates y; + 7, + 2y,
and an oscillating term with amplitude proportional to the difference y, — y, of the
natural linewidths of the two atoms. The oscillating term in (20) appears because the
atoms lose their populations owing to spontaneous emission at different rates and the
dynamical terms describing population transfer between the atoms due to the
dipole—dipole interaction cannot cancel out completely, as was the case for identical
atoms. For identical atoms we have g, = p,, and the transition amplitude from the
sub-radiant state | — ) to the ground state |0) is equal to zero, and only the super-
radiant state |+ > can radiate. We now have a single transition in the system, and
there are no quantum beats. The situation changes if the two atoms are not identical
(a1 # p;). There is a non-zero transition amplitude | — > —|0), and both the super-
radiant state |+ ) and sub-radiant state | — ) decay to the common ground state [0).
The interference between the two amplitudes gives the quantum beat term in (20).
As expected, the beat frequency is 2Q, ,, reflecting the energy difference between the
two states. For the initial conditions used by us in this paper (atom 1 excited at ¢ = 0),
the initial population distributes equally between the states |+ > and |— ). As the
channel | —) —|0) opens, one can expect an increase in the radiation rate. It is seen
from (20) that, for y, > y,, I(¢) can actually become greater than its initial value I(0).
This ‘super-radiant’ behaviour is absent in the case of identical atoms. Since
equation (20) holds also for A;, = 0, the effect is due solely to the difference in atomic
transition dipole moments leading to different atomic linewidths. The interatomic
terms (11) and (12) do not contribute to the beats in this case.

3.2. ThecaseQ, ~ Ay V5, Uy, of strong interatomic interaction and great difference
between the atomic transition frequencies

Here, according to equations (13), Br A2, +Q2,, D~ 4(y,,Q, —u,A,)/E,
E ~2,/(A}, + Q1,), so the total radiation rate takes the form

exp [~ (1 +72)4]
I(t) = A2 + QZ
12 12

{[(Vl —72)Q%; — 24,7129 2] cos 2J/(AT, + QF,)t
2071205 —ug At
V(A3 + Q1)

207129242 — u12A12)t}
V(AL +Q72)

+[(71 + 72082 + 2A5(71A12 +7129Q12) ] cosh

(1)

—2J(A3, + Q1) (71,9, + A,y sinh
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In this case the total radiation rate exhibits sinusoidal modulation (beats) the
amplitude of which consists of two terms: a term proportional to y, — 7, with exactly
the same origin as that discussed previously, and a new term that stems from the
interatomic correlation functions (11) and (12). It describes typical quantum beats;
the transition amplitudes from the states |¢ .. ) to the ground state [0) interfere. On
putting A, = 0, equation (21) goes over into (20). Equation (21) indicates the two
possible mechanisms for the appearance of quantum beats in the system comprising
two non-identical atoms. Again, the cooperative behaviour leading to the increase in
total radiation rate above its initial value can be observed in (21).

3.3. The case A, >Q,, , Uy, of great difference between the atomic transition
12 12> V12> Y12 O &
frequencies and weak interatomic interaction
In this case, equations (13) lead to Bx A2,, D ~ 2u,,, E~ 2A,,,and I(¢) takes the
form

I(z) = 2y, exp (—=2y,2). (22)

Here, we have a simple exponential decay for the initially excited atom 1, without the
influence of the other atom.

For the general case, we have plotted the total radiation rate I(¢) given by
equation (19) in figures 2—4 for several values of y,/y,, A, and different interatomic
separations. In the case of non-identical atoms we find a pronounced sinusoidal
modulation superimposed on the smooth exponential decay. The frequency of this
modulation is dependent on the interatomic interaction and its amplitude vanishes
for large interatomic separations (figure 3). This oscillatory behaviour of the total
radiation rate is in fact the quantum-beat effect that arises because of interference
between the two possible transition amplitudes (| + ) or |¢ 4 ) —|0)) that contribute
to the spontaneous emission. Two possible mechanisms leading to these quantum
beats have been discussed earlier (§§ 3.1 and 3.2). The first mechanism, consisting in

I )
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Figure 2. Normalized total radiation rate versus y;¢ for interatomic separation r,, = /12,
A, = 57,, and different natural linewidths.
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Figure 3. Normalized total radiation rate as a function of time y,¢ for A, =0, y, = 2y,, and
different interatomic separations.
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Figure 4. Normalized total radiation rate versus y,¢ for two atoms with the same natural

linewidths (y, =y,), the interatomic separation r,, = 4/12, and different transition
frequencies.

the opening of the channel | — > — |0} if the transition dipole moments (or linewidths)
of the two atoms are different, is illustrated in figure 3. The second mechanism,
consisting in a mixing of the states |+ » and |~ ) for A, # 0 leading to new states
|¢+> and |[¢_>, both of which are coupled to the ground state |0, is illustrated in
figure 4. If the interatomic separation is small and y, >y, the total radiation rate
becomes greater than its initial value for a definite period of time. This means that the
emission is then super-radiant. This super-radiant behaviour, which is absent in the
case of two identical atoms (y, =7y,, A;;, =0), is quite apparent in the graphs. The
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collective effects decrease with increasing distance between the atoms, as shown in
figure 3. The emission can be super-radiant also in the case when the atoms have the
same natural linewidths. As is shown in figure 4, this takes place for large differences
between the atomic transition frequencies only (see §3.1).

The quantum beat effect has recently been considered with regard to numerous
optical processes ([ 16—17] and references therein).

4. Population trapping effect
The energy of each atom is described by the operator S ( = 1, 2) which, with the
spin operators S*;, fulfils the well-known commutation relations

[Si+)S;] =2S?5ijx [Si+)Sj_]+ =5ij- (23)

Using the above commutation and anti-commutation relations for spin operators we
can express {.S7) by the correlation function {S;*.S; > as {(S7> = {(S;"S; > — 1.

For spontaneous emission in the absence of external fields in the steady state
(z — o0) both atoms should be in their ground states. This means that in the steady
state (S%7(00))> = {S%(0)> = —1, and we have zero solutions for {S;S;> and
{8583 >. The existence of zero solutions in the steady state requires, by equation (6),
that the determinant of the matrix A4 shall differ from zero. If the determinant of the
matrix 4 is zero we have non-zero steady-state solutions for (S; S > and (5.5, .
This signifies that part of the energy has been trapped in the atomic system.

The determinant of the matrix A4 is zero if D =7y, +7,. For two identical atoms
(A, =u;, =0) this condition is fulfilled if the atoms are separated by a distance
much smaller than the resonance wavelength. This condition has been calculated by
Agarwal [1] and recently has been extensively discussed by Dalton and Knight [18].

For two non-identical atoms the condition for population trapping D =7y, + 7, is
fulfilled if A;;7,, = —u,,Q;, and if the atoms are separated by a distance much
smaller than the resonant wavelength.

We note that for population trapping in spontaneous emission from two
interacting atoms it is necessary to confine both atoms in a region much smaller than
the resonant wavelength. In the case of population trapping for two identical atoms,
if initially only one atom is inverted, equations (9) and (10) lead to

{S5(0)) = {S5(0)> = — 1, (24)
whereas for non-identical atoms

V3

z N §

<Sl(00)> - 2 + ('))1 + '))2)2 s (250)
2z _ 1 Y1Y2

(SH0)) = —z+ Gt (25b)

For identical atoms in the steady state, their energies are identical, whereas for non-
identical atoms their energies are different, and in both cases are different from the
energy of their ground states.

The total population that can be trapped in such a system is given by the steady-
state solutions

)2
Y1+72

(STSTY+(878; )= (26)
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In the case of identical atoms the amount trapped is exactly one-half of the initial
population. If the atoms are not identical, the amount of population that is trapped
depends strongly on the rate y,/y, of the damping constants of the two atoms. It is
close to zero for 7,/y; « 1 and is close to unity for y,/y; > 1. It should be emphasized,
however, that the necessary condition for trapping is y,, = +/(7,7;)—the condition
which is satisfied for small interatomic distances only. Otherwise there is no
population trapping at all.

5. Conclusions

We have considered the problem of spontaneous emission from two non-
identical atoms, when initially only one atom is inverted. Our calculations show that
in this case, contrary to that of identical atoms, the total radiation rate exhibits
oscillatory behaviour due to the quantum-beat effect. The two possible mechanisms
leading to the beats are discussed in detail.

We have found that for small interatomic separation, i.e. for strong interatomic
interaction, the total radiation rate can become greater than its initial value for a
definite (short) interval of time. This super-radiant behaviour means that non-
identical atoms may, in a sense, radiate more collectively than identical atoms. This
may seem somewhat strange at a first glance, but can be understood if one keeps in
mind that for the initial conditions used in this paper (only atom 1 excited at ¢ = 0)
one-half of the initial population is stored in the sub-radiant state |—>. This state
does not radiate if the atoms are identical, and becomes active if the two atoms are not
identical. The interference between the transition amplitudes from the super-
radiant (| + ») and sub-radiant (| — )) states, giving the quantum-beat effect, can also
lead to the increase in I(#) above its initial value. It takes place for certain values of the
parameters y;, y, and A, . One should emphasize, however, that this effect does not
violate the energy conservation law. The total energy stored in the atoms, which for
A < g is equal to hwy({ST (HST (1)) + (S5 (t)S5 (t))) decays monotonically in time,
as can easily be checked using equations (9) and (10) (see figure 5).

P Y2=2Y;
12t Ap=0

o kr,=1/6
ost
08}

04f

02r

00 2 os 06 08
yit

Figure 5. Total population P(¢) = {(S{()S; (1)) + (S5 (£)S5 (£)> versus y,¢, which, multi-
plied by hw,,, expresses the total energy stored in the atoms.
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The situation changes if both atoms are initially excited. For identical atoms the
state |~ » will never be populated, and we have downward transitions via the |+ )
state only. For non-identical atoms the sub-radiant state acquires some population
from the state |2) as time elapses. However, at the initial stage of evolution we have a
system with the common upper level |2) and transitions to the states |+ ). This
configuration does not give quantum beats. Our calculations show that the total
radiation rate decays monotonically for the same values of parameters used by us in
this paper. Some weak beats can appear for very different atoms, but we never get an
increase in I(t). So, the cooperative behaviour of the system is manifestly weaker
when both atoms are initially excited.

We have also shown that the effect of population trapping may occur in the
system of two non-identical atoms, i.e. in the steady state the atoms have energies
different from the energy of their ground states. This can take place, however, only if
the distance between the atoms is much smaller than the resonant wavelength.
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