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The equal-time intensity correlation function and variances of the in-phase and out-of-phase com-
ponents of the electric field radiated by a system of two interacting atoms in the process of reso-
nance fluorescence are calculated analytically for arbitrary values of the field strength, interatomic
interaction, and detuning and are illustrated graphically. It is shown that not only photon anti-
bunching but also squeezing can occur in two-atom resonance fluorescence. The influence of
dipole-dipole interaction between the atoms on both nonclassical effects is discussed. It is shown
that a considerable amount of photon antibunching and squeezing can be obtained for finite detun-
ing of the laser frequency from atomic resonance, especially when the detuning and dipole-dipole in-
teraction parameters cancel out mutually. The maximum value of squeezing for interacting atoms
is shown to be less, however, than that for noninteracting atoms. Very strong dipole-dipole interac-

tion reduces the squeezing effect to zero.

I. INTRODUCTION

Photon antibunching and squeezing are two effects
which reveal the quantum properties of the radiation field
and cannot be explained if the field is treated classically.
Photon antibunching is characterized by a quantum state
of the field in which the variance of the number of pho-
tons is less than the mean number of photons, i.e., the
photons exhibit sub-Poissonian statistics. Squeezing, on
the other hand, is characterized by a field state in which
the variance of one of two noncommuting observables is
less than one half of the absolute value of their commuta-
tor. Such a state of the field is referred to as a squeezed
state. The obtaining of squeezed states gives the oppor-
tunity to reduce quantum fluctuations in one quadrature
component of the field at the expense of increased fluctua-
tions in the other component. In general, there is no
direct connection between photon antibunching and
squeezing, and states exist that exhibit the former but not
the latter effect, and vice versa. However, both these ef-
fects have one feature in common—the states of the elec-
tromagnetic field exhibiting them have no classical analog
in the sense that their diagonal coherent-state representa-
tion cannot be non-negative."> The fundamental impor-
tance of photon antibunching and squeezing as well as
their potential practical applications have attracted the at-
tention of many researchers in recent years. Several re-
view articles’™° covering the subject of photon correla-
tions are now available and the extensive literature on
photon antibunching is to be found there.

Quite recently, a number of papers have appeared
analyzing the possibilities of generating squeezed elec-
tromagnetic field states in various processes offered by
nonlinear optics.”!> Resonance fluorescence exhibits
both photon antibunching and squeezing. Photon anti-
bunching in resonance fluorescence has been predicted
theoretically by Carmichael and Walls'* and Kimble and
Mandel,’ and experimentally observed by Kimble,
Dagenais, and Mandel'® and Leuchs, Rateike, and Walth-
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er.!” Cohen-Tannoudji and Reynaud!® have proposed the
dressed-atom picture of this effect. Agarwal et al.'® have
pointed out that the cooperative behavior of a system of
two atoms leads to a significant reduction of antibunching
as compared to the one-atom case. Some difficulties that
can arise in the observation of the effect due to fluctua-
tions in the number of radiating atoms have also been dis-
cussed.?2~2* Walls and Zoller®> have shown that beside
antibunching squeezing also can occur in one-atom reso-
nance fluorescence. Mandel?® has made a comparison of
the two effects showing that the detection of squeezed
states by phase-sensitive interference with another optical
field in a coherent state and measuring the resulting inten-
sity fluctuations, that leads always to sub-Poissonian pho-
ton statistics, is at least an order-of-magnitude more diffi-
cult than the detection of photon antibunching in this
phenomenon.

In this paper we consider the possibility of obtaining
both photon antibunching and squeezed states in reso-
nance fluorescence of two interacting atoms. To this aim
we adapt Lehmberg’s?’ approach to the case of coherent
pumping and obtain a closed system of 15 equations
describing the time evolution of the atomic variables. We
solve this set of equations for the steady state. Apart
from the Rabi frequency Q describing the interaction of
an individual atom with the field, this solution is depen-
dent on the collective parameters ¥, and ), describing
collective damping as well as collective shift of energy lev-
els. These two collective parameters, which provide a
measure of the magnitude of interatomic interaction,
determine the collective properties of the system. Using
the steady-state solution we calculate the influence of
these collective parameters (dependent on the interatomic
separation) on photon antibunching and squeezing.

II. FORMULATION OF THE PROBLEM

To describe two-atom resonance fluorescence, we start
with the Lehmberg master equation?’ which, for an arbi-
trary combination Q of atomic operators, reads
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where all atomic operators are evaluated at time ¢, o, is
the atomic transition frequency (all atoms are assumed to
be identical), and i is the transition electric dipole mo-
ment. The operators S;* and S;~ =[S,-'*’]Jr raise and lower
the energy of the ith atom and satisfy the well-known
commutation relations

[Si*,871=2578; , [S7,S/'1=%55; . 2

The field operator E{t)(F,) in the transverse mode
decomposition is given by
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Ea-#)(-f”t):z i(k T—ot) , (3)
q
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where V' is the normalization volume, €, the unit polariza-
tion vector (Eq *€,=0), and a, the annihilation operator
for the gth mode.

The collective parameters (;; and 7, describing the in-

teratomic coupling, both depend on the interatomic dis-
tance r;;, and are defined as*"?*
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where [ and 7}; are unit vectors along the transition elec-
tric dipole moment and the vector T =T; — T, respective-
ly; moreover, r;=|T;; |, k =wo/c =2mw/A with A—the
resonance wavelength. In (4) and (5), 2y=y;=y;
=(4u’k3/34#) is the Einstein A coefficient for spontaneous
emission.

We assume the free field to consist of the pump mode
of a linearly polarized laser beam of frequency w, which is

in a coherent state with the eigenvalue & $HUAT, 1) of the

|
operator (3), all other modes being in their vacuum states.

The frequency w of the driving mode is tuned close to the
atomic transition frequency w,. To simplify the problem,
we moreover assume that both atoms experience the same
driving field, including its phase. Therefore, we choose
the reference frame such that the atoms are at the posi-
tions T;=(—37,,0,0) and Ty=(571,,0,0), and the phase
of the field is chosen to have the Rabi frequency
Q=2 -& $*)/# real and the same for both atoms. In
this case, our model is similar to that of one atom in a
resonant field in the presence of a conducting metallic sur-
face,?—3! or to that of two atoms fixed on the surface of a
plane glass plate perpendicular to the direction of propa-
gation of the laser beam.*

In the one-atom case, the master equation (1) gives
nothing but the well-known optical Bloch equations com-
monly used to describe optical resonance phenomena.>> In
the two-atom case, however, extra terms, related to the
collective frequency shift Q;; and the collective damping

'}’,'j appear.
Introducing the notation
[0 Yij 'Q'ij Wo— 0
T=2t’ B=_7 a=—, b—_———, A= s
4 4y Y 14 14

(6)

and substituting for Q in Eq. (1) the operators S/
(i=1,2), one obtains the following equations (for the
slowly varying parts of the operators):

d o+

2.5 = —+(1FiA)SF
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For two atoms, this system of equations becomes a closed
set of fifteen equations describing the evolution of the
atomic variables. It splits into nine equations for sym-
metric and six equations for antisymmetric combinations
of the atomic operators. Both subsystems can be written
in matrix form

=BY, )
.

—3(14+a) 48 0 0 a 0 5(A+b) —b 0 |
—B -1 —a 0 0 0 0 0 0
-B —a -1 0 28 4a 0 0 0
-B 0 0 -1 2B 0 0 0 A
A= 0 —-28 -2 2B —+(3+a) 88 0 +(A—b) 0
- 0 0 0 0 -B -2 0 0 0 (8a)
—+(A+b) 0 0 0 b 0 —5(l1+4a) a 0
0 0 0 0 —3(A—b) O 0 —5(34a) —28
0 0 0 —A 0 0 -B 2B -1
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In order to remove the imaginary unit i in the terms in 3,
we have redefined the operators S;” and S;* when going
over from (7) to (8). What we henceforth refer to as S;~
(S;*) is actually iS;~ (—iS;") in terms of the original
operators. The vector X has the following components:

X,=St+SF+ST+85 , X,=S{S7 +85S7 ,
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Xe=S1SFSTSy , X;=—i(ST +8S7 =St —-8),
Xg=—i(S}STSy —StSFST +S+878S5 —SFS5s5),
Xo=—i(STS; —Sts),

and the vector & is given by the components

a;=—4B5,; . (8¢)
X;=S{S7 +S7ST , X4=STSF+SrS7, ' !
B _ B is the following 6 X 6 real matrix:
Xs=StSTSy +STtSFST +SFS7S; +S#SFS; , (8v)
J
—+(1—a) 4B a +(A—b) 0 —b
—B -1 0 0 —-b 0
0 —28 —+(3—a) 0 0 (A+b)
B=
E=1_1a-s o b —L(-a) o0 a (8d)
0 b 0 B -1 -—28
0 0 —5(A+b) 0 28 —+(3—a)
R |
The vector Y has the components (Xs)=— 32DBS (X = 1?),84 ’ )
Y, =S7 —S; +S8{ -8}, Y,=S{Sy —-§7S7, ) ,
8A (A+b5)(14A
Yo= ST SISy +STSFST —SFSTST —SPSFST (x;)=p 1385+ EL 1
Y,=—i(ST —S7 —S{ +S7), By 32A8°
8 ="pH >
Ys=—i(SFST —SiS7), b
A(l (A+b)
Yo— —i(S{STST —STSFST —SFSTST +5{S457).  (Xo)=—gplAUFAHEL 1
It is obvious from (8a) that the matrix 4 forms two  with
separate blocks if A=0 and b =0, the one of dimension
6 6 and the other of dimension 3X3. Similarly, in this — 5 5 5
case, the matrix B is found to be composed of two 33 D =643*+16(1+AY)B*+(1+AH)[(1+a)*+(A+b)*] .
blocks.>* The equations (8) for A=0 have already been a)
a

used by us** to calculate the spectrum of resonance
fluorescence and intensity correlations for two atoms.
Here, the steady-state solutions of equations (8) will be
used to study photon antibunching and squeezing in such
a system.

III. STEADY-STATE SOLUTIONS

By setting the left-hand side of Eqgs. (8) equal to zero we
obtain the steady-state solutions of these equations. It is
obvious that only the X vector can have nonzero steady-
state solutions whereas the steady-state solutions of the Y
vector are zero. A straightforward but lengthy algebraic
manipulation of Egs. (8) leads to the steady-state solutions

2 2
_gpl8F+(1+a)1+A7)]

(X1)= > ,
2 2 2
(= LA+A 255
2\32 2
<X3>=§<1_:FBA_>_FL, (X4)=8B[(1+a)l;—A(A+b)] ’

The above steady-state solutions, which include the collec-
tive damping parameter a, the dipole-dipole interaction
parameter b, and the detuning A, permit the calculation of
the steady-state characteristics of the two-atom system
and will be used in our calculations of photon antibunch-
ing and squeezing in such a system.

IV. INTENSITY CORRELATION FUNCTION
AND PHOTON ANTIBUNCHING

In order to determine the photon antibunching it is
necessary to calculate the normalized intensity correlation
function, defined as

GP(R,,t;Ry,t +1')

= — (10)
GV(R,HGM(R,,t +1')

gP (R, 1R, t +1)=

with
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FIG. 1. Intensity correlation function g?(0) for R;=R,17,
vs the detuning A for the field strength 8=0.2 and for different
interatomic separations ;.

GAR,,t;R,t +1)=( E(R,DE TRyt +1')
XE Ryt +1)EP(Ry,0) , (11)

GVR,)=(ER,NETR,0)) . (12)

With the definition (10), the photon antibunching condi-
tion can be written simply as g 2(R,,#;R,,¢ +#)<1. In
the far-field limit the positive-frequency (E‘*’) part of the
radiation field can be expressed in terms of the atomic

operators?>"3
J

— — — =g N AN Vol
GHR, R, +1) =P RDYAR,) 3, (SHOS (¢ +1)Sg (¢ +1)S; (1) )explik (TR + TR,

ij, k=1
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FIG. 2. Intensity correlation function g¥(0) for R;=R,17},
vs the detuning A for the interatomic separation 7, =A/6 and
for different field strengths B.

N N N A A -
E(+)(R,t)=Ez)+)(R,t)——-k22 RX(I;X )

i=1

N
—iX-T;

R
A A ,

4

XS,'— t—

(13)

where R is the unit vector in the direction R=RR of the
observation point, and T; is the position vector of the ith
atom. Insertion of (13) into (11) and (12) leads to

(14)

(15)

with ¢2(§)=(3ﬁk7//2R2)sin20, where 0 is the angle between the observation direction R and the atomic transition di-

pole moment /£, and Tj; =T; —T; is the distance between the two (non-overlapping) atoms i and j.
Having available the scattered field correlation functions expressed by the atomic correlation functions according to

Eqgs. (14) and (15), we can directly apply our steady-state solutions (9) to calculate the steady-state value of the normal-
ized intensity correlation function (10) for t'=0. The time dependence (t'-£0) of this function, even in the steady state,
cannot be obtained by the immediate use of (9) and requires considerably more effort (usually numerical calculations or
some approximations). We will not discuss this subject here. For ¢t'=0, from (14), (15), and (10) with (9), we obtain the

analytical formula for the equal-time intensity correlation function in the form

g@(0)= lim gP(R,,t;R,,1)
t— o0

{328+ 8(1+ AR+ L (1 4+ AN [(1+a)*+(A+b)2]} {14cos[k T (R, — R,)]}

(16)

{882+ (1+A%)[1+cos(k T, R ()]} {882+ (1+A2)[1+cos(kT1pR,)]}

Equation (16) is the exact formula describing intensity
correlations valid for any values of the field strength and
interatomic distances as well as for different configura-
tions of the detectors. This formula is illustrated graphi-
cally AinAFigi. 1 and 2 as a function of the detuning A for
Fi,LR(R=R,=R,), and for different values of the in-

—
teratomic separation r;; and of the field strength S.

These graphs show that g‘?)(0) strongly depends on the
detuning A and a pronounced photon antibunching effect
[g'®(0) close to zero] can be obtained in such a two-atom
system for certain values of A. This happens for A= —b,
i.e., when the dipole-dipole interaction b and the detuning
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A cancel out mutually. In other words, this means that
the laser frequency is tuned to resonance with a particular
pair of energy levels of the two-atom system that are
shifted by the dipole-dipole interaction. In this case, how-
ever, the two-atom system behaves like an individual two-
level system. The latter situation has been discussed by
Richter®? and our results are in complete agreement with
his. For two photodetectors (R ﬁéﬁ ») and directions R 1

and R » for which

cosf; —cosf, = A , (17)
2r 12

where 0, and 6, are the angles between T'j, and R 1(1/(\2),
respectively, we have g?(0)=0. Thus we obtain an-
ticorrelation between the photons emitted in the directions
R 1 and R ». This anticorrelation effect is due to spatial in-
terference causing {l+cos[kf"u-(1?1 ~ﬁ2)]}=0. In the
weak field limit and for A=0 our formula (16) goes over
into the result of Wiegand.*’

V. SQUEEZED QUANTUM STATES

Our steady-state solutions (9) of the two-atom problem
give us a good starting point to also consider the problem
of generation of squeezed states of the field radiated by
such a system. We now proceed to do so. Let E be a real
electromagnetic field amplitude with the positive- and
negative-frequency parts E‘*) and E‘~) which, for a
quantized field, satisfy the commutation relation

[EY, EF]=C, (18)

where C is a positive ¢ number.
Defining the in-phase component E; and out-of-phase
component E, of the field as

E1=E(+)+E(——), Ez____i(E(+)_E(—))’ (19)
we have
[El ’ E2]=21C . (20)

The variances of E; and E, can now be written as®

((AE)?)=C +(:(AE))*) , 1)
((AE,)?*)=C +(«(AE,)*) ,

Z. FICEK, R. TANAS, AND S. KIELICH 29

where the colon stands for normal ordering of the opera-
tors. Since squeezed states have been defined*® by the re-
quirement that the variance of one of two noncommuting
observables shall be less than one-half of the absolute
value of the expectation value of their commutator, either
((AE;)?*) or {(AE,)*) has to be less than C to meet this
requirement. In other words, according to (21), a
squeezed state of the field is characterized by the condi-
tion2>2¢ that either (:(AE,)%:) or (:(AE,)?) is negative.
From Eq. (13) we find for the scattered field

((AE ) =yAR)[(AR?)— L [ (Ry) |1,
(22)
((AE,)%) =¢*R)[{(AR)*)— 3 | (R3) |1,

where R, R,, and R are Dicke’s® spin variables satisfy-
ing the commutation relation

[R1 > R2]=iR3 . (23)

These operators can be expressed in terms of the collective
operators S+ and S~

Ri=%(St+87),

R2=%(S+~—S‘), (24)
Ry=3[S*,57],
where
Si_ % Siei‘ii"?'
- 1

Thus, squeezing in one of the two components E; or E; of

the radiation field may be observed when ((AR;)?)

<3| {R3)]| or {(AR,)*) <+ |{R3)|, respectively.
With the help of Egs. (9) we find that for two atoms

Ny=5128°+64[(2+a) + A(2A—b)+(A*—1)cos(kT},R)]B*

+8(14+AY)[14+a?+A%+b%+2(A%—2a —1)cos(kT1,-R)]1B?,

Ny=5128%+64[(2—a)+ A(2A+b)-+(1—A2)cos(k F1,-R)]B*

+8(14+AN[14+a2+ A%+ b242(1—2Ab — A%)cos(k T, R)]B2 ,

Ny=(1+A){a(14+a)*+(2+a)A+b?—A[(b +2A)(1+a)*+b(A+b)]

+(14+AD[(A+b)?—(1+a)*]cos(kTi,R)} ,

N, +N

Fi=((AR)) —7 | (Ry) | =4p——=, (9
N,—N

Fy=((AR,*)— 5 | (R3) | =45‘2—2D—2—3 . (26)

with

27

(28)

(29)
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FIG. 3. F, vs A for R17y,, fi||F1,, the field strength 8=0.2,
and for various interatomic separations ry;.

and D the same as in Egs. (9).

Similarly as in the case of photon correlation, our for-
mulas (25) and (26) describing the squeezing effect in
two-atom resonance fluorescence hold for any values of
the parameters they depend on. These formulas are exact
expressions describing the field fluctuations in steady-state
two-atom resonance fluorescence. In the absence of atom-
ic interactions (@ =b =0), Egs. (25) and (26) go over into
the equations obtained by Walls and Zoller?® for one-atom
resonance fluorescence except for the factor of 2 standing
for two atoms. The factor of 2 expresses the simple fact
that our numerical results are twice greater than those of
Walls and Zoller”® due to the presence of two atoms, while
the mean value of the field is also two times greater, and
the fluctuations scaled to the mean value of the field
remain the same. Here, we touch on the very definition of
squeezing; we prefer to define squeezing as a relative
quantity which, thus defined, would in fact be closely re-
lated to the signal-to-noise ratio. To be precise, we should
also stress that what we denote as F; corresponds to
(Agy)*—5 | {o3)| of Walls and Zoller, and vice versa.
This is due to the change of phases of our operators S;~
and S;* when passing from Eq. (7) to (8). F, as given by
Eq. (25), is plotted in Figs. 3 and 4 versus the detuning A
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FIG. 4. F; vs A for R17,, £2]|#12, the interatomic separation
ri2=A/6, and for different field strengths .
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FIG. 5. Same as in Fig. 3, but for F,.

for i"lzlﬁ and for various interatomic separations r;, at
fixed B as well as at different values of the field strength
and fixed r,. It is evident from Figs. 3 and 4 that, as the
interatomic distance r;, becomes sufficiently small and
the dipole-dipole interaction between the atoms becomes
considerable, the squeezing in F; which, for independent
atoms has its maximum for A=0 (the maximum of
squeezing actually means the minimum of F;) shifts to
the region of finite A. In fact, similarly as in the intensity
correlation function g(0), the minimum in F, appears
for A=—b and can again be attributed to the change in
energy-level structure of the two-atom system due to
dipole-dipole interaction. Figure 4 shows that this
minimum for a given interatomic distance 7, (i.e., given
dipole-dipole interaction value —b) appears for the same
value of A, even at different values of the field strength .
However, the amount of squeezing which can be obtained
in the F; component is diminished by interatomic interac-
tion. ‘

The F, component given by Eq. (26) is illustrated
graphically in Figs. 5 and 6. It is obvious from Figs. 5
and 6 that F, is almost the mirror image of F;. The mini-
ma in F; correspond to the maxima in F,, and vice versa.
There are regions of A where F, becomes negative, thus
squeezed. Even for noninteracting atoms some small
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FIG. 6. Same as in Fig. 4, but for F,.
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and A=1.

squeezing occurs for A=~ +2. The dipole-dipole interac-
tion, of course, shifts the region of squeezing in F,, but in
contrast to F; the amount of squeezing in F, can be
greater than that for independent atoms in F, (Fig. 5).
For a strong field and large detuning (Fig. 6), values of
squeezing in F, can be obtained that are comparable to
the value obtained in F, for independent atoms.

According to Egs. (25) and (26), for a not excessively
strong field, F, and F, tend to zero as |b |—>, ie.,
when the interatomic distance tends to zero. This is
shown convincingly in Fig. 7, where the functions F; and
F, are plotted versus the distance separating the atoms for
a given value of the field strength and detuning.

VI. CONCLUSIONS

We have considered here the problem of two-atom reso-
nance fluorescence with special attention paid to the role
of dipole-dipole interatomic interactions and detuning in
the intensity correlations and squeezing. The steady-state
solutions of the two-atom problem have been calculated.
With the use of these solutions, analytical formulas for
the equal-time intensity correlation function as well as for
the variances of the in-phase and out-of-phase com-
ponents of the electric field of the fluorescent light have
been obtained, making possible a comparison between the
two nonclassical effects of photon antibunching and
squeezing, both of which can occur in two-atom resonance
fluorescence.

Our formula (16) for the intensity correlation function
which agrees with the previously obtained results*? shows
explicitly that a sort of counterbalance exists between
dipole-dipole interaction and detuning and that a consid-
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erable increase in photon antibunching can be achieved
when the detuning A and the dipole-dipole interaction b
cancel out mutually (Fig. 1).

Significantly, too, for special configurations of two pho-
todetectors, we obtain photon anticorrelation [g‘?’(0)=0]
regardless of interatomic interaction and detuning. This
effect, however, is due to spatial interference effects which
can be important in the two-atom case and are absent in
the one-atom case as well as in the small sample case.

The steady-state values of the quantities F,
=((AR)*)—+ | (R3) | and F,=((AR,)*)— 5 | (R;3) |
have been calculated. These quantities, if negative, signify
squeezing in either the in- or out-of-phase component of
the field. Our results show that for two independent
atoms, F is squeezed for small detunings, | A | <1, but is
not squeezed for | A| > 1. The situation concerning F, is
quite the opposite. As the interatomic distance decreases
and the dipole-dipole interaction between the atoms be-
comes appreciable, the same interplay with detuning can
be observed as in the case of the intensity correlation func-
tion. Squeezing in F; shifts to the region of finite A and
attains its maximum value when A and b cancel each oth-
er. However, this maximum value of squeezing is less
than that for independent atoms, Figs. 3 and 4. With de-
creasing interatomic separation, the squeezing in F, in-
creases, as shown in Figs. 5 and 6. For very short intera-
tomic distances, i.e., for |b | >>1 both F; and F, tend to
zero, as shown in Fig. 7.

From Figs. 3—7 one sees that the curves for F; and F,
are almost, though not strictly, mirror images. The fact
that they are not strictly inverse is a simple consequence
of the Heisenberg uncertainty relation for R; and R,.
It is easily proved that F;+F,>[{(AR,)?*)!/?
—((AR,)*)'?1? > 0 meaning that F; +F, cannot be nega-
tive and can be zero only if ((AR;)*)={(AR,)*) and if
the minimum uncertainty condition holds simultaneously.

The present analysis of photon antibunching and
squeezing in resonance fluorescence of two interacting
atoms shows that both these effects are sensitive to intera-
tomic interaction. However, the role of this interaction
cannot be unambiguously declared as “destructive” or
“constructive.” We hope our paper may contribute to-
wards the clarification of this situation and may prove
useful in designing future experiments.
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