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The possible existence of so-called “squeezed” states in two-atom resonance fluorescence is discussed in Lehmberg’s
master equation approach. It is shown that squeezing strongly depends on interatomic separationsryy. For large ry one of
the quadrature components is squeezed, and asrj, decreases its squeezing decreases in order to appear in the other quadra-
ture component for certain value of r1,. For very small 5 fluctuations in both components tend to zero.

1. Introduction

An interesting problem, recently much considered,
is the generation of special states of the radiation
field — so-called squeezed states — in which the vari-
ance of one of two non-commuting observables is less
than one half of the absolute value of their commuta-
tor [1]. As it has been shown by Yuen [2], the two-
photon coherent states exhibit this feature. It has
moreover been shown that squeezing can occur in
degenerate parametric oscillator [3,4], one-atom reso-
nance fluorescence [5,6], degenerate four-wave mix-
ing [7], optical bistability {8], free-electron laser [9],
Jaynes-Cummings model [10], and second-harmonic
generation [11], Caves [12] has shown that squeezed
states can be applied to reduce the effect of fluctua-
tions due to quantum noise in a Michelson interferome-
ter to detect gravity waves.

In this paper we consider the possibility of obtain-
ing squeezed states in resonance fluorescence of two
atoms as a function of their distance. To this aim we
have adopted the model described in our previous
papers [13,14] and obtained a closed system of 15
equations of motion for the atomic correlation func-
tions. We solve this system of equations for the steady
state. Using the steady-state solutions we calculate the
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influence of interatomic interactions (dependent on
the interatomic separations) on the squeezing effect.

2. Equations of motion and steady-state solution

We consider, in our model, two identical two-level
atoms, distant by r;,, in the field of a linearly polarized,
coherent laser beam, the frequency w of which is as-
sumed as exactly equal to the atomic transition fre-
quency wy i.e. detuning is zero. The atoms are coupled
to all other modes of the electromagnetic field which
are assumed as being initially in their vacuum state. On
these assumptions, application of Lehmberg’s [15]
master equatioh approach leads to the following equa-
tions of motion describing the time evolution of the
pseudo-spin operators of an individual atom:

ST = ST —iQ8% +2(11, +i9,)8387
§t= 48T +iQST + 2y, — iQ)S3ST,
$% = _2y(SE +1) + 3UST - S7)
— [(v1,+iQ1,)87S; +hel, 1)

where S1+ and S| = [S7]" are operators raising and
lowering the energy of atom 1 and §% describes its
energy.

The equations for the operators of the other atom
are of the same form as (1), albeit with the interchange
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1 < 2 of the indices. These operators fulfil the well
known commutation relations:

7387 1=2878;, [SF3Si]1=%878;, i,j=1,2.
()
In (1), 27 is the Einstein A-coefficient for spontaneous
emission and 2 the Rabi frequency describing the
interaction of an individual atom with the laser beam.
The collective damping 7v;, and frequency shift 25,

which both are dependent on the interatomic distance
714, are defined by [15]:

sinkry,

M2~ %7 {[1 —(p f12)2]

coskryy

kr12

ink
sin "12]]’ 3)

+[1 —3(ﬁ‘f12)2][(k,12)2 (k)

5 S coskry,
Qg =37{~[1-(prp)’] k11
sinkryy coskr,
1= 3(peF 2][ I ] . @
[1-3(perpp) Ero? k)

where pand r, are unit vectors along the transition
electric dipole moment and the vectorry, =ry —ry,
respectively, and ), = |Fy5]. k = wq/c = 27/X, where
A is the resonance wavelength.

The atomic operators of eq. (1) are slowly varying
parts of the operators:

57 () = S7(0) expliwyt)
ST@ =870 exp(—iwgt), SE@O=5ir). (5
Introducing the notation:

g=Q/4y, a= 712/’)’, b= 5212/7, (6)
we rewrite egs. (1) in the form

(d/dn)Sy = —387 —2iBST + (@ +ib)S1S3 ,

T=27t,

(d/d7)ST = —387 +2ipS} +(a — b)S3 57 ,
(d/dr)S§% = —(S% +3) +ip(ST - S7)
—3[@+ib)STSs; +hel]. @)

In the case of two atoms this system of equations

generates a closed system of 15 equations describing
the evolution of the atomic variables. It splits into 9
equations for symmetric modes and 6 equations for
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antisymmetric modes which we write in matrix form:
dX/dr=AX+a, dY/dr=BY, )

where A and B are a real 9 X 9 and 6 X 6 matrix, respec-
tively.

For b = 0 the matrix A forms two separate blocks,
the one of dimension 6 X 6 and the other of dimension
3 X 3. Similarly, in this case, the matrix B is found to
be composed of two 3 X 3 blocks. On these assump-
tions our eqs. (8) are identical to those considered by
us earlier [13,14].

The steady-state solutions of eqs. (8) are obtained
easily, and have the form:

(ST +85 +S7 +57) = —[326% + 4p(1 + @) /M,
(ST+S5%— 87 — 83),=4ibB/M ,

(StS5 +S587), =48%/M

(STST +85585), = (326% +48%)M,

(S78% + 85787 = [48%(1 + @)} /M,

(STS% — 87830 = —4ibB% /M, ©)
with

M=328%+882 +3b2 +3(1+a)?.

3. Squeezing

We shall now discuss the possibility of squeezed
states occurring in two-atom resonance fluorescence.
To this aim we make use of spin variables R (¢), R,(?)
and R5(f) as proposed by Dicke [16] fulfilling the
commutation relation

[R1@);Ry(D] =iR3(2) . (10)

They can be expressed in terms of the operators S*(¢)
and §—(¢)

Ri()=3[8*() +5~ (D),

Ry(H=(12D)[S*(®) - S~ (D],

R;(1) =38 (085~ ()]. (11)
where, for two atoms, S*(¢) = S7(?) + S5(0).

A squeezed state is then characterized by the condi-
tion that [5] either ((AR)?) <3[(R3)| or ((AR,)?)
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<3 [{R3)|. With the help of eqgs. (9) we find:
Fi ={(ARDD — 3R =2{223 + (@ +1)22
+3[@% —4a —1)+b2]z
+a@+3)0? —3(1-a)(1 +a)2)
X [222 +2z +3b2 +3(1 +a)?] 2, (12)

Fy ={(AR))D — 3R = 2{[2z + (1 —a)]
X[22 +z +36% +53(1+a)’] - b7}

X [222 +2z +5b2 +3(1+a)?] "2, (13)
with z = 482.

Fora =b =0 eqgs.(12) and (13) go over into the
equation obtained by Walls and Zoller [5] for one-
atom resonance fluorescence except for a factor 2
standing for two atoms.

The spin variables R and R, are squeezed when
F, <0 or F, <0 respectively. Analysis performed for
the sign of the numerator of (12) leads to the conclu-
sion that F; <0ifz <(ng +ny) — L(a +1), where:

M. = [p£(@® +pHV2]13,
p=—1;[5(a+1)(5a2+10a —4) +3b%(a + 4],
q=15% —7a—-2+3b%). (14)

Since z > 0, the inequality (n; +1,) — (@ +1)>0
has to be fulfilled. By egs. (14), this condition is ful-
filled if |#| < 1. Thus the variable R is not squeezed
for |b| > 1, see fig. 1.

A similar analysis for the sign of the numerator of
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Fig. 1. Fy versus z for ﬁ.ll r12 and various interatomic separa-
tions: (a) ri2 > A, (b) ri2 = )\/2, (c) ria2 = }\/3, (d) ri2 = )\/4,
(e) r12 = AJ6.
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Fig. 2. F5 versus z for flll ;12 and various interatomic separa-
tions: (a) 719 > A, (b)Y r1p2 = A/2, (c) r12 = A/3, (d) r15 = A/4,
(e) r12 = N/6.

eq. (13) shows that Fy <0ifz <(A\; +A,) — 53 —a)
where:

A= [m + (3 +m2)U2]U3 |
m=1;[$a%(5a +9) +3b%a +6)],
n=1{sla(a +3)+3b2]. (15)

Since z > 0, the inequality (\; +A,) — §(3 —a) >0
has to be fulfilled. By egs. (15), this condition is ful-
filled if |#| > 1. That is to say, the variable R, is not
squeezed for || < 1, see fig. 2.

By egs. (12) and (13), for a not excessively strong
field and at |b| > o, F; and F, tend to zero. This is
shown convincingly in fig. 3 and 4, where the functions
F and F, are plotted versus the distance separating
the atoms for two values of the field strength.
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Fig. 3. Fy and F, as functions of the interatomic separations
forz = 0.1.
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Fig. 4. The same as in fig. 3, albeit for z = 0.2.

4. Discussion and conclusions

The formulas (12) and (13) show the functions
F =((AR)?) —3I(R3)| and F, = ((AR,)® — 1 KR53
versus the distance between the atoms and versus the
field strength acting on them. With regard to figs. 1
and 2, only the variable R is squeezed when the inter-
atomic distance is great. As the latter decreases so does
the squeezing of Ry, and for distances for which |b|
> 1 the variable R is no longer squeezed. Inversely,
for distances such that [b| > 1, the variable Ry is
squeezed. For very short interatomic distances i.e. at
|b{> 1 both R; and R, are unsqueezed (figs. 3 and 4).

From figs. 3 and 4 one can seen that the curves for
F; and F, are almost though not exactly equal and
opposite. The fact that they are not exactly opposite
is a consequence of the Heisenberg uncertainty relation
for the operators R and R,. Using the uncertainty
relation for Ry and R,, one can easily prove that F' 1
+Fy > { [((AR )2>]15 + [((AR)DNV2}2 > 0, mean-
ing that F'; + F; cannot be negative, and can be equal
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to zero only if (AR )?) = ((AR,)?) and if the mini-
mum uncertainty condition holds simultaneously.

It is worth noting that the strongest squeezing of
R occurs if the two atoms are mutually independent,
Fmin = —0.061. Whereas R becomes minimal for
r13 = A6, when F, . =~ —0.039. This means that
dipole interaction between the atoms has a destructive
effect on squeezing.

Significantly, too, the influence of interaction on
squeezing resembles that of interactions on photon
antibunching: as shown in [14], interactions consider-
ably lower photon antibunching in the case of weak
fields whereas in strong fields their role is unimportant.
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