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A projection operator technique is applied to study the influence of
interaction-induced mechanisms on density fluctuation-induced isotropic
(DFIILS) and orientation fluctuation-induced anisotropic (OFIALS) light
scattering. Analytical formulae for the integrated intensity of purely
interaction-induced isotropic (PIIILS) and purely interaction-induced aniso-
tropic (PITALS) light scattering are derived. The integrated intensity of
PIIILS as well as PITALS is found in the form of the difference of ‘square’
and ‘cross’ contributions. Both terms are calculated numerically for liquid
N, and CO, within the first order approximation of the dipole-induced
dipole (DID) model. The same order of magnitude is obtained for the
‘square’ and ‘cross’ contributions,

1. INTRODUCTION

Intermolecular interactions give rise to spectra that are forbidden within the
framework of conventional single-molecule spectroscopy [1]. In the spectroscopy
of scattered radiation, a classical example of this is to be found in the depolarized
component of light scattered by media consisting of atoms and spherically sym-
metric molecules. Such interaction-induced spectra are usually characterized by
broad frequency distributions.

Obviously, the same intermolecular interactions are active as well in light
scattering processes which are allowed in the absence of interaction-induced
mechanisms. The most typical example of an effect of interaction-induced scat-
tering mechanisms on the spectral band shape is provided by spectra containing a
broad interaction-induced component underlying a relatively narrow component
due to the mechanism leading to the allowed spectrum. This is quite obvious,
since the principle governing the interaction-induced transitions which accom-
pany an allowed spectrum is very similar to that underlying the mechanism
responsible for forbidden spectra [1, 2]. However, the interaction-induced part of
a spectrum is by no means much broader than the allowed spectrum in all cases.

t Partly supported by Research Project MR 1.9 of the Polish Academy of Sciences and
by a grant from the Chemistry Division of the N.S.F.
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Results obtained by computer simulation [3, 4] show that, for small molecules,
the relaxation times characterizing purely interaction-induced anisotropic light
scattering are comparable with the relaxation times of collective orientational
fuctuations in molecular anisotropy characterizing anisotropic light scattering.
Commonly, however, the separation in time of the two processes is considerable
51 |

The influence of interaction-induced scattering mechanisms on the allowed
spectrum cannot, however, be described solely as a superposition of allowed and
interaction-induced transitions. In fact, a closer analysis shows that the
interaction-induced mechanisms also modify the intensities of the allowed spectra
[6, 71.

Consequently, the intensity of the interaction-induced component accom-
panying an allowed spectrum has to be calculated with special care. The present
paper is devoted to the problem of calculating the integrated intensity of the
interaction-induced part of the spectrum of isotropic and anisotropic Rayleigh
light scattering from molecular fluids.

In the absence of interaction-induced processes, isotropic light scattering is
solely due to fluctuations in density of the molecules, and anisotropic scattering,
to fluctuations in their orientation [2, 8]. In §§2 and 3 we apply a projection
operator technique to calculate the influence of interaction-induced effects on the
integrated intensity of isotropic density-induced and anisotropic orientation-
induced scattering. The method adopted by us is shown to provide analytical
formulae for the integrated intensities of the purely interaction-induced isotropic
as well as the anisotropic light scattering. Our formulae are found in the form of
the difference of two terms. The form of these results is intuitively obvious, since
the total intensity due to interaction-induced mechanisms is reduced by the
amount which modifies the intensity of the allowed spectrum. Previous analyses
of the purely interaction-induced parts of the isotropic [9] and anisotropic [10]
scattering spectra extracted from experimental spectra have mostly overlooked
the second term of our expression for the integrated intensity.

In §4 we perform numerical calculations for liquid N, and CO,. The two
terms discussed above are found to be of the same order of magnitude. Hence,
when calculating the integrated intensity of interaction-induced light scattering
accompanying the allowed spectrum, one is not justified in restricting oneself to
the first term only. We suggest that the integrated intensities of isotropic and
anisotropic scattering for other liquids as well should be analysed on the basis of
the complete expressions for these intensities derived here.

The projection operator technique used here has the advantage of permitting,
in a physically meaningful and quite natural way, the splitting of the interaction-
induced polarizability into the part which modifies the allowed spectrum and the
part responsible for the purely interaction-induced component.

2. THE MECHANISMS OF LIGHT SCATTERING AS DEALT WITH IN THE PROJECTION
OPERATOR APPROACH

Consider a system composed of N anisotropic interacting molecules. The total
polarizability tensor of the fluid has the form [2-5, 11]

Mag = Oty + Aty (1)
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where

N
Tap = 2, ()tap (2)
i=1

is the polarizability tensor of the system in the absence of intermolecular inter-
actions whereas Am,, denotes its variation due to intermolecular interactions. An
electromagnetic wave of intensity I, and frequency w; linearly polarized in the
direction e; is incident on this system. At a point R, distant from the centre of the
system, the radiation scattered at @, is measured on traversal of a polarization
analyser n. The total intensity of scattered radiation is given by the autocorrela-
tion function [12] of

= e, Mpny. 3)

If the polarizability tensor of the ith molecule (\*zp 18 Symmetric in its indices,
it can be written as the sum of a zero-rank isotropic tensor (i)oz;%’ and an irreduc-
ible anisotropic tensor of second rank (i)aﬁ,’. Consequently, the total polarizability
tensor (V7,5 can be written as

0 0),.(0 0),.(2
( )”ap — ( )n;p) + )7'5&13)' 4

Similarly we can distinguish in Ar,; an isotropic A7 and an anisotropic Any
part.

(0)7!;%) and (O)nﬁ,’ are responsible for, respectively, density fluctuation-induced
isotropic and orientation fluctuation-induced anisotropic light scattering, both
present in our system even in the absence of interaction-induced processes. The
integrated intensities of scattered radiation of these types of scattering are given,
respectively, by the autocorrelation functions of

D10 = €, OniyPnk, (5a)

180

and

(0)

Taniso = €4 O NE, (5b)

aniso

when calculated with no shift of time (At = 0).
We now consider the influence of the interaction-induced part of the polariza-
bility tensor Am,, on both types of scattering.

(1) Isotropic scattering
We define
Amy, = e, AnGQn}. (6)
With the help of the projection operator [12, 13]

G4

P A A A

which projects an arbitrary ‘vector’ onto A, we set 4 = n,__, in order to extract
that part of Am,, which behaves like “r,,. That quantity modifies the density
fluctuation-induced isotropic light scattering (DFIILS). The remaining part of
Am,, namely Arm,, — PAn,, = QAn,, is the projection of Am,, into a subspace
orthogonal to @ . QAniso is responsible for a new type of isotropic scattering,
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termed purely interaction-induced isotropic light scattering (PIIILS). From what
has been said above, the DFIILS is described by the tensor

{0
©F L0 _ (4 Ao, o) \ o) 7 7
Tag R © Tap > (7a)

< niso» 7tlso

whereas PIIILS by

An,,, O >
(PID)_.(0) __ 0) < iso iso/ (0)_(0
Y = Anly — O oS On@. (7b)

1S0 ¥ 150

(i1) Anisotropic scattering
Let us define

2
ATCaniso = €y Angﬂ)nﬁ (8)

The projection operator

0
<’ { )naniso> ©

© © n
)
< Taniso » 7Ianiso>

P=

aniso

now enables us to extract that part of Am,,;, which modifies orientation
fluctuation-induced anisotropic light scattering (OFIALS). The remaining part
of Am,,.,, namely QAm,,. orthogonal to “m, .  is the source of purely
interaction-induced anisotropic light scattering (PITALS) [3, 4]. Thus OFIALS
is described by the tensor

N

(0},
(OF)(2) _ <Ananiso’ Tcaniso> (0) 2)
T =\ 1+ 75 © T s Ya)

< T aniso » naniso>

whereas PITALS is described by

(0)

(pu)n(z) — ATC(Z) <Anani50) naniso> (o)n(z) (9 b)
ap ap (0) (0) aff

< Taniso » 7rz\niso>

Consider now the integrated intensity of each of the four above discussed
types of scattering. In a macroscopically isotropic scattering system, the polariza-
bility tensors of different ranks (zero and two) are not coupled. We then calculate
the intensities of isotropic and anisotropic scattering separately as the autocorrela-
tion functions of m,, and 7,,,,, respectively. Taking into account the orthog-
onality condition

(PP1:4(0), PPmi(0)) = O, (100)

we note that in the case of isotropic scattering we calculate the integrated inten-
sity of DFIILS and PIIILS as the autocorrelation functions of OF)y. o and x|
respectively, where

DF DF),_.(0
PO = €, PPnPnk, (11 a)
Pl PI). (0
o = €, F0nGnk. (11d)

Since

<(0F)Tcaniso(0)7 (Pn)naniso(o)> = O’ (10b)
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we can calculate the integrated intensities of anisotropic scattering in an analo-
gous way. Note that the cross-correlation functions (10a) and (1054) are nonzero
when calculated for different times. Consequently, they contribute to the spectral
distribution of scattered light and are referred to as cross (interference) terms
[3-5]. However, (10 @) and (10 b) show that these terms contribute nothing to the
integrated intensity.

Our splitting of the integrated intensity of isotropic and anisotropic scattering
into density and orientation fluctuation-induced parts and into purely interaction-
induced parts is mathematical in nature. However, in an experimental spectrum,
we expect the spectrum of DFIILS to be very narrow in comparison with the
spectrum of PITILS [9, 14]. Thus, it should be possible to determine the inten-
sity of PITILS from the experimental curve with good accuracy. A less clear
situation exists for the anisotropic spectrum. Only if the decay time of orienta-
tional fluctuations of the molecule is much longer than the decay time of fluctua-
tions in its environment can we neglect the dynamical cross-correlations

<(0F)naniso(t)a (P")naniso(o)> =0. (12)

The spectrum of scattered radiation can then be considered as a superposition of
an orientational band and an interaction-induced band. Under certain assump-
tions, both bands can be separated and analysed [15]. The analytical form of the
integral intensity of both parts of the spectrum is then important. The integrated
intensities of DFIILS [7] and OFIALS [6] have been analysed. Less attention
has been devoted to the analytical form of the integral intensity of purely
interaction-induced isotropic as well as anisotropic light scattering.

The intensity of both of these parts of the scattered radiation have been
analysed successfully by computer simulation. Such calculations allow one to
determine the influence of density, temperature, the form of Ar,; and the inter-
molecular potential on all types of light scattering [3, 4]. Nonetheless, for the
analysis of experimental spectra, analytical formulae describing all parts of the
intensity are useful.

3. INTENSITY OF SCATTERED LIGHT

Having defined the polarizability tensors (7) and (9) responsible for the indi-
vidual types of light scattering we are in a position to obtain analytical formulae
for the integrated intensity in each case. We shall find it convenient to perform
the calculations in spherical coordinates. By (7) and (9) and using spherical tensor
algebra, we find the integrated intensity of interactionally-corrected allowed ‘1%
and purely interaction-induced ®PI{ light scattering to be

<(A‘n’(” 0 (0)“(1))>
<((0)"(l) '0) (0)“.(1))>

[(Aan" o On)>]?
<((0)"(l) 0] (0)“(1))> } ’

4 = nd + 2\ (n3, +2\* Lo {o,\*
@ 3 3 R\ ¢ )~

2
WIY = A, by [1 + ] (O o On®, (13 a)

®IFO = 4 #° {«A"(n O An?)> — (13b)

where




642 T. Bancewicz et al.

Above, n, and n, are the refractive indices of the scattering medium at the
frequencies ®; and w,, respectively, whereas " and An" are irreducible
spherical tensors for the polarizability of the system in the absence of molecular
interactions and its variation due to intermolecular interactions, respectively. { >
denotes statistical equilibrium averaging and (©, the scalar product of two
tensors, whereas ¢} determines the angular distribution of scattered radiation
[11, 16]

B =He . m2%  ¢% = Hl(e . n)?+ 3. (14)

(We use the definition of these factors that differs from the ¢ of Ben-Reuven
and Gershon [16] by a factor of (21 + 1)~ Y2 (cf. Posch [17 b])). Obviously, with
I =0, (13a) yields the integral intensity of DFIILS, and (13b) yields that of
PIIILS. Similarly, if [ = 2, (13 @) describes the integrated intensity of OFIALS
and (13 b), that of PITALS.

A specification of the source of Am® constitutes the next problem of the
theory. Am?” can be calculated within the DID model [2—4, 11, 18-19]. The
results can be refined by taking account of higher-order terms in the multipole
expansion [2, 10, 17, 20, 21] and/or molecular nonlinearities [11, 14, 21]. In
addition, corrections for the overlap of the electronic wave functions of the inter-
acting molecules have also been suggested as well as empirical polarizability
models [22].

Calculating An{" i

in the first approximation of the DID model, we obtain

sewory 3 crnfl L)

p.q f.g o6 v B
(r#q) B.v,0, 8,7
x DEL(Q)DYN(Q,) Voo Q, )15 afah, (15 a)
B 2)(2 h f
AT = (247)1/2 Y s L
na(n);lf,zg;h()ghf{1lllll

(p#q) B, 7v,6,8 8,7

2 f W|[g kA 2] . * )
><|:5 y s:":ﬂ . } g)(Q )D(f)(Q)Yzé(Qq), 3(9) (f) (15b)

[abc]
x By

denote Clebsch—Gordan coefficients,

a b ¢
Lo
is a 6-j symbol and I, ,=1[(2a + 1)(2b + 1) ... (2f + 1)]Y%. The D}, (Q) and
Y,.(€2) stand for Wigner functions and spherical harmonics, respectively, with
arguments which denote molecular orientations Q,, Q, as well as the orientation
of the intermolecular vector r,,(Q,)) in the laboratory frame [23]. Moreover, a,
stands for the m-component of the irreducible lth rank spherical polarizability
tensor in the molecular frame. On inserting (15) into (13 a) we note that the
integrated intensities of interactionally-corrected allowed isotropic and aniso-

tropic scattering are described by two- and three-body angular-radial molecular
corrections. Since almost nothing is known about the analytical description of

where
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three-body angular-radial correlations in liquids, we use Ladanyi and Keyes’
approach [6, 7] which is based on a superposition approximation to the three-
body distribution function and a neglect of ‘irreducible connected’ parts within
the three-body term. We average the two-body terms in (13 @) using the invariant
space-fixed expansion of the molecular pair correlation function [24]

ga(r,, Q,, Q) = Z Z Z gl l; myngs ryy)

l1,12,1 my, mz2, m ny, n2

<o oot v, a0
Equations (13), (15) and (16) hold for molecules of arbitrary shape. However, to
simplify the results, we restrict these calculations to axially symmetric molecules.
For the integral intensity of the polarized component (n}e) of DFIILS we now
have

2

85
(DF’IY =4 N{a + 1\/5 [J3(202; 00)ay — \/( J3(222; 00)y :I} pRTBy, (17)
where a and y denote, respectively, the isotropic part and the anisotropy of the
intrinsic polarizability tensor of the molecule. Moreover, we have introduced the
following molecular integrals:

Jlily 1 nyny) = (47T)1/ZP fg(l1lzl; nyny; ”12)71_2"Jr2 dry, (18)

with p = N/V and B, = isothermal compressibility.
When [ = 2, equation (13 a) yields for the integrated intensity of the depolar-
ized component of OFIALS (n L e)

6 2
©Pp=Y = 15 { \/ [13(202 00)<a + 3)) 5)’2>

2 2
‘/(104) 75(222; 00)<ay + VS )]} Aa+7), (19)

where the well-known angular correlation parameter [2, 8, 24]
J —ﬁf (220; 00)
47 g5 TOET T

It should be stressed that equations (17) and (19) agree with the intensities
derived by Ladanyi and Keyes for DFIILS (see equations (13), (39), (44) and
(69) of [7]) and OFIALS (see equations (55), (152), (159) and (157) of [6]) on the
basis of fluctuation theory. When comparing our results with those of Ladanyi
and Keyes, we have to keep in mind that for linear molecules the following
relations between our molecular integrals J3(202; 00) and J4(222; 00) and their
T,0 and 7,, hold [24], respectively:

5
75(202; 00) = ‘/—53 10, (18 a)

and

70
75(222; 00) = % Tas. (18 5)
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Moreover, formulae (17) and (19) are very similar to the expressions valid when
only the interaction-independent (O)nal, part of the polarizability tensor is con-
sidered [2, 8, 12]. Modifications appear only in the expressions placed in curly
brackets. In addition to the mean value a and anisotropy 7 of the polarizability
tensor of an isolated molecule, corrections Aa and Ay appear in (17) and (19) due
to the PAn parts of (7 a) and (9 a). Explicit expressions for these quantities are

Aa = 8\/—5[]3(202; 00)ay — Va4 J3(222; 00))’2] ; (204a)
15 60
and
6./5 2 14 2
Ay = %[13(202; 00)<a2 + %y +3 y2> - % J3(222; 00)<ay + y?>:' (206)

Of course, one can define ay = a+ Aa and y 4 =7 + Ay to be the effective
isotropic polarizability and the effective anisotropy for a molecule in a dense
system [3, 7, 11, 25]. In the approximation used here (first order DID model),
the corrections to the intrinsic polarizability of the molecule given in equations
(20) are dependent on the angular-radial molecular correlations and vanish if the
molecules are correlated radially but uncorrelated angularly (S-model system
[11c].

The total integrated intensity is the sum of the interactionally-corrected
allowed part (13 a) and purely interaction-induced part (13 b). Thus,

TONLO = 4, $3{<(On® © On)y + 2BV O On) + (An? © An)}. (21)

Equation (21) is identical with the expression for the total integral intensity
obtained by Kielich [11, 25] and Wozniak and Kielich [26] many years ago. In
their approach the scattered light intensity was calculated using the form (1) of
the polarizability tensor of the system without splitting it into (7 a) and (75) in
the case of isotropic scattering or into (9a) and (956) in the case of anisotropic
scattering.

4. THE INTEGRATED INTENSITIES OF PIIILS AND PIIALS

The analytical expression (13 b) for the integrated intensity of PIIILS (I = 0)
and PITALS (I = 2) constitutes the main result of the present paper. Although
these intensities have already been calculated successfully for selected molecules
and thermodynamical states by computer simulation [3, 4] analytical formulae
are nonetheless useful when it comes to the analysis of experimental spectra in
general. The integrated intensity of PIILS is the result of subtraction of two
terms, namely, the ‘square’ term ®"I9(square) and the ‘cross’ term ®W1P(cross)

®D O = PO (square) — P 1Y(cross), (22)
where
0L (square) = 4, oA © An?)), (23 a)
and

o (AN © In))7?

PO [D(cross) = A, ¢3 (O Q Oy

(23 b)
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The ‘square’ term describes the integral intensity of scattered radiation in the
case when the process is forbidden in the absence of interaction-induced mecha-
nisms: @z, = 0. The second term is of the cross type since its numerator has the
form of the scalar product of the polarizability tensor in the absence of
interaction-induced mechanisms ©® and its variation Aw" due to those mecha-
nisms. This term emerges when we consider the purely interaction-induced part
of scattered light for allowed transitions (otherwise O = ).

Calculating An® in the first approximation of the DID model we note that
the ‘square’ term (23 a) consists of radial and angular-radial two-, three- and
four-body contributions. The cross term (23 b), however, is purely angular-radial,
similar to the corrections to the intrinsic polarizability of the molecule given in
equations (20). ®P1U(cross) vanishes for an S-model system.

The purely interaction-induced spectra accompanying the allowed light scat-
tering from molecular liquids have rarely been analysed experimentally (for
molecular gases, see [27]). Much more attention has been devoted to forbidden
spectra [28-31] and to the analysis of DFIILS [2,7,32] and OFIALS
[2, 6, 12, 15]. However, in previous discussions of the purely interaction-induced
part of the isotropic [9, 10] and the anisotropic [10] spectrum, the integral inten-
sity formulae used contain only the first ‘square’ term of our equation (22). As in
this paper, A" in those studies was calculated in the first approximation of the
DID model. These results and ours are in agreement only within the S-model,
i.e. when ®[W(cross) = 0. Within first order DID approximation, the S-model
implies that there is no interaction-induced correction to the intrinsic polarizabil-
ity tensor of the molecule. Analyses of computer [3, 4] and laboratory [154]
experiments point to substantial differences between the values of effective pol-
arizability tensors of simple molecules in a liquid and in the dilute gas. This
proves the importance of the second (‘cross’) term (23b) of our formula (22).
The numerical calculations presented here also confirm this conclusion.

In order to evaluate the PIIILS and the PITALS integrated intensities, we
must rewrite equations (22), (23 @) and (23 b) in explicit form. We shall be calcu-
lating the ‘square’ term in (23 @) taking into account only the pair-wise angular-
radial correlations because, as stated above, almost nothing is known about triplet
and quartet angular correlations in molecular liquids. We shall include triplet and
quartet molecular correlations in the S-model approximation, i.e. taking into
account only radial correlations. The complete analytical form of P O(square) in
the pairwise approximation is to be found in our earlier paper [33]. However, we
have shown in [33] that the greatest contribution to the scattered light intensity
from pairwise angular-radial correlations comes from the first two angle-
dependent terms of the series expansion (16) of 23, namely g(202; 00; r,,) =
£(022; 00; 7y5).

Closer inspection of the ‘cross’ term (23 ) reveals its connection [14 4] with
the interaction-induced correlation to the intrinsic polarizability tensor of the
molecule (20). We have

<(A"(0) @ (0)"(0))> éﬁ

(OO QOq®)y = (24a)

<(A1'|'(2) 'O} (0)"(2))> Ay

(Om® o Og@)s = 7 (24 b)
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Thus we can calculate the ‘cross’ term (23 b) from the simulation results [3, 4]
for Aa and Ay. If no simulations are available, we can use equations (20).

For linear molecules, these approximations lead to an expression for the inte-
grated intensity of the polarized component of PIIILS (its reduced intensity
I'=1/A4,N) which is

FIOA=0) — ®W =0 square) — P =cross)

85
= |: 18a?y? + 3855v*)J6(000) + 1%a*y?J(3b) + ;/—5

x ($a*y? + {say’ — ﬁw“)fe(zoo)] — (Aa)’pkThy.  (250)
For the integrated intensity of the depolarized component of PITALS we obtain

(P"’ﬁfzz’ = ‘P")ﬁl':z)(square) — ‘Pll)f(l'=2’(cross)

= {%a“[zjs(oom + 4J(3b) + J(4b)] + 1a?y?

25
x [J6(000) + J(3b)] + 115357*76(000) + 2—\/5-

x (4a*y — qa’y? + %V4)16(200)} — T ANX (1 + T, (25b)

By J(36) and J(4b) we have denoted the molecular integrals involving triplet and
quartet radial correlations.

For our numerical calculations we use computer simulation results for the
distribution function g. Then, the irreducible intermolecular frame expansion
of the binary distribution function [34]:

g(Z)(712) Qizr Qél) =4n Z glllzm(rIZ) Yllm(QiZ) levm(Qéz) (26)
Iilam
will be utilized rather than the more general invariant space fixed frame expan-
sion (16) used in §3. Equations (25) have been averaged in the intermolecular
frame so as to adapt them to our numerical calculations. The molecular par-
ameters now become

Jo(lylym) = 4np ng1lzm(712)r;2n+2 dry,. (27)

Numerical calculations have been carried out for CO, at p* = 0-422 and
T* = 1-345 with the aid of the computer simulation results of Singer, Taylor and
Singer [35] for g'?. In addition, we have treated N, at p* = 0-630 and T* = 2-13
using Cheung and Powles’ results [36] for g'¥. We obtain Ay by extrapolating
Frenkel and McTague’s values [3b4] for CO, to our p* and T*. However, when
calculating Ag, special care is required. Frenkel [3 a] and Frenkel and McTague
[3 4] as well as Ladanyi [4] have computed the effective isotropic polarizability
from the Lorentz—Lorenz equation, so that their Aa is proportional to (AW®»
and, within the first approximation of the DID model, depends on pair correla-
tions only. However, the effective polarizability for light scattering induced by
density fluctuations [7] is proportional ((7 @) and (24 a)) to the average value of



Interaction-induced Rayleigh light scattering 647

Table 1. Calculated integrated intensities of PITILS.

Thermo- (e it =0y (P f1=0) 1D fii=0)
dynamic (square) (cross) “’"’ﬁH' =0 ‘TOT)N =2)
Molecule state (A% (A% (A% (per cent)
N, p* =0630 0-00017 0-00003 0-00014 0-4
™ = 213 (0-4)t
CcO, p* = 0422 0-012 0-006 0-006 1-9
T = 1-345 (3-1)t
(4-0)§

+ Reference [3] (p* = 0-630, T* = 21
1 Reference [3] (p* = 0-360, T* = 1-61).
§ Reference [4] (p* = 0-460, T* = 1-6

the projection of AW® onto @ ®. The projection operation generates a three-
body correlation term and a factor of 2 within the two-body term. However,
when calculating the three-body correlation term of Aa in the superposition
approximation and neglecting its ‘irreducible connected’ parts, the three-body
contribution to Aa is completely described by two-body correlations [7]. Thus Aa
is described by our equation (20 ). This approximate Aa is greater by a factor of
2 than the Aa defined in [3] and [4]. The factor of 2 results from the presence of
two (mutually equivalent) kinds of two-body correlations in our definition (24 a)
of Aa whereas, on the contrary, the formulae defining Aa in [3] and [4] involve
but one kind of binary correlations. Obviously the difference in the definitions of
Aa has an effect on the form of ®Pmr®. The detailed analysis of the influence of
these divergences on isotropic light scattering requires further investigation.
Work on that problem is in progress. We use our approximative equation (20 a)
for numerical calculations of Aa. We calculate the J(3b6) and J(4b) molecular
integrals as in [33].

The calculated integrated intensities of PIIILS are listed in table 1 and those
of PITALS, in table 2. In both cases, the results for the ‘square’ term and the
‘cross’ term are listed separately in order to show the substantial value of the
‘cross’ term. These numerical results show that, except for PIIILS from N,,
both ®W1¥W(square) and ®WI¥P(cross) are of the same order of magnitude. This

Table 2. Calculated integrated intensities of PIIALS.

Thermo- (l’II)I'YZ 2) (Pll)ﬁl= 2) (Pll)i(l= 2)
dynamical (square) (cross) (P")ﬂfz D (TOT)f(l: 2
Molecule state (A%) (A% (A% (per cent)
N, p* = 0630 0-0012 0-0004 0-0008 32
T* =213 39t
Co, p* = 0422 0-060 0-021 0-039 155
T* = 1345 (10-8)1
(14-4)§
+ Reference [3] (p* = 0:630, T* = 2:13).
I Reference [3] (p* = 0-360, T* = 1-61).
§ Reference [4] (p* = 0-460, T™* = 1:62).
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suggests that when calculating the integrated intensity of purely interaction-
induced isotropic as well as anisotropic light scattering for other classes of mole-
cules one should take into account (beside the ‘ square’ term) the hitherto omitted
‘cross’ term too. In the last column of tables 1 and 2 we have calculated the ratio
of the integrated intensity of purely interaction-induced light scattering to the
total integrated intensity (21) of anisotropic light scattering. We have compared
our results with the values obtained by Frenkel and McTague [3] and Ladanyi
[4] from their computer simulations. Good agreement is found between our
results and theirs, suggesting that the approximations used in our calculations are
reasonable. The numerical significance of the ‘cross’ term originating in the
angular-radial correlations only, as compared with the ‘square’ term containing
1.a. spherically symmetric radial correlations, may seem unexpected, especially for
molecules of symmetry so close to spherical as N, . In this case the angular-radial
correlations are small compared with the spherically symmetric radial correla-
tions. However, when significant cancellation of these radial correlations occurs,
as it does in the ‘square’ term, the angular-radial correlations and consequently
the ‘cross’ term become important, as in the case considered by us.

The contribution of one of us (T. B.) began to take shape on a visit to the
Department of Chemistry of The Pennsylvania State University.
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