Inverse polarization of asymmetric hyper-Raman lines
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Index asymmetry in the scattering tensor b, related to permutation of / and whichever of the

indices; or k, makes active vibrations inactive in the case ot a completely symmetric tensor leading
to new selection rules for hyper-Raman scattering and to the emergence of new vibrational lines in
the scattered spectrum. These purely asymmetric lines correspond to the asymmetric irreducible
part of weight 2 of the tensor b, . This scattering, similarly to antisymmetric Raman, is shown to
exhibit the phenomenon of inverse polarization. A detailed discussion of angular distribution and
of various polarization parameters for all polarization states of the incident light is given in terms

of Stokes parameters.

. INTRODUCTION

Three-photon light scattering was predicted in the early
days of quantum mechanics. The history of these early inves-
tigations has been widely presented by Altmann and Strey."
The invention of the laser and the progress achieved in detec-
tion techniques has rendered possible the observation of
three-photon scattering and has also given a new impulse to
its discussion.? This stage of investigation soon culminated
in the pioneering experiment of Terhune er al.* in which
hyper-Raman and hyper-Rayleigh scatterings were first ob-
served. The theoretical and experimental achievements in
the field of hyper-Raman have already been reviewed in
some books and articles.'*’

In the classical description of scattering phenomena, a
molecule in a strong electromagnetic field generally under-
goes nonlinear polarization. This polarization is a source of
new electromagnetic waves with frequencies that are muliti-
ples of the incident frequency and, in the case of hyper-Ra-
man processes, with field amplitudes modulated by the vi-
brations of the molecules.

We assume the incident field in the form E,(r,)

= E, exp{ — i(wt —k+r)}. In the quadratic approxima-
tion with respect to E; (r,¢) the electric dipole moment on the
Stokes 2w — w, and anti-Stokes 2w + w, frequency is

m;°¥“(t) = 1b, E, E,.Q

Xexp{ —i[ (20 Fwy)t + @q — 2k r]}.
(1)

The incident amplitude E; can in geaeral be time dependent.
The final results have to be averaged over the ensemble of
incident field amplitudes replacing time averaging for ergo-
dic processes. k denotes the incident wave vector, Whereas r
represents the position of the molecule. Q is a normal coordi-
nate of vibration, where w, and @, are the vibrational fre-
quency and phase, respectively, corresponding to this coor-
dinate. Italic indices i, j,k for components are used with
respect to the laboratory frame and the summation conven-
tion over repeated indices is applied throughout.

The hyper-Raman third-rank scattering tensor by, is by
definition symmetric in its last two indices only, since they
are associated with the same frequency . In the hyper-Ra-
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man theories of the 1960’s the tensor b, was approximately
treated as having full index symmetry (symmetric approxi-
mation).*'? This simplification is by no means always justi-
fied. It fails for paramagnetic molecules or when the incident
o or scattered 20 + w,, frequency approaches an electronic
transition frequency , of the molecule. Zhu'? and Christie
and Lockwood'* have shown this tensor to be completely
symmetric for diamagnetic molecules if w/w, and
(20 + wgp)/w,<1. In the majority of experimental situa-
tions these ratios are but slightly less than unity. Hence, the
realistic description of hyper-Raman scattering requires the
use of a partly j,k symmetric scattering tensor. Index dissy-
metry in by, leads to new selection rules for hyper-Raman
and new hyper-Raman lines appear in the scattered spec-
trum. In general, this tensor should also be considered as a
complex tensor, particularly in the case of paramagnetic
molecules and resonance scattering.

The earliest description of hyper-Raman scattering on
the assumption of a b, tensor symmetric inj and k only and
deriving irreducible forms of the asymmetric spherical ten-
sors has been given in the paper.'® Some aspects of scattering
have been developed by Andrews and his co-workers, 5!
Minard et al.,'® as well as by Altmann and Strey’ also using
the methods of irreducible tensors. In the papers™'® the
striking polarization properties of the scattering process in
question are however touched on but briefly. We consider
also asymmetric scattering of elliptically polarized light.
This state of polarization was in fact assumed by Stanton'!
and Bonneville and Chemla'? albeit in the symmetric ap-
proximation.’

This abovementioned uniqueness of the polarization
properties of asymmetrically scattered light is related with
the change in azimuth of the scattered polarized portion by
/2 relative to the azimuth generated in the symmetric ap-
proximation. For forward and backward scattering the scat-
tered azimuth is also perpendicular to the incident azimuth,
and at appropriately chosen condition of observation it al-
most always remains perpendicular to the latter irrespective
of the scattering angle. This is called inverse polarization.
The polarization properties of asymmetric hyper-Raman
scattering are similar to those of antisymmetric ordinary Ra-
man scattering.
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Il. THE SCATTERED LIGHT INTENSITY TENSOR

The integral intensity tensor 7, of the light scattered
incoherently by ¥ noninteracting randomly oriented mole-
cules requires unweighted averaging over the molecular ori-
entations ). Since I, ~(m, (£)/m (1)*) g, it results from
Eq. (1) that this procedure involves averaging of the pro-
duct of six directional cosines as first performed by Kie-
lich.?® On averaging, one has*'

1 == —"L{a6 <Ek ‘E, E‘)E +ﬂ(5 <EkEkE*E‘>E

+ r<E.E,‘EkEz>E +8(ETE; ELE})
+A(E ,"E}"EkEk + E,-E,E EN .
+.U(E."E,’EkEk —EiEjEl‘:Ez>E}y (2)

where ( ) refers to averaging over the ensemble of the inci-
dent field amplitudes and L is a scattering factor of the form
42

L=N(2a)ZFwQ) Q (3)

420c¢*

The six parameters a—u are molecular rotational invar-
iants comprising appropriate combinations of various pro-
ducts of the b4, tensor components. The invariants -4 are
real, whereas u is purely imaginary. The invariants A and u
are directly related with the invariant € used in Ref. 21,
namely, A = Re eand 4 = / Im €. Except for elliptical polar-
ization of the incident light, the invariant x intervenes no-
where.

According to Christie and Lockwood'* the partly sym-
metric (in its last two indices) tensor b,s, can be decom-
posed into two parts: a fully symmetric part b 35, with re-
spect to permutation of all indices and a remaining
asymmetric (but not antisymmetric in general) part b %,
which, however, is still symmetric in 8 and ¥ (the Greek
indices a8,y already refer to the fixed molecular frame):

baﬂ‘r =biﬂr +b:ﬂ7’

b3p, =4(bagy + bpp + byag)s (4)
The fully symmetric tensor b ;,, can further be decom-

posed into two spherical ureducxblc sets of weight 1 (b }3,)
and 3(b}3, ) with three and seven components, r&spectlve-
ly.“'“""‘-22 The remaining asymmetric tensor b 45, can also
be rcprwented by the two spherical irreducible sets of weight
1(b}5,) and 2(b2%,) having three and five components,
rmpectwcly sas.isdf The tensors of the same weight mix un-
der rotation in space. In other words one can in general ex-
pect cross contributions to certain scattered lines due to the
products of irreducible symmetric and asymmetric tensors
of weight 1. By Eqs. (4) and with respect to b33, = b2,
= 0 the form of the six molecular invariants is as follows:

a=>5B3 + 14B%,

B=1iB —B3+¥B{—-7B%+7'B?,

y=%BY — 4B + ¥B4 —1B{ — 14 'BY},

5 =10BS — 14B4,
=4¥B7 —2B7 —¥B{ +7B7 +1'BY,
21
p= 2’ 2p 54, (5)
where

S 2 A*: T4 12
Bl —‘ aﬂyl B = Y aBvi
S 35 12 ;
B3 =1b Byl Bi= b(,,j ,

B = (bbb b000),

2Bff———(b pb iy —bigbay,). ¥ (6)

At elliptical polarizaiton of the incident light all six pa-
rameters (6) can intervene in general. For other polariza-
tion states their number reduces to five; thus, the parameter
2B 34 does not appear. This parameter is responsible for new
recently discussed polarization effects: electric dipole ellipti-
cal differential scattering,* and rotation of the polarization
ellipse** in resonance hyper-Raman scattering.

Obviously, the number of molecular parameters can be
reduced with regard to molecular and vibrational symme-
tries. In particular, a hyper-Raman line can even be de-
scribed by one parameter: B3 or B%. This is precisely pure
asymmetric hyper-Raman scattering that is rcprcsented by
the invariant B%. All v.brational modes related to b 3, are
inactive in IR and fall in three classes with regard to their
activity in ordinary Raman scattering. Vibrations responsi-
ble for pure asymmetric hyper-Raman scattering and their
Raman activity are listed in Table L.

Except for the mode E of the cubic groups, the only
nonzero components of the tensor b %5, are'*

b’,";3=b%§2=-——b§’,‘3=—-b§';, (N
and one readily notes that this tensor is moreover antisym-
metric in the indices 1 and 2. In this case pure asymmetric
scattering can also be termed antisymmetric. With regard to
Eq. (7) the molecular invariant B4 equals

=4(bi%|* (8)
In the case of the cubic groups, vibrational modes E are
described by the following nonvanishing components:
b (1) =b35(1) =b35(1)
=b23| (= —ibm(l) = - ibgfz(l):
123(2) = 213(2) ‘/—b 123 (1), (9

where the symbols (1) and (2) in parentheses refer to the
first and second component of the double-degenerate vibra-
tional mode E. Now, the only component (2) is antisymme-
tricin the indices 1 and 2. The molecular invariant B § for the
E mode is
Bf=18|b % (10)

lil. STOKES PARAMETERS FOR LIGHT SCATTERED

Assuming propagation of the incident radiation along
the direction z and observation in the plane YZ = yz along
the direction Z at an angle ¢ to Z, the Stokes parameters?

41

SO=T (Ixx +1yy),
4

A =_C1_r_ Uxx = Iyy),

4
Sz=——~(1xy + Iy ),

4171

Ss=~(1yx“1xy), (1
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TABLE |. Vibrational modes leading to pure asymmetric hyper-Raman
and their activity in ordinary Raman.

Modes
Raman
activity
Modes
Point Point Raman
group Symmetric  Antisymmetric group inactive
DArDSPDO Al DJk"DSA A’IV
D,, B, D,,.D, Dy, A,
17,0 E DD, B,
CiiCs Coy A, D_. '
C. v 2 - Th voh Eu

for the asymmetric hyper-Raman are, by Eq. (2),
S3(3) =LBI{3(3) e + 2(s%) g — (5051) &
—[(8)e +2(s3) e — (50‘1>E]0032 3},
SH(P) = _;LB;{(S(Z))E + 2(-‘% Y+ (so51) g
— [{s3) e + 2{s? ).E"'" (5051) g ] 08’8},
S3(3) = — TLB§{s05,) gcos I,
S%(3) = TLB #(5455) gcos &, (12)

where a lower-case s; denotes a Stokes parameter for the
incident light. To obtain the above parameters, we assumed
(2)e=()g + () + (s3)z. This relation does not
hold for partly polarized incident light. In other words, the
Stokes parameters (12) describe scattering of completely

polarized radiation albeit of arbitrary statistics, and scatter-

ing of natural light as well.
Using for the incident light the following form of the
Stokes parameters®®:

§y = So c08 2¢ cos 2y,
5, = S, cos 2¢ sin 24,
S3=50sin2¢,

where — 7/4<¢<m/4 denotesiits ellipticity and 0Ky < the
azimuth of the elliptic major axis relative to x, we rewrite the
parameters (12) as follows:

S3(8) =T{2+ (1+2sin*2¢
— cos 2¢ cos 2¢)sin? ¢},
S#(3) = —{(1 + 2 sin® 24)sin®
+ cos 24 cos 2¢(1 + cos® ) },
S4(#) = — 2T cos 24 sin 2¢ cos o,
S4(¥) = 2I" sin 24 cos J. (14)

For the sake of brevity we have introduced the notati(ﬁ

2 cos 2¢ sin 24 cos

(13)

tan 2¢, (#) =

I =1LB$(s,)% g%, (15)
where
87 =A(3) e/ (so)k (16)

is the second-order coherence degree of the incident light.
The parameters (14) can still be applied to the description of
scattering of natural light. Then, we have additionally to
performin Eq. (14) unweighted averaging over the angles ¥
and ¢.

IV. POLARIZATION PROPERTIES OF LIGHT
SCATTERED

The Stokes parameters (14) permit the reading of cer-
tain general polarization properties of the asymmetrically
scattered light irrespective of the polarization state of the
incident radiation.

In particular, for forward observation (¢ = 0) one gets

§3(0) =2r,

S$1(0) = — S¢(0)cos 24 cos 2¢,

54(0) = — 53 (0)cos 24 sin 2y,

S$4(0) = S4(0)sin 24. (17)
For polarized incident light the above equations give
53(0)* =S5{(0)* +57(0)* + 5§(0)?, (18)

meaning that the light asymmetrically scattered forward re-
mains fully polarized. This is not satisfied for other hyper-
Raman lines. '

For natural incident light, with respect to (cos 2¢)
= (sin 2¢) = (cos 2¢) = (sin 2¢) = 0, only S¢(0) differs
from zero. This signifies unpolarized scattered light.

For backward scattering (¢ = 7) of polarized light a
relation similar to Eq. (18) holds. Hence, the light scattered
backwards is also completely polarized. At natural incident
light, backward scattering gives unpolarized radiation too.

For perpendicular scattering (¢ = #/2 or 37/2), only
S3(m/2) and S{(w/2) differ from zero, and in general
S3(m/2)#8$(m/2) suggesting partly linearly polarized
scattered light.

The polarized portion of the scattered light is character-
ized by ellipticity. One of the equations determining it reads

Si
VST +8ST(H* +57(9)’
On insertion of Eq. (14) into Eq. (19) the equation becomes
rather complicated. Hence, we further restrict our attention
to particular angles ¢ only.

The azimuth of the polarized portion of the scattered
radiation is to be had from

sin 24, (&) = (19)

S3(3)
tan 2¢, () = , 20
=S o
where, with regard to Eq. (14),
2n

Equation (21) implies rotation of the scattered azimuth as a
function of . This purely geometrical rotation is related to

(1 4 2 sin? 28)sin? & + cos 24 cos 2¢(1 + cos? F)

changes in the magnitudes of the projections of the elliptic
axes on the observation plane with varying angle ¢. How-
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ever, this rotation can be eliminated at appropriately chosen
incident azimuth. The above is achieved for ¢ = 0 or 7 and
¢ = 7/2. Such azimuths ensure that either the greater or
smaller principal component of the scattered intensity ten-
sor shall lie in the observation plane irrespective of &.

For forward scattering, Eq. (19) reads

sin 2¢, (0) = sin 24, (22)
whereas Eq. (21) becomes
tan 2¢, (0) = tan 2¢. (23)

Thus, asymmetric hyper-Raman scattering in the forward
direction exhibits no change in ellipticity relative to the inci-
dent radiation. This conclusion does not hold generally for
other lines, what in the symmetric approximation was
shown by Stanton'' when even the handedness may be re-
versed. As for the azimuth, the same relation as Eq. (23) has
been derived in the symmetric approximation by Stanton.!!
Then, the above relation signifies retention of the azimuth,
the only acceptable solution is ¢, = . The other solution of
Eq. (23) signifies a change of the azimuth ¢, by 7/2 relative
to the incident azimuth. Indeed, this takes place for pure
asymmetric scattering. The signs of S { (0) and S (0) in Eq.
(17) are opposite to the signs of 5; and s, in Eq. (13) which
in fact reflects the abovementioned change. This is so-called
inverse polarization. One should mention here that azimuth
of the lines to which both symmetric and asymmetric param-
eters contibute can also be inverted. Then, however, the light
scattered forward is partly polarized; this case, in ordinary
Raman, is termed anomalous polarization.
For backward scattering, Eq. (19) yields

sin 24, (7) = —sin2¢, (24)
i.e., complete reversal of the incident handedness but at pre-
served magnitude of the ellipticity. The parameter S, be-

haves as a pseudoscalar since it changes its sign under an
inversion of the coordinates, hence such a relation (24).

V. APPLICATION TO VARIOUS POLARIZATION
STATES OF THE INCIDENT LIGHT

To start with, we remain at elliptical polarization. But
we chose the incident azimuth as ¢ = 0, i.e., we assume that
the elliptic major axis is normal to the observation plane.
Then

EVsi(9) =0

and
|

EVR(O) _

2 + (1 + 2 sin? 2¢ — cos 2¢)sin® ¢ — 2|sin 2¢|cos ¢

EVS4(9) = I'{2 + (1 + 2 sin? 2¢ — cos 24)sin® ¢},
EVs1(#) = — I'{(1 + 2sin? 2¢)sin’ &

. 4+ co~ 26/ 1 4 cos* 3)}, (25)
EVS4(#) = 2T sin 24 cos 3.

The superscript (EV) preceding the Stokes parameters de-
notes elliptical (E) polarization of the incident light with
vertically (7)) oriented elliptic major axis.

- As.it is obvious from Eq. (25), the parameter £V { ()

-can never become zero. This implies that the polarized por-

tion is elliptically polarized (except for right-angled scatter-
ing with £¥S ¥ = 0). Its ellipticity depends on the scattering
angle, and can easily be found from Eq. (19). The sign of
EVS4(49) is always the opposite of that of s,, suggesting in-
version of the azimuth irrespective of .

For right-angled scattering we have

EVGA(m/2) = I'(3 + 2 sin® 24 — cos 2¢),
EVgA(g/2) = — (1 +2sin®29 + cos 24).  (26)

At S, = .5; = 0 and negative parameter S, the depolari-
zaiton ratio is calculated from the definition

p=SotS 27)
So — S,
Thus, owing to Eq. (26), one gets
EVpA (ﬂ) __1—cos2 (28)
2/ 2(1 +sin22¢) ’
where
0<ED*(w/2) < 1/4. (29)

As already said, the polarized portion of the scattered light
is, for right angle, polarized linearly, but the magnitude of
depolarization depends on the incident ellipticity.

The reversal ratio R, being a ratio of intensities trans-
mitted by a device that accepts circularly polarized light the
handedness of which is contrary to the incident handedness
and the same as the incident handedness, respectively, is in

terms of the Stokes parameters®':
R=S0FSs (30)
Sot S,

The upper signs preceding S, go with ¢ > 0, whereas the low-
er of them ¢ < 0. ¢ > O refers to right-handed polarization in
the optical convention.

On insertion of S, and S, from Eq. (25) into Eq. (30) we
arrive at

2 + (1 + 2 sin? 2¢ — cos 2¢)sin® & + 2|sin 24|cos &

where for forward scattering, as should be expected from Eq.
(22),

EVR A(o) — 1 — |sm 2¢|
1+ |sin 24|

is identical with R for the incident light. This quantity does
not exceed unity because of retention of the handedness of
the light scattered in this direction. Generally, the handed-

(32)

3D

ness is preserved for scattering angles 0 <#/2 and 37/
2 <9< 27 and reversed for others (except right-angled scat-
tering when ellipses always transform into straight lines).
This conclusion is not fully satisfied in the symmetric ap-
proximation. Thus, for pure B modes or for modes with
2B 7 < 3B the opposite situation can occur regarding han-
dedness.?!
For backward scattering one has
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_ 1+ |sin 24|

Evp A —
R = n 2]

(33)

and, certainly,
EVRA(TT)=EVRA(O)-I. (34)

Let us now assume the incident azimuth as ¢ = 7/2.
So, the elliptic major axis is horizontally (H) oriented.
From Eq. (14) one gets

EHGA(S) = [{2 + (1 + 2 sin? 2¢
+ cos 2¢)sin® ¢},
EHg4(3) = — [{(1 + 2 sin? 24)sin* &

—cos 2¢(1 + cos* )}, (35
EHg4(¥) = 2T sin 24 cos ¥,
where one easily finds that the parameter 2854 () can
change its sign periodically. Namely, for certain angles
#,545  vanishes. These angles are determined by the equa-
tion
2 cos 2¢

sin? & = - ,
1 + 2sin? 2¢ + cos 24

(36)
i

EHR A(9) = 24 (1+28in22¢+cos2¢)sin20—-2|sin2¢|cosﬁ

which has the four solutions &, 7 + &, and 27 — . where
0 <, <7/2. Vanishing of 7S { means at £S5 { = O that the
polarized portion is then polarized circularly (C). £#S7 is
positive  for  angles T—1d. <f<m+ 9, and
27 — &, <& <27 + ¢, signifying an inverted azimuth. For
d, < <7 — 3. and 7+ I, <& <27 — &, is negative and
the scattered azimuth is coplanar with the incident azimuth
but normal to that in the symmetric approximation.*’
For perpendicular scattering,

EHGA(7/2) = T'(3 + 2 sin® 2¢ + cos 2¢),
EHGA(m/2) = — I'(1 + 2sin® 2¢ — cos 24). (37N

Since £#S4(m/2) is negative, in order to calculate the de-
polarization we have to apply Eq. (27) which leads to

-

EHpy 4 (_’1) —_ltcos2d 38)
2 2(1 + sin? 2¢) / (
ranging within <
1/4 <*#D4(7/2) < 1. (39)

The reversal ratio (30) now takes the form

2+ (1 4 2 8in’ 2¢ + cos 24)sin> & + 2|sin 2¢|cos & '

where for forward scattering 7R 4(0) reduces to the form
of 2R #(0) [Eq. (32)], as could be predicted. For the scat-
tering angles for which 4§ ¢ = 0 the reversal ratio (40) si-
multaneously plays the role of depolarization ratio of the
scattered light.

We now assume circular polarization of the incident
light. Thus, we have to take ¢ = + #/4. From Eq. (28) or
(38) one readily finds

“DA(m/2) = 1/A. (41)

Next, from Eq. (31) or (40),
5—2cosd —3cos’
5+2cos#—3cos’d’
where “R #(0) = 0, pointing to completely circularly polar-
ized radiation with preserved incident handedness.

The incident light is supposed to be polarized linearly
{L) along the x axis, i.e., vertically to the observation plane.
Linear polarization requires that ¢ = 0. Hence, from Eq.
(25) we get

L¥sg¢=2r,

Vg4 = Vs, (43)
irrespective of the scattering angle. The latter equation (43)
signifies that the scattered light is completely polarized lin-
early along the direction ¥, what in fact means inverse polar-
ization, and £¥D* = O for all angles.

For incident light polarized in the observation plane,
Egs. (35) lead to

LHS8(9) = 2T (1 +sin? .

LHS 4(&) = 2T cos® &. (44)

since now “S ¢ () > 0, in order to calculate the depolariza-

‘RS = (42)

(40)
|
tion instead of Eq. (27) we have to use the definition
= So—=5; , (45)
So+ S,
where, with regard to Eq. (44),
LHDA(#) = sin’ ¢. (46)

Right angled scattering causes unpolarized light; then
LED4(7/2) = 1. As in the vertical case the scattered azi-
muth is, for all angles, normal to that produced in symmetric
scattering.

To end our discussion of asymmetric hyper-Raman
scattering of completely polarized light let us notice that
chaotic (i.e., with Gaussian distribution of amplitudes)
completely polarized light is scattered twice as effectively as
coherent light, as was first pointed out by Shen.?® This is so
because g = 2 for polarized chaotic light, whereas g%’ = 1
for coherent radiation. Strong chaotic light can, for example,
be obtained via transmission of coherent light by a rotating
mat glass disk.

Let us now consider asymmetric hyper-Raman scatter-
ing of natural (V) light.

In the theory of linear light scattering all the models of
natural light, treated as a superposition of two orthogonal
waves linearly, circularly, or elliptically polarized with con-
stant intensities and independently fluctuating phases oras a
single wave albeit with randomly fluctuating direction of
polarization, give the same results. But when adopted bodily
to the description of nonlinear scatterings of natural light in
the early days of studies, they turned out to be completely
inadequate, as leading to different results. Already Striz-
hevskii?” showed how to describe this problem correctly, and
it has been further developed in the papers.*’-'62%2
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Natural light is indeed an incoherent superposition of
two orthogonal linearly, circularly, or elliptically polarized
waves the amplitudes of which, however are not constant but
are fluctuating Gaussian amplitudes. For all three models
g'? =3/2. Hence, at g¥ = 3/2 in T, after averaging Eqs.
(14) over the angles ¥ and ¢, or from Eq. (12) at

<s(z))5 = 3<5§)5 =%(-"o>é,

<5031>£ = <5052)E = (505'3>E =0, (47)
we arrive at

NS3(3) ={T(11 — 5 cos® ),

N${(9) = —§Csin’d. (48)

From Eq. (27) one gets

"DA(P) = 3 (49)

8—5cos®d’
where ¥D“(0) = 1, meaning unpolarized scattered light,
and

NDA(w/2) =}, (50)

Had we adopted to the calculation of depolarization the
definitions of depolarization ratios commonly used in the
symmetric approximation, i.e., strictly the definition (45)
instead of Eq. (27) and vice versa, we would have obtained
for pure asymmetric scattering so-called anomalous values
of depolarization exceeding unity; thus, VD4 = o,
D4(7/2) =4, and "D4(7/2) = §. All these values corre-
spond directly to the upper limits of the total depolarization
ratios given by Altmann and Strey.'

It is worth noting that pure asymmetric hyper-Rayleigh
scattering can also be expected. Namely, molecules of the
point symmetries D,, D,, and Dy exhibit no hyper-Rayleigh
intensity in the symmetric approximation, but can do so in
the purely asymmetric case. Our results are readily adapted
to the hyper-Rayleigh process by putting @go = 0 and omit-
ting O ? in the factor I'. The parameter B is simply given by
Eq. (9) where, formally, we have to replace the hyper-Ra-
man scattering tensor by its hyper-Rayleigh counterpart.
Some aspects of hyper-Rayleigh scattering by molecules
with electronic degeneracy have recently been discussed by
Ostrowski et al.** Hyper-Raman scattering by such mole-
cules has been considered in detail by Churcher,?! who
moreover established respective selection rules.

VL. CONCLUSIONS

For all we know, no experimental paper has so far an-
nounced inverse polarization of certain hyper-Raman
lines.**? In almost all previous theoretical papers, except for
the papers of Refs. 1, 15, 16, and 31, the polarization proper-
ties of hyper-Raman have been considered on the assump-
tion of full index symmetry in the scattering tensor. This has
led to incomplete sets of selection rules which failed to pre-
dict the activity of vibrations responsible for inverse polar-
ization. In other words, no theoretical predictions suggest-
ing this polarization effect had appeared prior to the
papers.'''¢ However, even these papers touch on this prob-

Kozierowski, Ozgo, and Kielich: Inverse polarization of hyper-Raman iines,

lem rather briefly. The observation of the purely asymmetric
lines is particularly important in the case of modes which are
both IR and Raman inactive. One should stress that each of
the relative polarization parameters characterizing the pure
asymmetric hyper-Raman line takes the same value for all
vibrational modes and for all molecules.
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