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Abstract. The propagation of quantized electromagnetic fields through opti-
cally isotropic media with cubic optical nonlinearity is considered. Analytical
solutions are presented in closed form showing that the light field can emerge
from the medium in a squeezed quantum state. A detailed numerical analysis of
the results is performed and presented graphically. Over 90 per cent of the
squeezing permitted by quantum-mechanical theory is achieved in this way. The
dependence of the squeezing effect on the polarization state of the field and the
nonlinear molecular parameters is also discussed.

1. Introduction

The problem of generating so-called ‘squeezed states’ of an electromagnetic field,
which allows the uncertainty in the measurement of one observable to be reduced at
the expense of an increased uncertainty in the measurement of another non-
commuting observable, has recently attracted much attention. The possibility of
reducing quantum fluctuations in one quadrature component of the field seems to be
very promising in overcoming quantum limits in the detection of gravity waves [1]
and for the use of such a field in communication systems [2]. These advantages of
squeezed states have greatly stimulated research, and in a number of theoretical
studies in nonlinear optics, various schemes have been considered as possible sources
of such states: degenerate parametric amplification [3, 4], resonance fluorescence [5],
degenerate four-wave mixing [6]. optical bistability [7], free electron lasers [8], the
Jaynes—-Cummings model [9] and harmonic generation of a laser beam [10, 11].

Squeezing, like photon antibunching [12-14], is a purely quantum effect and,
although there is no direct connection between the two (field states exist that exhibit
the former but not the latter, and vice versa), they are often encountered together.
Neither of them has a classical analogue in the sense that they cannot be described by
a non-negative diagonal coherent-state representation [15, 16], and they are of
fundamental importance on their own. Unlike photon antibunching, however,
squeezing has yet to be observed experimentally. Walls and Zoller [5] have asserted
that squeezing should be observable under experimental conditions similar to those
pertaining when observing photon antibunching in resonance fluorescence from a
coherently driven two-level atom [17-19]. Mandel [20] has shown that the detection
of the squeezed state by phase-sensitive interference with another optical field in the
coherent state, followed by photoelectric detection of the resulting intensity
fluctuations, always gives rise to sub-poissonian photon statistics; however, he
concluded that this way of detecting squeezing in the resonance fluorescence of a
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single coherently driven atom is much more difficult than the direct detection of
photon antibunching. Generally, the theoretically predicted values of squeezing are
very small in the schemes considered so far.

As we have shown previously [21], using a perturbative approach, photon
antibunching is possible in the self-induced rotation of the polarization ellipse
during the propagation of a strong, elliptically polarized light beam through a
nonlinear isotropic medium. Our results have since been confirmed by Ritze [22],
who used a different approach and obtained the strict, non-perturbative solution of
the problem. (The self-induced rotation of the polarization ellipse was first reported
in 1964 by Maker et al. [23]: for a review of the results and theoretical developments,
see [24, 25].)

In this paper we show that the process of light propagation in a nonlinear,
optically isotropic medium can also produce squeezed states of the electromagnetic
field. The non-perturbative solution of the problem will be given, and the
dependence of squeezing on the polarization of the incoming beam will be discussed;
it will be shown that, in our scheme, over 90 per cent of the squeezing permitted by
quantum-mechanical theory can be achieved in this way.

2. Interaction hamiltonian and equations of motion
It is convenient to write the electromagnetic field as the sum of positive and
negative frequency parts:

E,(r, )=ES(r, )+ ESXr, ), )

where ¢ denotes the polarization component of the field. It is also useful to perform a
mode decomposition of this field. For plane-wave decomposition of the free field, we
have
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where ¢! is the ¢ component of the polarization vector associated with the
polarization state A and the propagation vector k, and V7 is the quantization volume.
For the quantized field, «,; is the annihilation operator of the photon with the
propagation vector k and polarization 4, fulfilling the commutation rules

[k “k+'/1'] =001 (3)
The polarization vectors fulfil the orthogonality conditions
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and summation in equations (4) is to be performed over the repeated greek indices.
For a monochromatic field of frequency @ propagating along the z axis of the
laboratory reference frame, we can drop the index k& in the above notation and write
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=1, 2
with k=w/c. In equation (5) the sum over two possible mutually orthogonal
polarizations of the field remains, so that we still have a two-mode description of the
field. If the field is a coherent superposition of these two modes, however, the two-
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mode description can be replaced by one mode of a (generally) elliptically polarized
field:

e,a=ella;+ela,, (6)

where ¢{") and ¢{?) are the ¢ components of the orthogonal unit polarization vectors
e and e® of the modes «, and a;, and e, is the ¢ component of the polarization
vector of the mode . The relation (6) can also be considered in the reverse sense as a
decomposition of initially elliptically polarized light into two orthogonal modes.
Applying the orthogonality condition (4) for the polarization vectors, we obtain the
formula

a=ce¥a, +¢e¥a, 7
where

e:{(::e*.e(l), e§=e*-e‘2’.

So far the decomposition (6) (or, equivalently, (7)) is quite general and can be
further specified—either for two modes with mutually perpendicular linear polariz-
ations or for right- and left-circularly polarized modes.

Assuming the two modes to be linearly polarized along the x and y axes, we obtain
from equation (7)

a=e¥a,+e¥a, (8)

with e, and e, given by [25]

9

e,=cos#cosB—isinysinb,
e,=cosnsinf+isinncosb,

where 0 denotes the azimuth and # the ellipticity of the polarization ellipse of the
incident beam.

On the other hand, on introducing the circular basis associated with the right-
circular polarization vector, e'l)=(% +19)/\/2. and the left-circular polarization
vector, e(2’=(ﬁ—iy)/\/ 2 (where X and § are the unit vectors along x and 7y,
respectively), we have in agreement with equations (6) and (7)

1 .
Xy = 75 (a’x_lay))

4 (10)
ay= ﬁ (ay+ iay).

Both bases can be used alternatively to describe the interaction of elliptically
polarized light with the system of molecules to be considered in this paper.

Let us consider the interaction of an intense light beam and an isotropic medium
consisting of N atoms or molecules in a cavity of volume V. The interaction between
the light and an individual atom in the electric-dipole approximation, discarding
non-energy-conserving terms, is described by the effective hamiltonian

Hl =—- ao’r(w)Efr_ )Ei-‘—) _%ya'tvp(w)Efr_ )E1(:_ )E$:+ )EL-H’ (1 1)
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where
dﬂ(CO) = ao‘t( —o, CO)
YGtvp(w) = %nvp( -, -0, 0, CO)

are the polarizability and hyperpolarizability tensors of the molecule [24], and the
field operators E(H'=[E(]" are given by equation (5). Again, the summation is to
be performed over repeated greek indices. We assume here that the light beam is
initially a single radiation mode of frequency o, elliptically polarized and propagat-
ing in the 2z direction of the laboratory reference frame (x,y, 2).

We are interested in the field evolution produced by nonlinear interaction with
the medium. In the Heisenberg picture, the time evolution of any operator 4 is given
by the equation

d4a 1

dt ik (4, H], (12)
where H is the total hamiltonian which, in our case, is the sum of the free field
hamiltonian Hy and the interaction hamiltonian H,. For A equal to E{", the
commutator with Hy gives the ‘rapid’ time evolution of the free field already
expressed in equations (2) and (5). The commutator with H, gives the ‘slow’ part of
the evolution resulting from interaction with the medium. The ‘rapid’ evolution of
the free field can be eliminated from equation (12) by the introduction of ‘slowly
varying’ operators, the evolution of which are described by Hj only.

Before proceeding to the equations of motion for the field operators, however, we
shall simplify our interaction hamiltonian (11). Since we assume that the medium is
composed of freely orienting molecules, the molecular polarizability and hyper-
polarizability tensors have to be 1sotrop1ca11y averaged over all possible orientiations
Q of the molecule, giving

<aat(w)>ﬂ = a(w)aan
<yarvp(w)>9 =y1(w)5015vp + y2(w)6a'v6tp (1 3)
+ y3(w)6o'p5rv:

where a(w), 7, (@), 72(®) and y,(w) are the rotational invariants of these tensors, given
by [24]

() =Foye(®),

y1(w)= 31_0 [‘Waaﬂﬂ(w) —Vapap(®) — Vappe{ )], (14)

72() = 20 [#7pup(0) — Vupal®) — Vg ()],

7 3(0) = 2514 Vappal @) = Vuaps(®) — Vapag(@)];

a(w) is simply the mean polarizability of the molecule. The values taken by y;(w),
7,(®) and y;() generally depend on the permutation symmetry of the tensor y,4,5(w)
as well as the molecular symmetry. If the tensor y,5,5(®) is symmetric with respect to
all possible permutations of its indices, then y,(®)=7,(w)=7y3(®), regardless of the
symmetry point group of the molecule. For permutational symmetry with respect to
the first and second pairs of indices only, 7,(w)#7,(w)=73;(w) and nonlinear
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asymmetry appears. Here, for later use, we introduce a nonlinear asymmetry
parameter d, defined as

2y,(w)

2d=14+—1"—"2__,
(@) +75(@)

(15)

If y,4,5(w) is symmetric in all its indices, d thus defined is always equal to 1; however,
for symmetry with respect to the pairs of indices (af) and (yd) only, d#1 and
describes the asymmetry of the nonlinear properties of the molecule. For molecules
with high symmetry (point groups O or T), the relations [24]

Vaapp(@) =3[V3333(@0) + 27,1 33(w)] ] (16)
Yapap(@) = Yapped @) =3[73333(@0) + 27431 3(w)] )
hold, and equation (15) may be rewritten in the form
2d=1+ V3333(0) + 47, 133(0) — 27,3, 3(0)
3333(0) —V1133(@0) + 37135 3(w)

According to equations (5)—(10) and (13), the interaction hamiltonian (11) can be
transformed to two alternative, equivalent forms depending on whether the
decomposition is made into linearly or circularly polarized modes. For two
orthogonal linear polarizations, we have that

17)

Hy= —8(0)(a; a+ay ay) — 171 ()] 2t a ) ai+a))

+[F2(0) + Fs(@)(a] 2al+ o) 22} + 2a] a)f aya,)} (184a)
and, for two circular polarizations,

H,= —&()(a] a;+a} a;) ~3 {47, (@)a] a3 230,
+[7(0) +T3(@)(at 2ai + as lad+2af af aza))}. (18b)

where we have introduced the abbreviations

()= 2nhw

2
#w) and vz(w)=<zi,ﬁ9) 7).

Although both forms, (18 a) and (18 ), of the interaction hamiltonian are equivalent
(either may be transformed into the other by using equations (10)), they nevertheless
show explicitly an important difference in the choice between a cartesian and a
cucular b331s It is easy to check that Hj, as given by equation (18 b), commutes thh
afa 1 and @3 @,, whereas H, glven by equatlon (18 a) does not commute Wlth @y a,
or @, a,. This means that o 2, and 2] «, are constants of motion, but a) a, and
a;’ a, are not. This is a clear advantage of the circular basis over the cartesian basis.
At this point we wish to emphasize that elliptically polarized light which, in an
optically linear medium, can be treated as one mode, can no longer be dealt with as
one mode when nonlinear interaction occurs, even in an optically isotropic medium.
Moreover, since @y , and @, «, are not constants of motion, linear polarization is not
preserved at such an interaction.
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The interaction hamiltonian (18 a) or (18 b) is now inserted into equation (12) to
obtain the time evolution of the operators «, and a, or @, and ,. Since the problem
is one of propagation rather than of a field in a cavity we perform the transformation
2= —ct. As a result, the quantum equations of motion for the slowly varying parts
(with free evolution eliminated) of the field operators in the two representations take
the form

d

' N
@)=~ "N () an(z) +T1(@)ad (2)[aX(z) +aX(2)]
P he

+[72(@) + T @)]la] (2)ax() +a; ()ay()]ax)},  (19a)

and

d (N
L (@)= — - {8(0) + [T2(@) + Tx@)] et ()a(2)
dz he

+[27,(@) + 72(@) + T3(@)]a; (Ve (2)} 24(2), (195}

The equation for the operator «,(«,) can be obtained from equations (19) by making
the interchange x—y(1-2), and the corresponding equations for the creation
operators by taking the hermitian conjugate of equations (19). We have taken
into account in equations (19) that the number of molecules interacting with the field
1s N. , '

In a previous paper [21] we solved equations (19 a) perturbatively, showing the
possibility of photon antibunching. As Ritze has shown [22], equations (19 b) can be
solved strictly provided there is no absorption in the system. The solutions of
equation (19 a) are then given by

a1(2)=exp {i[@(2) + &(2)(a] (0)@1(0) +2da3 (0)a,(0)]} 4 (0) } (20)
ay(2)=exp {i[p(2) +&(2)(@3 (0)a,(0) + 2da{ (0)2,(0))]}22(0),
where 2d is defined by equation (15) or (17), and use is made of the notation
Nz
P(R)=— %07((0),
(21)
Nz | N
&z)=— 5~ [72(0) +Fa(@)].
¢
With this notation, clear correspondence is established between our phenomeno-

logical molecular parameters and the parameters calculated by Ritze [22] for a
particular atomic level structure.

3. Self-squeezing of light propagating in a nonlinear medium
In order to discuss the problem of squeezing, let us introduce the canonical
variables ‘coordinate’ Q and ‘momentum’ P [10]:

O,=a,+a} and P,=—i(a,—a;), 0=1,2 or xy (22)
which obey the commutation relation

[Qw Po"] = 2i60‘0‘" ‘ (23)
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A squeezed state of the electromagnetic field is defined [5] as a quantum state in
which the square of the uncertainty of either Q, or P, is less than unity:

AQ)*H><1 or ((AP)*H<1, (24)

where AQ,=0Q,—<Q,>. On introducing normal ordering of the operators, the
definition (24) can be rewritten in the form [5, 20]

G(AQN*D> <0 or (:(APG)?:><O. (25)

"The solutions (20) for the field operators on traversal of the path z in the nonlinear
medium are now inserted into the definition (25), and the expectation value in the
quantum state of the incoming beam is taken. If one of the resulting values is
negative, the corresponding component of the field (the in-phase component Q, or
the out-of-phase component P,) of the outgoing beam is squeezed.

Assuming the incoming beam to be in the coherent state |a) defined with respect
to the operator «(0) given by equation (7), i.e.

a(0)|o) =aloy, . (26)

the appropriate expectation values can be calculated explicitly, giving in circular
representation

GAQ(R))%:) = (iay(2) + af (2))%:) —<{ay(2) + 2] ()%
=2 Re (o} exp {2ip(2) +ie(=) + [exp (2i&(2)) — 1o, |?
+[exp (4ide(z)— 11loy|} — o exp {2ip(2)
+2[exp (i6(2)) — 1]ty |* + 2[exp (2ide(2)) — 11lo)*})
+ 2oty |2{1 —exp [2(cos &(z) — 1)|oy |
+2(cos 2de(z) — D)oy} 27)

where, in accordance with equations (261),‘ (6), (9) and (10),

o =y§ (cosn+ 81rtn) exp (—0)a,

o, = ! (cosy—sin ) exp (10)a 28)
2—75 - )
lod® = oty |2 +oe |
Similarly,
CAP(2))2:>=—2Re(...)+ 2y |*{.. .},A (29)

where the expressions in parentheses and braces are the same as in equation (27).
In order to obtain suitable formulae for the operators Q,(z) and P,(2), it suffices
to interchange the indices 1 and 2 in equations (27) and (29), whereas for the
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operators Q,(2) and P,(z) we have that

CAQLR)):) = iax(3) + 2 (2)%:) — ax(2) + 2] (2))?
=3[((a1(2) + 22(2) + 2] (2) + 23 (2))*:D
—{a1(2) +ax(2) + 2] (2) + 23 (2))°]
=Re (o} exp {2i¢(2) +1e(z) + [exp (2ie(z)) — 1]|or, >
+ [exp (4ide(2)) — 1]|a,|?}
— a3 exp {2ip(2) + 2[exp (t&(z)) — 1]|ac|?
+ 2[exp (2ide(=)) — 1]|a,| %} + o3 exp {2ip(2) + ie(=)
+ [exp (266(2)) — 1|ty + [exp (4ide(2)) — 1oy |°}
— o3 exp {2i9(z) + 2[exp (i8(2)) — 1]|o,|?
+2[exp (2ide()) — 1]ty |*}
+ 20,0, exp [2ip(z) + 2ide(z) + {exp [i(1 +2d)e(2)] — 1 }|of?]
— 20,0, exp {2i¢(2) + [exp (ie(2)) + exp (2ide(z)) — 21|l })
+ {|a|* — |oty|* exp [2(cos &(z) — 1)|o; |* + 2(cos 2de(z) — 1)|t,]?]
— |t,|? exp [2(cos &(2) — 1)t + 2(cos 2de(z) — 1)le|*]
+2Re [0}, exp ({exp [—i(1 — 2d)e(2)] — 1 }oy |
+{exp [i(1 - 2d)e(2)] — 1}|at,|?)
— oty exp {[exp (—ie(2)) + exp (2ide(z)) — 2]l |*
+ [exp (16(2)) + exp (— 2ide()) — 2]|o5|*}1}. (30)
and
CGAP(2))*>=—Re (..)+{...}, 31)

where the expressions in parentheses and braces are the same as in equation (30).

The expressions (27)—(31) are exact analytical formulae describing the fluctu-
ations in each particular component of the field in the outgoing beam after its
traversal of the path z in the nonlinear medium. Because of their complexity it is not
easy to say without a detailed numerical analysis whether they are negative or not.
We have performed such an analysis, and the results are displayed in graphical form
in figures 1-8.

Our formulae involve quite a number of parameters. Throughout the numerical
calculations, we assume that &(2), which is given by equation (21), has the value 1076,
Obviously, &(2) depends on the hyperpolarizability of the molecule, the number of
molecules N and the length of the medium z; however, it has been shown [26] that it
is quite possible to have a medium for which &(z) is of the order of 10 ~%. The choice of
a particular value for &(2) is not crucial to our calculations because it is £(2)|a|? rather
than &(z) to which the results are sensitive. The complex number & can be written in
the form

a= o] exp (ip), (32)
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where @, denotes the initial phase of the incoming beam and |a|? is the mean number
of photons in it.

Figure 1 shows the overall behaviour of {: (AQ(2))*:> and <: (AP,c(z))2 > as
functions of &(2)|a|?, where we have assumed the incoming beam to be linearly
polarized (1 = 0) with azimuth 6 =0, whereas the initial phase ¢, has been chosen in
such a way that ¢(2)+ ¢,=0. The quantity ¢(z2), which is given by equations (21),
describes the change in phase of the field produced by linear interaction with the
medium (refractive index of the latter). Figure 1 shows the oscillatory nature of the
dependence on &(2)a]? in both components {:(AQ,(2))*:) and CG(AP(2))%:) of the
field with positive as well as negative values. The negative values we are searching for
are not very clear on the scale used for figure 1 (where the positive values are seen to
increase enormously with increasing &(2)|#|?). Figures 2 and 3 show the same
dependences, albeit on a different scale, for various values of the molecular
- asymmetry parameter d. These curves, when taking negative values, show clear
evidence of squeezing in either the Q,(2) or P,(z) component of the outgoing field
for certain values of &(2)|a|?. For small values of &(2)|aj? the Q,(z) component is
squeezed, while P,(2) is not. As &(z)|e|* increases from zero, G(AQL(2))2:) decreases
to reach its first minimum, the value of which is —0-66. This means that at this
minimum we obtain 66 per cent of the maximum squeezing predicted by quantum
mechanics, which is —1 for our definition of the operators Q and P. Note that
squeezing occurs where our curves have negative abscissae, and that squeezing is
greatest where the curve exhibits a minimum. The second minimum of
G(AQL(2))?:) is even deeper than the first, with a value of —0:97, i.e. 97 per cent of
the maximum squeezing predicted by theory. The first minimum of C(AP(2))2:) is
—092. The values of &(2)|x|? for which these minima occur depend strongly on the
molecular asymmetry parameter d, as is seen from figures 1 and 2. The larger is d,
the smaller the value of &(2)|o|? at which the minimum occurs. All in all, &(z)|a|?
should be of the order of unity if these minima are to be achieved, a requirement -
which is quite easy to meet in practice. As Ritze and Bandilla [26] have estimated, a
beam intensity of 0-4 W cm ™2 suffices to have |¢|?=2 x 10° (for A=1 um).
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CAQ(2))%:) and ((AP(2))%:) plotted against &(z)|af? for d=05, =0, =0 and
9(2)+9o=0.
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In figures 4 and 5 the curves for (:(AQ,(2))%:) and (:(AP,(2))?:) are plotted for
different values of the ellipticity # of the incoming beam, and figures 6 and 7 show the
same functions for different values of the aximuth 8. Figures 4 to 7 show that any

8

; 'Q:O
6  --—- n=T/8
—— N =1/4

<(a0y2)FD

2
&(z)loxf? \/

Figure 4. {:(AQ.(2))*:) plotted againast &(z)|? for d=1, §=0, @(2)+ @, =0 and various

values of 7.
8
AT
gy . ]’):O
N 6  ~---n=m/8
ax —— n=M/4
<l
A4

Figure 5. As figure 4, but for (AP, (2))2%:).
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departure from lineat polarization (#=0) with azimuth §=0, i.e. from polarization
along the x axis, causes a decrease in the values of squeezing. The squeezing is thus
the most pronounced when detecting the same polarization component of the
outgoing field as that of the incoming beam. This is also true for circular polarization,
according to equations (27) and (29).

Another interesting feature of the propagation of the quantized field in the
nonlinear medium is to be found in figures 6 and 7. For #=m/2, i.e. when detecting
the polarization component perpendicular to that of the ihcoming beam, one can still
observe a non-zero field. This is a purely quantum effect [22] that cannot appear for
classical fields. Moreover, this field can be squeezed.

Figure 8 shows the dependence of squeezing on the total phase ¢(z)+ ¢, of the
field. The minima are seen to be slightly shifted from ¢(z) + @,=0, and actually a
little deeper (squeezing is enhanced). Thus the first minimum of {:(AQ.(2))*:)
improves to —0-68 for ¢(2)+ @,~ —0-1. Figure 8 also shows to what extent the
squeezing is sensitive to a change in the phase of the field.

B R
P(z)+ %

. Figure8. <{:(AQ(2))%:) and (:(AP.(2))?:) plotted against ¢(2) 4 @, around the first (curve a)
and second (curve b) minima of (:(AQ.(2))2:), and the first (curve ¢) minimum of

C(APY2))%).

4. Conclusions

We have proposed an exact analytical solution for the propagation of a quantized
electromagnetic field in a nonlinear, optically isotropic medium, and have shown
that the field can emerge from the medium in a squeezed quantum state which is
produced by the field itself. We refer to this new way of producmg squeezed states of
the electromagnetic field as self-squeezing.

Our results are illustrated graphically for various values of the parameters on
which they depend. It is shown that, for sufficiently strong fields, a considerable
amount of squeezing can be achieved with the proper choice of these parameters.
The first minimum in {:(AQ,(2))*:) gives as much as 68 per cent of squeezing, and
the second minimum more than 97 per cent. This second minimum is, however,
rather narrow and, to reach it in practice, it will be necessary to traverse regions of
relatively high positive values of the fluctuations, making it rather difficult to tune
exactly to this minimum. The first minimum in {(:(AP,(2))?:>, which lies at lower
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values of &(2)|x|?, is broader than the second minimum of (:(AQ,(2))%:) and is
separated from zero by not a very high maximum, should be easier to achieve. This
minimum still offers over 90 per cent of squeezing, i.e. almost complete squeezing. It
seems to us that at least the first minimum in (:(AQ,(2))%:)> should be accessible,
allowing squeezing to be detected in the process under consideration.

To detect the squeezed states generated in the process described in this paper,
homodyne schemes are needed, especially when detecting the circularly polarized
fields associated with the @ and z, Bose variables. Since the photon number in these
variables is a constant of motion, the photon number distribution cannot change, i.e.
it remains poissonian for a coherent initial state. This means that squeezed states
with poissonian photon statistics may exist.

The results of this paper provide also an example of a nonlinear canonical
transformation which does not preserve the minimum uncertainty of the states, as all
linear canonical transformations do.
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On considére la propagation des champs électromagnétiques quantifiés a travers un milieu
optiquement isotrope a non-linéarité cubique. Des solutions analytiques explicites sont
obtenues, montrant que le champ lumineux peut émerger du milieu dans un état quantique
resserrét. On donne une analyse numérique détaillée des résultats, et ceux-ci sont présentés
graphiquement. D’aprés la théorie, le resserrement peut dépasser 90 pour cent. L’effet de
resserrement dépend de ’état de polarisation du champ ainsi que des paramétres moléculaires
non-linéaires.

t Nous employons ‘resserrement’ afin de rendre le mot ‘squeezing’.

Die Ausbreitung quantisierter elektromagnetischer Felder durch isotrope Medien mit
kubischen Nichtlinearititen wird betrachtet. Analytische I.6sungen werden in geschlossener
Form prisentiert und zeigen, daB8 das Lichtfeld aus dem Medium in einem ‘‘squeezed”
Quantenzustand austreten kann. Eine detaillierte numerische Analyse der Ergebnisse wird
durchgefiihrt und graphisch prisentiert. Uber 90 Prozent des “squeezing”” wird theoretisch
vorhergesagt. Die Abhingigkeit des ‘“Squeezing’’ -Effekts von Polarisationszustinden des
Felds und den nichlinearen Molekiilparametern wird ebenfalls diskutiert.

References
[1] Caves, C. M., 1981, Phys. Rev. D, 23, 1693.
[2] Yuen, H. P., and SHAPIro, J. H., 1980, [.E.E.E. Trans. Inf. Theory, 26, 78.
[3] StoLER, D., 1974, Phys. Rev. Lett., 33, 1397.
[4] M1LBURN, G., and WaLLs, D. F., 1981, Optics Commun., 39, 401; 1982, Phys. Rev. A,
27, 392.
[5] WaLLs, D. F., and ZoLLER, P., 1981, Phys. Rev. Lett., 47, 709.
[6] Yuen, H. P., and SHaPIRrO, ]J. H., 1979, Optics. Lett., 4, 334.
[7] LuciaTo, L. A, and StrINI, G., 1982, Optics Commun., 41, 67, 374, 447.
[8] BEckER, W., ScuLLy, M. O., and ZuBairy, M. S., 1982, Phys. Rev. Lett., 48, 475.
[9] MevsTrE, P., and ZuBalry, M. S., 1982, Phys. Lett. A, 89, 390.
[10] MaNDEL, L., 1982, Optics Commun., 42, 437.
[11] Kozierowski, M., and KigLicH, S., 1983, Phys. Lett. A, 94, 213.
[12] Loubon, R., 1980, Rep. Prog. Phys., 43, 913.
[13] PeRINa, J., 1980, Progress in Optics, Vol. 18, edited by E. Wolf (Amsterdam: North
Holland), p. 127.



Almost complete self-squeezing of strong electromagnetic fields 95

[14] PauL, H., 1982, Rev. mod. Phys., 54, 1061.

[15] SuparsHAN, E. C. G., 1963, Phys. Rev. Lett., 10, 277.

[16] GrLauBEr, R. ]., 1963, Phys. Rev., 130, 2529; 131, 2766.

[17] CarMmicHaEL, H. J., and WaLLs, D. F., 1976, J. Phys. B, 9, 1199,

[18] KimsLg, H. J., Dagenats, M., and MaNDEL, L., 1978, Phys. Rev. A, 18, 201.

[19] LeucHs, G., RATEIKE, M., and WALTHER, H., cited by WaLLs, D. F., 1979, Nature,
Lond., 280, 451, and Cresser, J. D., HAcEr, J., Leuchs, G., RaTEIKE, M., and
WALTHER, H., 1982, Dissipative Systems in Quantum Optics, edited by R. Bonifacio,
Topics in Current Physics, Vol. 27 (Berlin, Heidelberg, New York: Springer-Verlag),
p.21.

[20] MANDEL, L., 1982, Phys. Rev. Lett., 49, 136.

[21] Tana$, R,, and KieLich, S., 1979, Optics. Commun., 39, 443.

[22] Rrrze, H. H., 1980, Z. Phys. B, 39, 353.

[23] MaxER, P. D., TErRHUNE, R. W., and Savacg, C. M., 1964, Phys. Rev. Lett., 12, 57.

[24] KieLicH, S., 1969, Opto-Electronics, 1, 75; 1981, Molecular Non-linear Optics (Moscow:
Nauka) (in Russian).

[25] ATKINS, P. W., and WiLsoN, A. D., 1972, Molec. Phys., 24, 33.

[26] Ritzg, H. H., and BanbiLLa, A., 1979, Optics. Commun., 30, 125.



