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Abstract. The occurrence of photon antibunching and squeezing is strongly
connected with nonlinear optical phenomena in general. Recent results are
presented for two-atom resonance fluorescence, the anharmonic oscillator,
nonlinear propagation of light and higher-harmonic generation.

1. Introduction

The 25 years since the invention of the laser have witnessed the rapid
development of nonlinear and quantum optics, both experimentally and theoreti-
cally. Nowadays, the laser is in common use in industry as well as in the research
laboratory. Increasingly sophisticated experiments are being performed revealing
ever more subtle details of the interaction of laser light with matter. The question of
the nature of light, the fundamental problem of quantum electrodynamics (QED),
can now be tackled in the laboratory. In the latter half of the 1970s there emerged
new arguments in favour of the quantum nature of light, and various investigations
have been devoted to the search for the production of antibunched photons.
Conventional light sources emit light with bunched photons (i.e. photons arriving at
the photodetector in clusters), and such light is commonly called chaotic. On the
other hand, lasers operating above the threshold emit coherent light consisting of
photons having a random distribution of detection times. Chaotic and coherent light
can be described equally well in terms of, either their photon or their classical
intensity, but photon antibunching causes a dramatic breakdown of this quantum-—
classical equivalence; antibunching cannot be described classically. The successful
experiment by Kimble et al. [1], in which photon antibunching was observed for
light of resonance fluorescence from a single two-level atom coherently driven by a
laser field, confirmed earlier theoretical predictions [2, 3] and opened the way to
investigations of very fine-scale phenomena related to the nonlinear interaction of
laser light with matter.

As theoretical predictions show, not only resonance fluorescence but also a wide
variety of nonlinear optical phenomena can give rise to non-classical fields (for
reviews see [4-10]). All classical field theories (including semiclassical and neoclass-
ical theories) have failed to explain the negative Hanbury Brown—-Twiss (HBT)
effect related to the intensity correlation function. In the language of QED, the
response in the HBT experiment is proportional to the deviation in photon number
distribution from the Poisson statistics corresponding to the coherent field. A
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negative HBT effect indicates that the photon number fluctuates less than it does in a
coherent beam; in other words, the variance of the photon number ((An)*> in a single
mode of radiation is less than the mean number of photons {n),

{(An)*) <{np, (M

and the photons exhibit sub-poissonian statistics. A deficit in photon count
coincidences will in general decrease with the delay time between the signals
reaching two photodetectors. If we consider photons as dimensionless particles, the
negative HBT effect corresponds to their ordering in the sense of equalizing the
distances between them. The greatest antibunching would therefore mean evenly
spaced photons, {(An)?)» =0, which would occur if the field were in a pure number
state.

Another nonclassical effect, the so-called squeezing effect, has recently become
the subject of intense study. As with antibunching, the light field in a squeezed state
has no classical counterpart. Strictly speaking, squeezing is characterized by a field
state in which the variance of one of two non-commuting observables (of the same
physical dimension) is less than half the absolute value of their commutator. The
quantized electromagnetic field can be decomposed into positive E'*) and negative
E7) frequency parts satisfying the commutation relation

[E, ET=C, (2)

where C is a positi¥e c-number. Defining the in- and out-of-phase components E,
and E, of the field as

E,=ED+ED), E,=—i(EY—E)), 3)
we have that
[E,, E,]=2iC. 4)

For a given mode of the field all irrelevant constants are usually dropped, and instead
of E, and E, are introduced the ‘canonical’ operators:

QO=a+a*, P=—i(a—a"), (5)

where @ and a* are the annihilation and creation operators of the mode fulfilling the
boson commutation rules.

The electromagnetic field is in a squeezed state if one of the variances of E| or E,
is less than C [11,12]:

{AEDD><C or {(AE)*><C (6)
or, equivalently, if the variance of Q or P is less than unity:
{AQYH<1 or ((AP*)<L1. (7)

On introducing normal ordering of the field operators, the definition (1) of
antibunching and the definitions (6) and (7) of squeezing can be rewritten as

G(Am)?) <0,
G(AED* > <0 or {(AE,)?%) <0, (8)
GAQ2DH> <0 or  ((AP)%:) <0.
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From equations (8) it is apparent that fields exhibiting photon antibunching or
squeezing, or both, have no classical analogue in the sense that their diagonal
coherent state Glauber—Sudarshan P representation cannot be non-negative.

Fields in a squeezed state can also be produced by the nonlinear interaction of
laser light with matter. The problem of squeezed states of the electromagnetic field
has been reviewed [13, 14].

Both photon antibunching and squeezing are facets of the quantum nature of
light, the former a particle effect and the latter a wave effect. These unique properties
are related to a decrease of quantum fluctuations in photon number and phase below
those of coherent light. Light with reduced quantum noise is of fundamental
importance in optical communications [15].

Although photon antibunching (or, more generally, anticorrelation) and squeez-
ing are two distinct aspects of the quantum nature of light (i.e. there is no direct
connection between them), they often occur together in nonlinear phenomena.
However, fields displaying squeezing but not photon antibunching, and vice versa,
can exist.

Photon antibunching and squeezing, non-trivial consequences of the nonlinear
interaction of laser light with the medium, are the subject of this paper, in which the
authors present their latest contributions to the field. The possibility of photon
antibunching and/or squeezing is discussed for two-atom resonance fluorescence,
the anharmonic oscillator, nonlinear propagation, the generation of harmonics and
light-scattering processes.

Special attention is drawn to self-squeezing as a novel, potent source of quantum
fields: the strong beam, in traversing the medium, causes it to become optically
nonlinear and thus to undergo a self-squeezing of its own field states at the output.
This self-squeezing is universal, occurring to some extent in all nonlinear optical
phenomena, even though no attempt has been made to detect it.

Apart from these nonlinear effects, there are many other phenomena capable
of producing antibunched photons and squeezed states: multiphoton absorption
[16-20], degenerate or non-degenerate parametric amplification [21-27], four-wave
mixing [28,29], the free-electron laser [30-34] or stimulated annihilation of
electron—positron pairs [35,36]. These areas, however, are outside the scope of the
present paper.

2. Two-atom resonance fluorescence

Resonance fluorescence is, so far, the only phenomenon in which the non-
classical effect of photon antibunching has been observed experimentally by Kimble
etal. [1]and Leuchs et al. [37] (see also [38]), following earlier theoretical predictions
by Carmichael and Walls [2] and Kimble and Mandel [3]. Walls and Zoller [11] have
shown that squeezing as well as antibunching can occur in one-atom resonance
fluorescence, though its detection may be an order of magnitude more difficult, as
Mandel [12] has shown, than the already non-trivial task of detecting photon
antibunching. The cooperative behaviour of a system of two atoms leads to a
significantly less antibunching than occurs for one atom [39]. Two-atom resonance
fuorescence has been thoroughly investigated by Ficek et al. [40, 41], who examined
the production of both photon antibunching and squeezing. These results showed
explicitly the dependence of the two effects on the interatomic interaction.

To describe a two-atom system, apart from the Rabi frequency Q describing the
interaction of an individual atom with the resonant field, one needs two additional
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parameters, ¥, and §,,, which describe collective damping and the collective shift
of energy levels (the dipole—dipole interaction). This coupling between the atoms
makes the problem of resonance fluorescence from such a system much more
complex though not insolvable. A system of 15 equations is usually necessary to
describe the time evolution of the system, but sometimes this system may be split
into subsystems to make the problem more manageable. Some features of the steady-
state resonance fluorescence from such a physical system can be derived analytically
within the standard approximations used for the one-atom problem.

The normalized, equal-time intensity correlation function of the fluorescent light
is one of the characteristics that can be calculated exactly. This function, if taking
values smaller than unity, describes the photon antibunching effect. For the two-
atom problem we have that (for details see [41])

G(Z)(Rl) t. R2) t)
» GO(R,, )GD(R,, 1)

£90) = 11m

_{328* +8(1 + A)B*+ (1 + AD[(1 + a)* + (A +b5)*T}{1 +cos [kr,, - (R, —R,)]},
T {8B2+(1+AY)[1+cos ey, R)II{8B%+(1+AD)[1 +cos (kry, - R)]}

9
where
B=Ql4y, a=y,/, b=Qy,0y, A=(wo—w)/y, (10)

with 2y denoting the Einstein A4 coefficient. R, and R, are the unit vectors of the two
possible directions of observation of the fluorescent intensity; r,,=r,—r, is the
vector connecting the centres of the two atoms.

The interatomic interaction between the atoms is described by the parameters a
and b. If there is no interaction between the atoms (r,,—0), then a=b=0. The
dipole-dipole interaction &, which can be quite substantial if the atoms are close
together, modifies considerably the values of g?)(0). It is particularly interesting that
there is a sort of interplay between the dipole—dipole interaction b and the detuning A
of the laser frequency from the atomic transition. A considerable photon antibunch-
ing effect (¢'?(0) close to zero) can be obtained in such a two-atom system for certain
values of A [40-42]. This is illustrated in figure 1, and occurs when the dipole—dipole
interaction b and detuning A cancel (A= —b). Here, however, one can consider the
two-atom system as an individual two-level system because the laser is tuned to a
particular pair of energy levels that are shifted by the dipole—-dipole interaction.

For certain configurations of the two photodetectors for which

1+ cos[kr ;" (R, — R,)] =0

‘we have that g(0)= 0. Thus there is anticorrelation between the photons emitted in
the directions R; and R,, an effect which does not occur in one-atom fluorescence.
This anticorrelation effect, being the result of interference between the fields emitted
by the two atoms, is nevertheless a quantum effect and cannot be obtained for
classical fields [43].

Equation (9) is valid only for a#1; if a=1 the two-atom system becomes $2-
conserving (8 being the total spin) and the results differ from those for a1 because
the singlet state of the system remains unpopulated [40, 44].
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Figure 1. 'The intensity correlation function 29(0) versus the detuning A for a field strength
of f=0-2, and for various interatomic separations ria(R =R, Lr,).

The normally ordered variances of the in- and out-of-phase quadrature
components of the fluorescent field represent yet another characteristic of steady-
state resonance fluorescence. These quantities describe the squeezing effect of the
fluorescent field. It has been shown [41] that for the two-atom system these variances
are proportional to the respective variances of the collective spin variables of the two-

atom system:
GAE)* > ={(AR)*) — 3 KR)|=F, } an
GAE)? )~ (AR —3KR3)|=F,

where R, R, and R are Dicke’s spin variables. Negative values of F; or F, give rise
to squeezing in the E, or E, component, respectively, of the fluorescent field. The
exact form of F, and F, for the two interacting atoms has been obtained [41,45].
From figures 2 and 3, in which these quantities are plotted against the detuning A, an
interplay similar to that observed in photon antibunching between the detuning A
and the dipole—dipole interaction b is seen. A considerable amount of squeezing in
the F; component can be obtained for A= —b, although the minima are not so deep
as for non-interacting atoms, and in this sense the interatomic interaction has a
destructive effect on squeezing. The matter is discussed in more detail elsewhere
[41,45].

The proportionality expressed in equation (11), which holds in the steady-state
regime, means that squeezing in the atomic variables implies that the normally
ordered variance of the corresponding component of the fluorescent field is negative.
This may be untrue in the transient regime of resonance fluorescence [46], in which
there are intervals of time during which the atomic squeezing does not proceed in
step with the field squeezing.

Loudon [47] has recently given an expression for the two-time photon number
correlation function for fluorescent light homodyned with coherent light.
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Figure 2. F, versus the detuning A for a field strength of f=0-2 and various interatomic
separations 7| ,. The transition dipole moment p is parallel to f, ,, and R is perpendicular

to ry,.
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Figure 3.  As figure 2, but for F,.



Photon antibunching and squeezing 1029

3. Anharmonic oscillator

The anharmonic oscillator model is probably one of the simplest models used to
describe certain features of the nonlinear interaction of laser light with matter.
Despite its simplicity, this model is very instructive and provides results which are
easy to interpret. In this model, the hamiltonian of the system is taken (discarding
the non-energy-conserving terms) to be

H=howa"a+ thka*?a?, (12)

where K is the anharmonicity parameter, assumed to be real, and the creation and
annihilation operators are taken in normal order.

The Heisenberg equation of motion for the annihilation operator a, according to
equation (12), has the form [438]

a= —ih " [a, H| = —i(w+ka" a)a. (13)
* Since a*ta is a constant of motion, equation (13) has the simple exponential solution
a(t)=exp { —itfw4+xa* (0)a(0)]}a(0). (14)

The exp (—iwt) part of the time evolution describes the free evolution of the system,
whereas the remaining part of the exponential arises from the nonlinear term in the
hamiltonian.

The solution (14) is the exact operator solution which allows us to calculate all the
characteristics of the field at the time ¢, provided the state of the field at the time t=0
1s known.

We see immediately that

{a* ¥ (t)a*(t)) =<a* HD)a*(0)), (15)

and that there is no photon antibunching at the time ¢ if none existed at the time t=0.
Moreover, any function of the photon number operator 7= a'ais also a constant of
motion, so that the photon number distribution p(n) in the mode does not change in
the course of evolution. This means that the photon number distribution remains
poissonian if the field was in a coherent state | at the time ¢ =0, but it does not mean
that the field is always in a coherent state. Using the solution (14) and the definition
(7), one obtains the following result, due to Tana$ [48]:

CIAQ())%:) =2 Re {o? exp [—it+ {ny(exp (—2i1) —1)]
—a?exp[2<n>(exp(—ir)—1)]}+2<n>{1—exp[2<n>(cosr—1)]}, (16)

GIAP(@Ty=—2Re{...}+2(m{.. .}, (17)

where 1=xt. The obvious exp (—iot) dependence arising from free evolution has
been dropped, and the two pairs of braces in equation (17} contain the same
expressions as in equation (16).

Equations (16) and (17) are both strict solutions. They are illustrated graphically
in figure 4 as functions of the product {ndt({ny =|a|?) fort=10" 6 The initial phase
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Figure 4. Fluctuations of the in- and out-of-phase components of the field versus (n)t.

is chosen so as to have a real. Both curves show an oscillatory behaviour, with
positive as well as negative values. For small {n)t the in-phase component QO is
squeezed, while the out-of-phase component P is not. The first minimum of
[AQ(1)]1%:) occurring for (n)1~0:6 has the value —0-66, two-thirds of the limiting
value of —1 allowed by quantum mechanics. The successive minima are even
deeper, amounting to as much as —092 and —0:97, which corresponds to a
considerable amount of squeezing.

This simple example shows that squeezed states exist for which the photon
distribution remains poissonian. Such states cannot, of course, be detected by using
a direct photon counting technique. The exponential form of the solution (14)
contributes to squeezing but not to photon antibunching, which is phase-insensitive.
In contrast, Quattropani et al. [49] have shown that the same anharmonic oscillator,
when interacting with a thermal reservoir at thermal equilibrium, leads to sub-
poissonian photon statistics. In this case, however, the field is described by the
density operator

p=Nexp[—(,kT) '(hwa* a+ Lhrxa*2a?)],

which is diagonal in the number state representation, and there is no squeezing in
such a field.

The solution (14) provides an example of the nonlinear canonical transformation.
This particular example shows that nonlinear canonical transformations do not
conserve minimum uncertainty. Applied to a coherent state (which is a minimum
uncertainty state), this transformation gives a state which is no longer a minimum
uncertainty state.

4. Self-squeezing of light propagating in nonlinear media

The anharmonic oscillator model described above can be realized in practice
when a strong electromagnetic field propagates through a nonlinear medium without
absorption [50].
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If the medium is macroscopically isotropic and consists of N molecules which are
non-interacting molecules but can be optically active, the interaction between the
light mode of frequency @ and an individual molecule can be described by the
effective hamiltonian [50, 51]

Hy=—d(w)(ala, +ala_)—p(w)aia, —ala_)
—[2§, (@) + 7 (@) + J3(w)latata_a.
— 1 [fa(@)+F3(@)(at ek +at?a?)
—1[8,(w) + 8x(@))(al’a; —at?al), (18)

where a, and a_ are the annihilation operators for the modes associated with right-
and left-circular polarization of the light beam, and

2nh 2mhe \2
7rwoc(oo), Fw)= <nV )V(w),

N 2nthw _ 2nhow
P(w) vV p((l)) Ui(w) C< V > 1( )1

a(w) and y(w) (i=1,2,3) denoting the rotational invariants of the molecular
polarizability and hyperpolarizability tensors, and p(w) and oyw) (= 1,2,3)
denoting the rotational invariants of the tensors describing the linear and nonlinear
optical activity of the molecules [8].

From the circular representation of the interaction hamiltonian (18), it is evident
that ata, and ata_ commute with this hamiltonian. This means that the numbers
of photons in both circular components are constants of motion (in the absence of
absorption). The same, however, is not true in the cartesian representation for the
operators aj a, and a; a,, showing that in a nonlinear medium (even if it is isotropic)
the linear polarization of the field is not preserved.

Using the interaction hamiltonian (18), we can easily write the Heisenberg
equations of motion for the operators a, and a_ describing the time evolution of
these operators. Since we are considering propagation rather than a field ina cavity,
we introduce the parameter z=ct and obtain the equations (free evolution having
been eliminated)

&(w)=
(19)

4 i@ =il +eral@aso)+ b3 @as@}as (o) (20)

Since ata, and ata_ are constants of motion, equations (20) have the simple
exponential solutions

a,(2)=exp izl +21a5(0)ax(0) +5at(0)az (0)]}as(0), @1)
where we have introduced the notation
¢+ =(N/ho)[&(w) £ p(w)],
&1 = (N/hO)[F2(w) + T3(0) £ (F2(w) + F3(@))], (22)
0= (N/he)[27,(w) + T, (@) + T3 (w)].

The formal solutions (21), which are strict operator solutions, allow one to calculate
any characteristic of the field on traversal of the path z in the nonlinear medium.
These solutions are in fact two-mode generalizations of the simple anharmonic
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solution (14). If there is only one mode of radiation propagating in the medium
(either a, or a_) we obtain the same equation as that of the anharmonic oscillator.
Again, since afa, and a’a_ are constants of motion, there is no change in either the
intensity or the photon statistics of these components. However, if a polarizer is used
to select a particular cartesian component of the outgoing field, say the x component,
the number of photons a; a, as well as the photon statistics of this component change
as the field traverses the medium. As Tana$ and Kielich have shown [52]
perturbatively, and as Ritze [53] has confirmed, giving exact solutions, photon
antibunching can then occur. Tanas and Kielich [50] have also predicted squeezed
states of the electromagnetic field in such a system. Although there is no change in
the photon statistics in the two circular components of the field, these components
can be squeezed as a result of nonlinear interaction with the medium. For this
squeezing effect, which is caused by the field itself, the present authors have
introduced the term ‘self-squeezing’ [50].

If the incoming beam is in a coherent state, we obtain from the solutions (21) the
equation

CIAQ L (2)]%:) =2 Re {0} exp [2iz¢ ;. +ize. + (exp (2ize, ) — D, |?
+(exp (2i8) — Doz 7] — a2 exp [2izd, + 2(exp (iz65)— 1)las |2
+2(exp (i26) — Dloz 21} + 2Joc . |*{1 —exp [2(cos (g4 2) — )], |2
+2(cos (92) — 1)z 2]} (23)

A numerical analysis of this expression shows that it oscillates between positive
and negative values. The negative values signify squeezing in the respective
component of the field. (Corresponding curves for non-optically-active media are
given elsewhere [50].) This self-squeezing effect is universal in the sense that it exists
even for spherically symmetric molecules (atoms). The numerical values of this
squeezing can be as high as 97 per cent of the maximum allowed by quantum
mechanics. This means a reduction of quantum fluctuations by two orders of
magnitude, which seems promising for the experimenter.

Self-generation of quantum fields can occur in arbitrary isotropic media as well as
in crystals (both optically active and inactive) belonging to certain symmetry classes
[54].

5. Harmonic generation

Harmonic generation processes also produce light which exhibits photon
antibunching and squeezing together. Second-harmonic generation has been
discussed by Kozierowski and Tanas [55] in the ‘short optical paths’ approximation
from the viewpoint of photon antibunching, and by Mandel [56] from the viewpoint
of squeezing. The present authors have generalized these results to higher-harmonic
generation for photon antibunching [57] and squeezing [58], and extended this
perturbative approach to second-harmonic generation with a photon-number-
dependent coupling constant [59].

In the electric dipole approximation and for perfect phase matching, the
generation of the kth harmonic is described by the effective interaction hamiltonian

H =hcL,,a;,af+h.c., 24)

where Ly, is the coupling constant, the subscripts k and f denote the kth harmonic
and fundamental mode, respectively and h.c. represents the hermitian conjugate.
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If the incident light is coherent and both the fundamental and harmonic beams
traverse the ‘short’ path 2z in the medium, their photons are antibunched and the
scaled HBT parameter (:[An(2)]%:)>/{n(2)) takes the forms:

HBT,~ —k(k—1)C(z), (25)

HBT,,~ —3kC’(x) 3 5 3 sl (’") (k_1> <k><k‘1—s><nm>1‘”, (26)

m=0s=0 t=1 s s t t

where

C(2) = (m(2) ) [ {npo ) =~ Ll%a)<nf0>k Tlg?

is the conversion ratio. The parameter (26) though expressed here in shortened form,
is strictly equivalent to the form given previously [59].

In the classical approach a wave of constant amplitude generates a harmonic with
non-fluctuating intensity, thus itself remaining unfluctuating, albeit with dimin-
ished intensity. This picture changes drastically when quantum effects are consi-
dered, even under the naive assumption that photons are dimensionless points [7, 59];
generation proceeds with the simultaneous ‘extraction’ of & photons from the
fundamental beam in a single event. Hence, the phenomenon occurs more
strongly in intervals of time during which the number of incident photons is
greater. In consequence, as well as a decrease in the mean number of fundamental
photons, we have to consider their ‘rarefaction’, meaning that the distances between
successive photons tend to become equal. This is precisely the essence of photon
antibunching. As for the generated harmonic, of the & fundamental photons only one
photon of k-fold frequency is generated in each elementary event, so the disorder in
the harmonic will be less than in the incident coherent beam at the input to the
medium. This is of course characteristic of photon antibunching.

The same rough explanation of the origin of photon antibunching in a beam of
fundamental frequency ® can easily be applied to other nonlinear phenomena. For
one-mode nonlinear processes, for instance in the anharmonic oscillator or in the
nonlinear propagation of circularly polarized light, the number of photons—and
hence their disorder—is not affected. The annihilated photons are re-emitted into
the same mode, and so photon antibunching does not occur.

According to the definitions (8), the results for the variances of the canonical
variables show squeezing. For the fundamental beam we have that [58]

CIAOKP D | _ -

CIAP(R)D } = F k(k—1C(z) cos (2¢y), (27)
where @, is the initial phase of the complex amplitude of the incident light; it is clear
that {n;o> =|ag>. Depending on the phase ¢, either Q; or P is squeezed. In
particular, by setting k=2 in equation (27) Mandel’s result [56] is recovered. The
amount of maximal squeezing in the fundamental beam is equal to the degree of
photon antibunching, as given by equation (25).
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For the generated harmonic we obtain

ClIAQ()1%:) }
CIAP ()%

1 k

3
2

= +1kC(2) ki

m=0s

m\ (kR—1\[(R\(k—1—5
() (1 e cos g

k—1 k=2 s min(mk—2-1)

Fek'Ci=) 3 ¥ 3 ¥

m=0s5s=0t=0 r=0

x <j> (k: 1) ("’) (k_f_t> (meo> ™"t cos (2ky).  (28)

In a previous analysis [58] the second term in equation (28) was omitted.

In the generated k-harmonic beam, the maximal squeezing is no longer equal to
the degree of photon antibunching. In particular, for the second harmonic the
maximal squeezing amounts to 4C%(2)/3, in agreement with the result obtained by
Pefina et al. [60], which is half the photon antibunching.

Chmela [61] has shown that, by generating second harmonics in cascade in thin
plates, filtering out the generated harmonic behind each plate, photon antibunching
in the fundamental beam increases considerably. The same is expected for
squeezing.

As well as generating harmonics, the processes of spontaneous Rayleigh and
Raman scattering of harmonics [62] provide information on the statistics of light.
Simaan [63] and, independently, Szlachetka and Kielich [64], have drawn attention
to the possibility of photon antibunching occurring in hyper-Raman scattering.
Effects of correlation and anticorrelation of incident and scattered photons in the
presence of phonon fluctuations have been analysed closely by Pefinova et al. [65]
* and Szlachetka et al. [66] for various initial statistical properties of laser and Stokes or
anti-Stokes modes—whether coherent, chaotic or in the vacuum state (see also
[67-69]). A similar analysis has also been performed for Brillouin scattering
[70,71]. Sub-poissonian statistics and squeezing phenomena in hyper-Raman
scattering have been discussed recently by Pefina et al. [60], and by Pefinova and
Tiebel [72].

1-s
1

i

X

6. Conclusions and outlook

Some phenomena of nonlinear optics which can give rise to fields displaying such
nonclassical features as photon antibunching and squeezing have been described.
Although such fields are important in their own right, research in this area is also
motivated by their possible applications in optical communications [15, 73, 74] and
in the detection of gravity waves [75]. Usually both the photon number and the
phase of the field are affected by nonlinear interaction, and the two non-classical
effects can occur simultaneously. However, fields exhibiting photon antibunching
but not squeezing (and vice versa) can be produced as well. Squeezing has yet to be
observed experimentally. Mandel [12] and Shapiro et al. [76] have proposed some
schemes for its observation (see also [77,78]). Given current rates of progress, it
seems safe to predict that squeezing will soon be verified experimentally, and that
photon antibunching will be found to be associated with phenomena other than
resonance fluorescence.
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There have been numerous papers [79-101] analysing various aspects of
quantum field generation, but lack of space prevents them from being discussed
here.
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