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Introduction

In recent years, an increasing amount of work has been devoted
to studies of the quantum and stochastic properties of the electromag-
netic field, in particular to the feasibility of producing quantum fields
exhibiting photon anticorrelation [1—5] and squeezing [5-7]. The effect
of photon antibunching, revealing univocally the quantum nature of light,
has hitherto been observed in experiment in processes of atomic reso-
nance fluorescence [1] only. These experiments have directed attention
to the possibilities of producing squeezed states of the radiation field
[_6, 8, 9].

Squeezed states of light are characterized by a decrease in quan-
tum fluctuations in one component of the radiation field at the expense
of an increase in fluctuations in the other (non—commuting) component.
The crucial role of nonlinearity in photon anticorrelation is a well es-
tablished fact. Hence, as one would expect, theoretical work on squee-
zing started from processes involving a nonlinear response of the
quantum system to the field signal. Here, several nonlinear optical pro-
cesses should be mentioned: parametric amplification [8, 11, 12], res-

onance fluorescence [13-17], four-wave mixing [18, 19], harmonics ge-
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neration [20, 21:1, multi-photon absorption [22—25], hyper-Raman scat-
tering [26_], and nonlinear propagation of light [27].

The effect of photon anticorrelation is dependent on a number of
favourable as well as destructive factors [4, 28]. Squeezing is partic-
ularty sensitive to the phase of the field: the flgctuations in phase (or
amplitude) strongly reduce squeezing of the signal field [29], whereas
interference acts favourably [___30 . Other factors as well have an in-
fluence on these quantum effects [16, 17, 31]. Despite the differences
between photon anticorrelation and squeezing, the two effects have one
property in common; they are purely quantum in nature, a‘nd fields with
such properties have no counterparts in classical optics. The two ef-
fects can exist concurrently in certain regions, or can exist independ-
ently of each other in different regions [15], whereas certain proces-
‘ses are accompanied by one of the two effects only.

The efficiency of individual nonlinear optical effects in producing
photon antibunching and squeezing varies from one case to another.
Here, it would appear that a particular role is played by self-induced
effects like self-squeezing, which resides in the circumstance that a
strong laser beam traversing an atomic medium endows it with optical
nonlinearity owing to which the light undergoes self-squeezing of its
quantum fluctuations., Herein may well reside a novel method of pro-
ducing quantum fields with as efficiency of almost 100 per cent of that
predicted by quantum mechanics., The process of self-squeezing is
universal in nature, because it takes place in all matter even in sys-

tems composed of centrosymmetric molecules, or atoms,

Effective interaction Hamiltonian

Consider N noninteracting microsystems (atoms or molecules) in
a volume V, acted on by an electromagnetic field with electric vector
L and magnetic vector _}§. The total Hamiltonian of the system as a

whole is, in standard form

H = Hy + Hp + H, (1)

with HN the Hamiltonian of the system of N aloms (molecules), and
HF that of the free radiation field.
We are interested in the explicit form of the Hamiltonian HI des-

cribing the interaction between the material system and the field of ra-
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diation, The interaction is, in general, nonlinear and involves all multi~
polar electric and magnetic transitions [32, 33]. Since the system is

optically isotrépic in the absence of external fields, the effective Hamil-
tonian is a function in even powers of E and -15 Hence, the second-

~order Hamiltonian HI 2 is the lowest nori-zero contribution to HI; if

(2)

omit the purely diamagnetic term, proportional to B2 [33]):

spatial dispersion is wealk, H can be written as follows [32] (we

I =_§{O&JEEJ+2?EB+ r)kE VE +...}, (2)
where the Einstein convention regarding ijk is assumed.

Il;l (2), the second-rank tensor °‘ij defines the linear electric po-
larizability of the molecule for an electric dipole-dipole quantum transi-
tion. The second-rank pseudotensor Qij describes the electro-magnetic
polarizability for an electric dipole-magnetic dipole quantum transition,
Whereas the third-rank tensor r)ijk accounts for the linear electric
polarizability for an electric dipole-electric quadrupole quantum transi-
tion,

In the same multipole approximation the fourth-order Hamiltonian
(which is the first nonlinear contribution) has the following form [32]

(we retain terms linear in B only):

(a) N
H Y = - 55 uklEEEkE1+4O'  EEE,B, +
(3)
L4
*3 atukm EEE Vi El+"'} J

where the fourth-rank tensor 'xijkl defines the nonlinear electric pola-
rizability for four-fold electric dipole quantum transitions, The fourth-
-rank pseudotensor o‘ijkl determines the nonlinear electro-magnetic po-
larizability for three-fold electric dipole-magnetic dipole quantum transi-
tions. And the tensor of rank 5, xijkm expresses the nonlinear elec-
tric polarizability for three-fold electric dipole-electric quadrupole quan-
tum transitions,

In the classical case, one can split the electric vector of the elec~

tromagnetic field at the space-time point (‘r’, t) into two complex parts

[34]:
By =5 @503, (4)
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where the component E(+)(;, t) is related with the time-iunction
exp(-iwt) ( W positive), with E(") T t) = {E(+)('r7, t)} .
The transversal electric field can be expressed as a superposition

of plane waves:

B0 - DO ® o (F-00 50 @ iR 700 (5)
k

The same holds with regard to the magnetic vectior E(.F, t), with

(+#) _ < (+)
B,Y = &t B (6)
where Eijk is the antisymmetric Levi-Civita tensor.
We assume the configuration in which the light beam propagates
along the Z-axis of the Cartesian reference frame XYZ and introduce
the circular representation of the field with the unit vectors (on the

angular momentum convention):

- 1 - -
e, = = (x +1iy) (7)
LA '
where €+ and 3_ refer, respectively, to the right- and lefi-polarized
waves, with X and '37 unit vectors in the direction of X and Y,
In quantum electrodynamics, the field vectors (4)—(6) are dealt

with as operators in Hilbert space; we have
W@ - ilewsM@ag, - (8)
A

Above, in cgs units, the normalizing factor is c((..)k) = (Zﬂrf]wk/\/‘) 1/2
with V the quantisation wvolume,
In (8), é-ﬁk

mentum hk and polarisation state A given by the unit vector 3( A (E).

is the annihilation operator of a photon with the mo-

The photon annihilation and creation operators 3—1;7\ and Q-EA fulfill the

boson commutation rules

A A : a at At -
[aEA' aE' xv]‘ = ékk" d.xxy ' [a-lzl.' ak K} = [a-lzk' ak'x] .0,

The unit vectors describing the state of polarisation of ‘the wave are
in general complex quantities satysfying the ortho-normalisation condi-

tions

A (a A)
el(m—) el(c’t‘) = Sgu Sy el(co’ Kg =0
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For a quasi-monochromatic wave with the frequency ) propagating
along the Z-axis one may omit in (5) the summation over the index k.

Thus, by (8), we get the field component in the form:

£ (2,0 = 10(0) exp {-i(0t-k2)} Y oM (9)
A=1,2
where k=W]/c.

In fact, the formula (9) provides a two-mode description of a field
being the coherent superposition of two modes with mutually orthogonal
polarisations.

By analogy with the circular representation of the polarisation of
a classical field we may write the transformations for the field opera-
tors as:
3+=l—\/—§,(3x-iay), a_=%(3x+ia‘xy), (10)

Both representations are well adapted to the description of the in-
teraction between elliptically polarized light and a material medium, How-
ever, as shown previously [27], the circular representation (3_'_, 3_)
is radically more convenient than the Cartesian representation (éx. ay)
in that the former enables us to obtain the solution of the equation of
motion for the field operators in general propagator form.

Since the microsystems are freely oriented in space, we may per-
form an unweighted averaging of the interaction Hamiltonians (2) and
(3) over all their possible orientations. By (4), (9) and (10) and
taking the operators in normal order we obtain the effective Hamilto-

nian in the form [35]

(2) SL, A+ A A4+ A ~ LA+ A At A
HI = - XR(8+ a +a_ a_) -i }(,A(a+ a -a_ a_), (11)
(4) 1 gNL a+2 a2  A+2 22y ZNLata+a A
HI -_2XR( + Byt a_)—’beR a ,a a_a, -
(12)
}_-zNL A+2o\2_3+232\ :
"o v aA V8 % - =

where we have introduced the coupling constants [36]

-—C(U)z N Re OLOLW' 'i11&=3l5 C(w)z N IQO“‘v (13)
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AR =c(W®  ff Re(37apoap - Yuapp )

Bl X Re(Yapap * 2 Taapp )

4 Nk r
%§L=-ic(u)4 thélm(:’dm(baﬁ'caaﬂﬁ)*‘ (1)
14

+%Re %&@Xﬁf;&ag’g}'

Thus, the effective Hamiltonians (11) and (12) derived by us are ex-
pressed in general by 5 invariants of the field operators (2 linear and
3 nonlinear) and 5 rotational molecular invariants (2 linear (13) and

3 nonlinear). The coupling parameters ”ZI;L and ;CI;L are related with

self-induced rotation of the polarisation ellipse whereas the parameters

Xi‘ and iim - with optical activity and its nonlinear variation, respec-
tively.

Solution of the Equation of Motion for the Field Operators

The evolution in time of the field operators is described by Heisen-

berg’s equation of motion:
AE®) (= ~

In the case of a field, the Hamiltonian H occurring above is nothing but
that (HF‘) of the free field of radiation. In this case the solution of
Eq. (15) is given by the electric field (5) corresponding to "rapidly
variable" time-evolution,

Due to interaction between the field of radiation and the material

medium the Hamiltonian H of Eq. (15) contains, in addition to H the

F’
interaction Hamiltonian

H, = HI(?‘) + HI(4) + e (16)
In the present case the solution of (15) is no longer given by the
free field (15). Additional time-dependent terms appear, and this addi-
tional "slowly variable" time-dependence due solely to the interaction
- (%) -
(16) causes the amplitudes E(_)(k) given by Eg. (8) to become func-

tions of time.
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Generally, considerations bear on the time-evolution of the opera-
tors of a field in a cavity of volume V. In our case, however, we deal
with the propagation of a wave through an active medium in which it
traverses a path of well defined length z i,e. the field emerging from
the medium is dependent on z, In the case of plane waves the transi-
tion from the problem of a field in a cavity to that of propagation re-
quires but the replacement of the time t by +z[c. Once this is done,
the Heisenberg equations of motion (15) become equations de\scribing

the z-dependence of the operators of the k-th mode of the field:

+
aE(')ai:xZ) B (5 (k2), ). (17)
The next step, which is crucial, consists in the choice of the in-
teraction Hamiltonian (16) in a form enabling us to solve Eq. (17)
analytically without loss of generality, It has been shown [27, 35] that
the general analytical solution is obtained directly if the interaction
between the field and the system is described by the effective Hamilto~
nian (16) in conjuction with the components (11) and (12). On elimi-
nating free evolution, the equation of motion for the field operators

reads:
(18)

: At A + A
Since the photon number operators a,a and & 4 are constants of

+
motion (they commute with the Hamiltonian), the above equation posses-
ses a strict formal solution in the form of the translation operator:

A

a (2z) = exp{iz [(pi_ + €+a:(0) Si(O) +

* 0t
(19)
v 8at(0) a_(0)]} a,(0,
¥ Iy *
where we have introduced the following notation:
1 ~L L
(?i = o ('X.R + i XA)'
1 5 NL . % NL
€, = Ro (%R  x 1% 7)), (20)
§ - AL ®N
hc -aeR ’
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Squeeezed States of the Field

- The preceeding solitions show that the photon statistics of a circu-
larly polarized beam remains unchanged on traversal of the light wave
through an isotropic nonlinear medium. However, this does not mean
that the state of the field remains unaffected by the nonlinear interac-
tion, The latter, in fact, can cause the field to g0 over into a squeezed
state, having no classical counterpart. In order to prove this, we intro-

A A
duce two Hermitian field operators QO’ and Pgs , defined as follows:
A A ~ LA A+
Qo- = ad 4 ao_ , Po_ - e (ao_ - ao_ ), . (21)
with ¢ standing for +(-) in circular basis, or x(y) in Cartesian

basis. The operators (21) satisfy the commutation rule

[Qo,ypdl] =2i_do,c,.

The definition of the squeezed state of the electromagnetic field is
the following: it is a field state in which the square of the uncertainty

A

A
in Qo, or pd is less than unity [:13]:

(BQ*D < 1 or {(B8B)%)> < g, (22)

A A A
where AQ = Qg - {Qg).
On normal ordering of the creation and annihilation operators, the

definition (22) can be re-written in the form [13, 14]
2 A
<:( Aao,) :> < 0 or <:(APO,)2:> < o. (23)

To calculate the quantities occurring in the above definition (in
the case of propagation in a nonlinear medium) we have to insert the
operator solution (19) into the definition (23) and calculate the mean
value in the quantum state of the incident beam which we assume as
the coherent state 3(0) | > = o] o > . If one of the normally or
dered variances turns out to be negative, the respective field com-
ponent of the emerging light is in a squeezed state, Such calculations
for normally ordered variances of the beam emerging from the medium

give

G[a8,]%:) - & [a ) +at2)] 2> -
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- {3,(2) + &}(=) >2 -

2iz &
2 [ . : bt 2
=2Re{%iexp 212:101_+1z£,i_+(e -1)'0Ltl +

+ (eZiZJ -—1)' OL__;IZ:I - Ociexp[ZizLPt +
iz€ .
e 2(e i-1)|oc+|2+2(e‘z‘5-1)‘|°c;|2”+
+ 2|oci|2{1-exp [2(cos zﬁt-l)l“ilz +
+ 2(cos zé-l)lm_lzj}, (24)
- ¥

where

OLt = j%(cos n t sinr?) e4Ti8
n and @ being the ellipticity and azimuth of the elliptically polarized
wave, .

Of especial interest is the case when the incident beam is polari-
zed circularly: n = w/4, 6 =0. We have I OL+'2= I Ot,lz, I o<,_|2 =0 and
(24) reduces to

G:[ag,=]%:) -

= 2 IOle{exp [l Oklz(coszzf,_'_ - 1)} cos(z(p+ +zE +
(25)

2 . 2 ]
+ l Obl sin2z £+) - exp[2 | Oc! (cosz 6+ - 1) cos}(z‘p_'_ +

+ 2 |0ilzsinz 5+)} + 2'0@,2{17 - expl:2 Iotlz(cosz€+ - 1)]}

We gest a similar expression for the other component:

<:]:_Af>+(z)]2:>=--2Ioc|2{...} +2|o<.l2{...}. (26)

On putting the initial phase of the field fpo in a manner to have

R . -6
(P+(z) + (PO = 0 and on taking a numerical value [37] of C,+ z=1x10 -,
we are in a position to compute the expression (25) numerically,

leading to the graphs of Fig. 1,
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--¢l8Q, 21D |
F—CIAR (z))2:>1/

Fig. 1.

where the quantities <: [A (3_‘_(2):! 2:> and <: [A 1/3\’_'_(2)] 2:> are found
to be oscillatory in shape depending on €,+ z | 2 and to take positive
as well as negaltive values. In the regions where these values are ne-
gative, the respective field component (3_'_(2) or f’+(z) is in a squeezed
state. We note that the field can be in squeezed state despite the Pois-
son photon statistics. Also notable is the magnitude of the squeezing
possible to achieve in the process considered above. On our definition
of (3_'_ and I/;+ the value permitted for (25) and (26) by quantum me-
chanics is -1, meaning zero fluctuations of the field, In Fig. 1 the first
minimum of (25) amounis to -0.66 whereas its second minimum amounts
to as much as -0.97 i.e. 97 per cent of the magnitude permitted by
quantum mechanics. As to the first minimum of (26), it amounts to -0.92
also signifying an almosl complete elimination of quantum fluctuations.
Finally, it may be worth mentioning that on performing an appropri-
ate interchange of the variables the expressions (25) and (26) become

identical with the respective expressions for the isotropic anharmonic

oscillator .[3 8:] .

Conclusions

We have shown previously that the process of light propagation in
an isotropic optically active nonlinear medium can be a source of non-
~classical fields, The photon antibunching effect in this process is in-

significant, but can undergo amplification by interference with another
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beam [39]. In contradistinction to this, the effect of self-squeezing can
be almost total and takes place as well for a circularly polarized in-
cident beam, in which case no change in the photon statistics occurs.
Hence squeezed states can exist for fields with a Poissonian photon
distribution, characteristic for fields in coherent state. Moreover, our
results draw a boundary between the phenomenon of photon antibunch-
ing and that of squeezing.

We wish to stress once again that we have obtained a strict ana-
lytical solution in translation operator form wvalid for arbitrary polarisa-
tion of the incident beam and involving explicitly the nonlinear and
multipolar properties of the molecules of the optically active medium
[3, 40].

The latest communications [41-44] suggest that the study of quan-
tum optical effects, in particular aqueezed states of light, is no longer a
matter of purely academic interest but is fast approaching the stage of ex-
perimental testing and applications in telecommunication. In the nearest
future some well designed experiments may lead to a dramatic break-
through in our understanding of the nature of light, Quite recently, the-
oretical papers [45—56] have appeared analyzing various subtler details

of squeezed light and its interaction with matter [57].
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