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A theory of polarization effects in integral hyper-Rayleigh and hyper-Raman scatterings
for arbitrary scattering angles is developed using Stokes parameters for both the incident
and scattered radiations. A detailed discussion of the scattered light, described by the irreduc-
ible symmetric and unsymmetric parts of the hyperpolarizability tensor bsg, is carried out
for linear and circular polarization of the coherent incident light. Such parameters as: the
ellipticity, the circularity degree, and the reversal and depolarization ratios are studied. The
problem of scattering of natural light and polarized chaotic light is also touched on.

PACS numbers: 42.65.Bp

1. Introduction

Hyper-Rayleigh and hyper-Raman scatterings belong to three-photon processes
and consist in the annihilation of two photons @ of the incident light and the spontaneous
emission of a third photon with the frequency w, fulfilling, with accuracy to the spectral
width, the following relation: o, = 2w+ w;;, where w;; is a frequency arising from the
transition between the quantum molecular states 7 and j. If i = j we deal with hyper-
Rayleigh scattering. If i # j, hyper-Raman scattering takes place.

Although both types of scattering have already been reviewed from the viewpoint
of theory as well as experiment [1--5], and almost twenty years have elapsed since the pioneer
experiment of Terhune et al. [6] in which hyper-Rayleigh and hyper-Raman scatterings
were observed, they are still interesting topics for research even in their general aspects.
In this paper we return to their polarization properties. Since this aspect of scattering
is common to both types of the process in question, the two can be discussed jointly.

The subject under consideration has first been discussed by Stanton [7] in terms of
Stokes parameters. His discussion, however, was restricted to forward symmetric scattering
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and, chiefly, to ellipticity. We bave carricd out general investigations for arbitrary angles
in the formalism of intensities, in both Cartesian [8, 9] and spherical [10, 11] representa-
tions. Recently, we used Stokes parameters to the description of the incident light only
[5, 12].

Also recently, some publications giving rather unconventional definitions and inter-
pretations of some parameters characterizing scattered light have appeared. It is our aim
to reconcile these definitions with those commonly used and, moreover, to propose an
intrinsically consistent interpretation.

2. Three-photon scattered light intensity tensor

As the basis for our considerations we take a macroscopic sample of a gaseous medium.
We assume linear dimensions of the molecules much smaller than the incident wavelength;
this enables us to neglect interference effects from different parts of one and the same
molecule.

The sample is irradiated by an intense plane wave of frequency w and wave vector
k, the electric field of which is taken in the form:

E(r,t) = Re {Ee "= %M (1)

E is a complex amplitude, fluctuating in general. The efficiency of nonlinear processes
strongly depends on the statistical properties of the light causing them. This problem will
also be discussed here. For this reason, we have to peirform appropriate statistical averaging
over the ensemble of the incident amplitudes which replaces time averaging for ergedic
processes. .

The molecules undergo, in the first order, electric-dipole polarization. In the quadratic
approximation relevant to us, this polarization leads to the following incoherent integral
intensity tensor of light scattered by N statistically independent molecules [9]:

_ < * * ok
ij = mn: m*=n />
I = +— L<byybjunErE\ERE, ) @
4

where L’ is a scattering factor dependent on the frequency wy and proportional to the
number of molecules. We use Latin indices for components with respect to a laboratory
frame and Greek indices for a molecule-fixed frame. Einstein’s summation convention
for repeated indices is applied throughout.

The third-rank hyperpolarizability tensor b;; of an individual molecule may be
expanded in a power series in normal coordinates Q, of vibration [13]:

bij = bii(Q) = b;(0)+ ; bip@at - . ) (3)

b;3(0) is responsible for hyper-Rayleigh scattering. This type of scattering occurs for mole-
cules without a centre of symmetry in their ground electronic state if, of course, we deal
with gaseous media. The derivative b} is responsible for hyper-Raman scattering which
can be caused even by molecules centrosymmetric in their ground quantum state.



755

It is approximately possible to assume total index symmetry of the tensor b;; in the
limit of low incident frequencies [3, 14]. But in general this tensor should be considered
as symmetric in its last two indices only.

The symbol ¢} in (2) stands for appropriate statistical averagings over molecular
orientations, vibrations and complex amplitudes of the incident field in general. In the
effects considered here averaging over molecular orientations is related to rotational
averaging of the product of six directional cosines connecting the two above mentioned
frames as first carried out by Kielich [15]. This procedure leads to:

I

J

¢
= = L{a‘sij<EkE;ckElEl*> +.Béij<EkEkEl*El*>

+IKEEFEES > + (B} EEE ) +eCEL ES B E, +e*(EEEFELY}, C)]

where L = L'/105.
If the scattering tensor is symmetric in its last two indices, the molecular rotational
invariants a—e have the following form:

&= <1 lbaﬂv afy 6baﬂvbﬂ¢7 Sbaﬁﬂ baw + 4baﬂﬂbwa + 4bﬂﬂab;kw 6bﬁﬁab;kva>’
B = {—5bagbiig,+4bypybiay + 8D, — Sbugsbiy,—5byp,bY,, +4bgpabya>s
Y= 2< 3baﬂy apy + buﬂvbﬂav + 2baﬂﬂbaw Sbaﬂﬂb;kva - 3bl’ﬂzbfw + 8bﬁﬂab

é

e/

= 2{ = 3bypybagy + 8bup, by + 2bygsbly, — 3b,pb i~ 3byg,b arv Bggabipads
&= <4buﬂv afy 6baﬂ7bﬂav Sbaﬂﬁbaw'*'llbaﬂﬁbvvz+4bﬁﬁab:vv 6bﬂﬁab;‘ya>’ (5)

where () now refers to hyper-Raman only and denotes averaging related to the normal
coordinates of vibrations. «—¢ are real parameters.

The tensor b, partly symmetric in the last two indices, may be decomposed into
two parts: a completely symmetric part b,q,,y related to permutation of all indices and
a residual unsymmetric part by, still symmetric in the indices  and y — cf. Christie and
Lockwood [14]:

baﬂv = baﬂv+baﬁv’
b“ﬁ)’ 3 (b‘lﬂ? + bﬂav + byazp):
baﬁ)’ 3 (Zbaﬂv_ bliav_ byaﬂ)' (6)

In other words, the unsymmetricity is related to the permutation of « and whichever of
the indices § or y.

Accordingly, the molecular invariants «—é& may be represented as sums of purely
symmetric components o« —¢°, purely unsymmetric components a”—¢Y, whereas some
of them will also in general contain a mixed symmetric-unsymmetric component (SU).

Finally we arrive at:

o8 =165 =585,

B =37 =3 =1 = 1 (7B} -3B5), O
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where the non-negative parameters

S 3 S Sk
Bl = ?(baﬂﬂbay'y s

By = %<5b:ﬂyb::v—3b§ﬂﬂb::y ’ ®
correspond directly to the square modulus of the irreducible symmetric spherical tensors
of weight 1 and 3, respectively [3-6, 11].

o’ = Y = 14B;3,
BU =" = —&¥ = —&"* = J(5BY~3B)), €))
where
BY = 3 bipsblerys
BY = 1 {4byy, b —3brsgbiy (10)
are also positive-defined parameters corresponding to the squared modulus of the
irreducible unsymmetric spherical tensors of weight 1 and 2, respectively [4, 11]. It is seen

that the purely symmetric and the purely unsymmetric components of the invariant ¢ are
real.

aSU — 5SU = 0’

BV = =1V = 2Re ™ = 7BY, 11
where
BSIU = ';_ <b:ﬁﬂbluj;;+b:;ﬂbgy'y ’ [(]2)
and, in principle, can take positive as well as negative values.
Generally,
&= —7 (bfppb}f;';—be;pbfy,), (13)
whence
SU 21i S Uk Sk 1 U ’
Ime™ = - {bapsbayy—bappbayy- (14)

In the majority of cases, except elliptical or partly elliptical polarization of the incident
light, the final results are dependent on Re ¢ only. Then, the initial six invariants oc—e
and e* reduce to five: BS, BS, BY, By and BY’, similarly as for real b,

Ordinary Raman and Rayleigh processes are dependent on the second-order polariza-
bility tensor a,,. This tensor can be decomposed into isotropic, anisotropic and antisym-
metric parts described by appropriate irreducible spherical tensors which do not mix under
rotation in space. Hence, the intensity scattered by noninteracting molecules is the additive
sum of three intensities related to pure isotropic, anisotropic and antisymmetric contribu-
tions. They are briefly said to be isotropic, anisotropic and antisymmetric scatterings [16].
These scatterings have different polarization properties. In three-photon scattering, follow-
ing the decomposition of b,g, into symmetric and unsymmetric components, one can
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consider symmetric and unsymmetric contributions to the scattered intensity. However,
in general, the scattered intensity is not the simple incoherent sum of these contributions
because of the presence of the cross terms B}" and Im &%V arising from the symmetric
and unsymmetric parts of the irreducible tensor of weight 1 which mix under rotation
in space. Although the symmetric and unsymmetric contributions to the scattered intensity
do not add incoherently, nonetheless for the sake of simplicity we use here the terms:
symmetric and unsymmetric scattering. This is all the more justified as each of these proc-
esses can take place individually under certain conditions. The polarization properties
of pure unsymmetric scattering are identical with those of antisymmetric scattering in
ordinary Rayleigh and Raman.

In the limit of low incident frequencies we deal, in a good approximation, with pure
symmetric scattering, dependent generally on the two rotational invariants BS and S,
If the above condition is not fulfilled, unsymmetric scattering appears. In the majority
of cases it will accompany symmetric scattering and, in general, all six molecular invariants
B, B3, BY, BY, B{ and Im &V will then intervene. On the other hand, unsymmetricity
in b,p, can activate vibrations inactive in the case of completely symmetric scattering
tensor [14]. This means that for certain point groups of symmetry and kinds of vibrations,
pure unsymmetric hyper-Raman scattering can occur alone. Moreover, one can also expect
pure unsymmetric hyper-Rayleigh scattering on molecules of symmetry D,, Ds and Ds.
These molecules do not exhibit hyper-Rayleigh in the symmetric case. Pure unsymmetric
scattering depends on Bj only. Namely, inspection of the nonvanishing components of
the scattering tensor shows that then the components b,,‘,fgy with all indices o, § and y differ-
ent intervene solely [14, 18]. This in fact leads to B} = 0, whereas the nonzero invariant
Bj equals ]bgg},lz). Since this scattering depends on one rotational invariant B} the relative
parameters characterizing this process are no longer dependent on BY and may be dependent
on the scattering angle.

3. General remarks on the polarization properties of light

Electromagnetic radiation interacting with matter experiences in general changes
in the state of its polarization. The quality and magnitude of these changes depend on the
kind of interaction and on the molecular and thermodynamical properties of the medium.
The statistical properties of scattered light are also modified by comparison with those of
the incident radiation.

The most consistent formulation of the subject in question is obtained by the use
of Stokes parameters. If we assume the incident light to be propagating along the z-axis,
they are [17]:

so = E.Ex+E,E},
s; = E,Ex—E,E},
s, = E,E} +E,EY,

i(E,Ex—E,E}), (15)

S3
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or, equivalently,
§; = 8¢ cOs 2¢ cos 27,
§, = §¢ cOS 2¢ sin 29,

S3 = SO Sin 2¢, (16)

where v denotes the azimuth of the elliptic major axis relative to x, and ¢ is the ellipticity.
For monochromatic light

se = si+s5+s3, a7

which, in general, is not fulfilled for quasi-monochromatic light with fluctuating intensity.

In linear optics, when describing processes caused by quasi-monochromatic light,
we immediately use the parameters (15) averaged over the ensemble of the incident field
amplitudes. For nonlinear processes we have to use, in this case, unaveraged parameters
(15) or (16). These processes depend on intensity fluctuations of the light causing them.
But the final results have to be averaged in the above mentioned sense. If we use the form
(16) of the Stokes parameters and if the incident light is unpolarized, then we have to
perform additionally averaging over the angles » and ¢.

We denote the Stokes parameters for the scattered light by capital letters.
o=+ S3+8% 483 refers to its completely polarized portion I, while S, — o to its unpolar-
ized portion I, [17].

One of the relative parameters characterizing the scattered radiation is given by the
depolarization ratio ”'D:

PiSo_Pio.

np = P—‘SO-{—“O’ . (18)

The superscript preceding D and the Stokes parameters denotes polarization of the incident
light.

The polarized portion of the scattered light is described by the azimuth %, and the
ellipticity ¢, as below [17]:

PiSz
tan 2y, = g’ 19
1
. P153
sin 2¢, = Ty (20)

In ordinary Rayleigh and Raman the azimuth corresponding to forward and backward
purely symmetric scattering is the same as the incident azimuth. In the antisymmetric
case it is always changed by n/2. In the processes under consideration the same situation
occurs for purely symmetric and unsymmetric scatterings.

If both scatterings are simultaneously present, the resultant azimuth depends on their
magnitude as well as on the magnitude of the cross terms.
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When the incident radiation is circularly or elliptically polarized the scattered radiation
is often characterized by the degree of circularity [18]

=2, 1))

where the superscript (+) before the parameters denotes right-handedness of the incident
radiation while (—) — left-handedness, as viewed oppositely to the propagation direction.

One can further introduce the reversal ratio R defined as the ratio of the scattered
intensity ilq: transmitted by an optical system accepting the helicity contrary to the helicity
of the incident light and the scattered intensity *7, transmitted by the optical system
accepting the same handedness as that of the incident radiation [16]. In terms of the Stokes
parameters, the reversal ratio takes the form:

iS - :i:S "
tR= 0t 53 22)
Soi S3
Our definition (22) differs from that proposed by Long [18]:
:tS _|:|:S I
*R= g 2. 23
iS0+|is3| ( )

The definition (23) consistently removes the signs in the numerator and denominator,
signs related to the handedness of the incident radiation. But unfortunately, it also removes
the sign of the molecular rotational invariant included in S;. The reversal ratio defined
in this way would have its upper limit equal to unity. The definition (23) holds for positive
molecular invariants in S; whilst its inverse holds for negative invariants. The negative
molecular invariants are responsible for helicity reversal of the scattered polarized portion
relative to that of the incident radiation. Then *R should exceed unity.
From equations (21) and (22) we find:

1F%c

tR =
1+%C

(24)

Recently, Andrews and Harlow [19] have introduced a parameter p-! representing
the fraction of scattered intensity with the same helicity as the incident light:
pl = (py|+P.) ! = *I4/lym. This can be rewritten as follows:

1
£ -1 _ 1 e o
p =z0% C)_1+iR' (25)
We would like to concentrate for a while on the interpretations of C = 0 [18, 19]. The
authors of Ref. [19] interprete different values of p~*, among others p~! = 1/2. But p~! = 1/2
involves directly C = 0. Long [18] interpretes C = 0 as signifying unpolarized scattered
light while Andrews and Harlow [19] say that p~! = 1/2 means plane polarized scattered
light. At first glance, at least one of these interpretations would hardly appear correct.
To our mind, C = 0 is not a decisive quantity and the two above cited interpretations are
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really possible. Moreover one can add a third interpretation according to which C = 0
signifies partly plane polarized light. The parameter S5 of course characterizes the polarized
portion. First of all, S5 equals zero if this portion does not exist at all. Then it directly
implies unpolarized scattered light. For a nonzero polarized portion, S; reaches zero
only if it is plane polarized. The unpolarized portion may exist or not, leading to partly
plane polarized or completely plane polarized radiation, respectively. Since C = 0 cor-
responds to these three different polarization states, C = 0is in fact a not univocally decisive
quantity. The same conclusion refers to R = 1 and p~* = 1/2.

4. The Stokes parameters for the light scattered

The scattered light is observed in the YZ = yz plane along the Z-axis at an angle
3 relative to z. Then, in the most general case of the polarization state of the incoming
light, (4) and (15) lead to:

PISo(9) = § L{4a(sy +2B[<sgy + (s3> + s3> —<s3>]
F(740) [s2> + <5081 > +({55) — <508, ) cos? §]
+Re e[{s5> + (T + (57> = (s3> +2<5081>
F (2 + (B 4+ (52> — (53> —2<5051 ) cos® 9] +2 Im e(s,55) sin® 9},
S,(9) = 2 L{(y+06) [{s5) +<5081> — (s3> — {05, ) cos” 9]
+Re e[{s2Y + s> +{s3> — (5> + 24505 ) — ({s5) + (T + 57> — (53>

—2{505,>) cos? §]+2 Im &{s,53) (1 +cos® 9)},

7S,(9) = L{(y+5+2 Re &) {s05,>—2 Im &{s;55>} cos 9,

Pig.(8) = L(y—93) {so83) cos J. (26)

Already from these general forms of the Stokes parameters it is possible to read some
properties of three-photon scattered light.

Firstly, for perpendicular observation (8 = 7/2), we have 7'S,(n/2) = PS;3(n/2) = 0.
This means that if a polarized portion of the scattered light exists, it will be linearly pola-
rized irrespective of the polarization state of the incident light. P'S,(n/2) = 0 corresponds
to the azimuths o, = 0 or @ and y = n/2 which signify that ihe electric field may oscillate
along the X or Y-axis according to the sign of ".Sy(n/2).

- Secondly, for forward scattering (3 = 0), equations (26) lead to:

(y+06+2Ree) {550 —2 Im &{sy55)

tan 29,(0) = , 27
PO = 512 Res) (o5 2 Tm 6Cs353 @
which, for completely polarized incident light, transforms to:
5+2Ree—21 t 29 sin 2
tan 2y,(0) = tan 2y yt e m & cot 2y sin 29 (28)

y+6+2Ree+2 Imetan 29 sin 2¢
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The last terms in the numerator and denominator can vanish either with respect to the
polarization state of the incident light or with respect to the conditions leading to Im & = 0.
As to the polarization state of the incident light, they vanish if it is linearly or circularly
polarized as well as for unpolarized light.

Then, equation (28) reads:

tan 29(0) = tan 2yp. 29)

Stanton [7] noticed that this relation means retention of the azimuth relative to that of the
incident light. However, this relation admits moreover of a change of the azimuth y, by
n/2 in comparison with . First of all, this will take place for pure unsymmetric scattering.
This can also occur if both symmetric and unsymmetric scatterings are simultancously
present.

For elliptical polarization of the incident light, if Im & # 0, the resultant azimuth
will also differ from v but in the majority of cases not by 7/2. This is a serious discrepancy
from the results for ordinary Rayleigh and Raman where this difference is always /2.

5. Application to various polarization states of the incident light

At the start we shall assume the incident light to be coherent. Thus, we can omit
statistical averaging over the field amplitude, since it is constant, and also take advantage

of (17).

5.1. Linearly polarized incident light

Let us assume polarization of the incoming light perpendicular (along x) to the observa-
tion plane. Then we have: 5, = s;, 5, = 53 = 0 and hence from (26) we get:

1S = Ls}(2a+2B+y+6+2 Re e),
1S, = Ls3(y+6+2 Re &),
J-Sz = -LS3 = 0, ¢s = 0, (30)

irrespective of the scattering angle.
With respect to (7) and (9) for pure symmetric and unsymmetric scatterings we have:

15 = 12 Ls3(7B3 +3BY),
1SS = % Ls2(28B5 +3B5), (31)
1Sy = —*SY = 7Ls2BY, (32)

where, as already said, pirely unsymmetric scattering depends on B only. This scattering
leads to completely linearly polarized light along the direction Y, what, in fact amounts
to a change of the azimuth ! by n/2 relative to that of the incident light. As for the sym-
metric scattering, the azimuth of its polarized portion is preserved, u5 = 0.



762

At 7S, = PS, = 0 the depolarization ratio (18) reduces to the form:

- _ piSO_PiSI
- p,So_I_piSl ’ (33)
for positive P'S;, and to the form:
Py — I_)LSO+mSl
- Pig, —PiS, (34)

for negative ”S,. They are given simply as the ratios of the smaller and greater principal
values of the scattered intensity tensor and are ratios of the components Iyy/Ixx and Iyy/lyy,

respectively.
For pure symmetric scattering, on insertion of (31) into (33), we find [5]:
ins _ TBi+12B3
63B}+18B3 (35)

The lower limit of this quantity occurs for B = 0, whereas the upper limit for Bf = 0.
4pS varies within the range:

F<DIL3, (36)

in agreement with numerous previous results.
Unsymmetric scattering gives linearly polarized light, hence from (34):

ipY = 0. (37)

If both these scatterings take place together we have additionally to take into account
the unsymmetric parameter BY as well as the cross term BY, related with the symmetric and
unsymmetric parts of the irreducible tensor of weight 1. From (30), (7), (9) and (11) we
finally get for total scattering:

1S,—*S, = 2 Ls(7B} +12B5+35B7 +21B3 +21B}"),
1S,+1S, = 6Ls3(7B}+2B3). (38)

The light scattered by a great number of noninteracting statistically independent
molecules is completely incoherent. The clementary scattering processes from different
molecules are uncorrelated. However, the magnitude of these elementary processes is not
in general a simple additive sum of symmetric and unsymmetric contributions owing to the
presence of the cross term BS®. In other words this, as it were interference term, does not
influence the statistical properties of the scattered light but affects only the magnitude
of scattering.

As we see, the intensity component X remains purely symmetric. The magnitude of
the component Y is the additive sum of the symmetric and unsymmetric contributions
resulting from the symmetric and unsymmetric irreducible tensors of weight 3 and 2, respec-
tively:

*So—*S; = 2Ls5(4B3+7BY), (39)



763

and of a remaining part due to the symmetric and unsymmetric components of the irredu-
cible tensor of weight 1:

1So—1S, = 12 Ls(BS + 5BV +3BY)
= 175 Ls5(2b3s5+ Sbysg) (2b5m,+5bons).- (40)

The cross term B}' is positive for certain molecules and kinds of vibrations but negative
for some others, leading to a constructive or destructive influence on the scattered intensity
component Y. In principle, the destructive influence can totally extinguish the part (40) of
this component. This can occur for 2855, = — 5byy,. If additionally BS and By were zero,
the scattered light would be linearly polarized in the direction X and would arise from
B} only. Generally, the intensity component Y in (38) will differ from zero. Incoherent
superposition of two orthogonal, in general unequally intense linearly polarized waves,
gives an unpolarized portion and a diminished linearly polarized portion with azimuth
determined by the initially greater intensity component. Hence, the resultant azimuth
can be the same or can be changed by n/2 compared with the incident azimuth.

For the sake of simplicity, irrespective of the resultant azimuth, only one of the defini-
tions of depolarization (33) and (34) is applied in practice. On the definition (33), for
unsymmetric scattering exceeding symmetric scattering, depolarization may exceed unity.
This is so-called anomalous depolarization:

- 7B} +12B5 +35BY +21BY +21B°
- 63B5 +18B5

(41)

b

and *D ranges within [4, 11]:

0<"D < o, 42

where infinity corresponds to pure unsymmetric scattering since *D is the inverse of *DV
calculated from (34).

The depolarization ratio (41) is in general a function of the five molecular invariants.
Since this parameter is angle-independent, we have no possibility of determining all these
invariants simultaneously from angular distribution measurements of the scattered light.

With respect to *S; = 0, independently of the medium *R=1, {C=0, and
1p~! = 1/2. As shown (42), the scattered li ght may be completely or partly polarized linearly,
and natural as well. ‘

Similarly, one can discuss scattering of light polarized linearly in the observaticn
plane, i.e. along the direction y. The final results depend on the scattering angle. As shown
previously [9], very simple relations with the results just presented hold, even in the presence
of unsymmetric scattering. For this reason we shall not consider this case here. However,
one should mention that, at this geometry of scattering, it is possible to perform five angular
distribution measurements permitting the determination of every of the five molecular
invariants B}, B, BY, By and B.
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5.2. Circular polarization of the incident light

The incident light is now supposed to be circularly polarized. Then s3 = X5, and
sy = 5, = 0. From (26) we get:

£80(8) = L Ls3{da+(y+6) (L +cos> §)},
£8,(9) = 1 Lsi(y+6) sin® 9,
£8,(9) = £Lsi(y—5)cos 9,
£5,(8) = 0. (43)

The process depends on three rotational invariants «, y and 6 which, however, are expressed
by the five invariants related to the irreducible tensors.
For pure symmetric scattering we find:

£55(9) = L Ls2{14B5 +39B5 +(14B; +9B3) cos® 8},
£53(9) = 1 Ls2(14B5 +9B3) sin” 3,
£53(9) = +4% Lsi(2B5 —3B3) cos 9, (44)
whereas for pure unsymmetric scattering
£5Y(9) = L Ls3B5(5—3 cos* 9),
£SU(9) = —2L Ls3B) sin® 9,
£59(9) = +7Ls2Bj cos 9. (45)

The polarized portions of both scatterings are in general (0 < § < =/2) elliptically
polarized. The major axis related to the symmetric scattering lies along the X-axis. For
unsymmetric scattering it lies along the direction Y. In the case of symmetric scattering
an exceptional situation occurs for 2B5 = 3Bj: the polarized portion of this scattering
is then polarized linearly.

For pure unsymmetric scattering the helicity of the polarized portion is always the
same as the incident helicity. The helicity of the symmetric polarized portion may be
retained or reversed.

For forward scattering the ellipses generally transform into circles (*S3(0)
= *8Y0) = 0), whereas for perpendicular scattering — into straight lines (¥S3(n/2)
= £§Y(/2) = 0). The light scattered forwards in the unsymmetric case is completely
circularly polarized (¥S5(0) = £ *S3(0)) with preserved helicity as already said. The
molecules with 2BS = 3Bj scatter forwards unpolarized light in the symmetric case.

For the ellipticity we have:

2cos 3

. (46)
J9—14 cos® 9+9 cos* §

sin 2¢(9) = +
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For 8 = 0, this gives *¢Y(0) = +n/4, i.e. circular polarization. For 9 = n/2, ¢2(n/2)
tends to zero implying linear polarization of the polarized portion.
In the case of symmetric scattering:

14(2B5 —3B5) cos §
in 2%¢3(9) = + -
Sin 27¢4(9) = {(14B +9B5)? sin* 9+ 196255 — 3B5)? cos? 9}/

47

The handedness of the polarized portion is dependent on the magnitudes of B; and B5.
For 2B} > 3B it is preserved while for 285 < 3BS we deal with reversed handedness in
comparison with the incident helicity. For $ = 0 and 2B # 3B§ this equation gives
*¢3(0) = £n/4 or Fn/4, i.e. circular polarization. For § = 7/2 we have linear polariza-
tion of this portion similarly as for unsymmetric scattering.

The circularity degree is as follows:

2cos 3
+ U
CH»H=+ ——p, 48
©) T 5-3cos’ 9 “9)
whence *CY(n/2) = 0, whereas for forward scattering this reads: TCY(0) = +1.
In the symmetric case:
14(2B} —3B3) cos §
:tcs(‘g) =% S (s - :) ss 2q° (49)
14B7 +39B3 +(14B7 +9B3) cos® &
whence *CS(n/2) = 0 while for forward observation we have:
14B% —21B5
O = £ —5— 2 (50)
14B3 +24B3

For molecules with B = 0 the scattered light is completely circularly polarized with
retained handedness, since iCS(O) = 1. For all other molecules it will be partly circularly
polarized.

Generally, this quantity ranges within:

—F<TCY0) <1,

~1<7C%0) <%, (51)
where

~3<*CY0) <0,

0<"CY0) <% (52)

signify reversed handedness of the polarized portion whereas
¢ 0 < *C%0) <1,

-1<7CY0) <0 (53)

signify retention of the handedness. *CS(0) = 0 means here unpolarized light.
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The reversal ratio takes the form:
5—2cos 8—3cos® 9

:l:RU 9 = ,
) 542 cos $—3 cos® 3 (4
and TRY(n/2) = 1 while *RY(0) = 0.
In the symmetric case [5, 9]:
£RS() = 14BS +39BS — 14(2BS — 3B3) cos 8 +(14B} 4+ 9B3) cos” 9 55)
14BS +39BS + 14(2B} — 3B3) cos 9 +(14B5 +9B3) cos® §’
whence *R(n/2) = 1 and
4585
£RY0) = ————.
© 28B% +3B5 (56)
£ RS(0) ranges within the limits [9-11]:
0 < *R%0) < 15. (57)
Finally, let us discuss the parameter *p-* [19]. For forward scattering
0 =1, ’ (58)
and
£ )=15(0) = 28B3 +3Bj 59
P ~ 28BS +48B5’ (59)
whence
H# < PO <L (60)

The results Tp~1Y(0) = *p~'5(0) = 1 obviously point to completely circularly polarized
radiation with preserved incident helicity.

The ranges (57) for £R%(0) and (60) for *p~**(0) can (like (52) and (53)) be divided
into two subranges, corresponding to reversed and preserved handedness. The values
at the points of division are, respectively, unity and one half. All the values £R%0) < 1
and *p~150) > 1/2 refer to preserved helicity, whereas *R%0) > 1 and p-1(0) < 1)2
to reversed helicity. Both cited values mean here unpolarized light, as already discussed.

In general, £S3(9) and *S3(9) are nonzero. Hence the depolarization ratio is not
the ratio of two mutually perpendicular intensity components. For 8 = x/2 it simplifies
since ¥8Y(n/2) = %83(n/2) = 0 and then becomes such a ratio of the two principal com-

ponents.
Since £SP(n/2) < 0, from the definition (34) we get:
T
£pU <?> =1, (61)

For symmetric scattering *S5(n/2) is non-negative, hence from (33)

1585
tps () 2208
( 14B5 +24B5 ° (62)
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and varies within [9]:

0< DS (-’2‘-> <%. 63)

For forward observation, with respect to *57(0) = 0 and £55(0) = + £55(0), we
have by (18):

*DY(0) = o, (64)
as could be predicted (among others) from *CY(0) = 1, whereas generally

“55(0)— *55(0)

iDS )= —~7 27 65
O~ 550+ 550 )
for positive *55(0), and
+ oS +S
0
£D3(0) = So(0)+*53(0) (66)

56(0)— *53(0)

for negative *$3(0). The sign of ng(O) depends on the helicity of the incident light and
on the sign of 2B]—3B3. If we decide to introduce a single depolarization ratio, strictly
speaking an anomalous depolarization ratio, irrespective of the sign of the difference
of the two molecular invariants, then instead of (65) and (66) we get:
spsioy - SeO)F =55(0)

PO 55050 @
This depolarization ratio is simply equal to the reversal ratio (22) and ranges within [0, 15],
whereas *D§(0) € [0, 1] and *DS(0) e [1/15, 1].

Previously [9] we had introduced a depolarization parameter directly given as the
ratio of the two mutually perpendicular intensity components: £0(9) = Iyy/Ixx. Obviously
*D(n/2) = % 0(n/2). However, in general, *o(8) cannot play the role of depolarization in the
full meaning of the word. For § = 0, *¢(0) = 1 what could lead to the wrong interpretation
that the scattered light were then unpolarized. As we bear in mind, for 9 = 0 the scattered
light is partly circularly polarized. For such light *0(0) also equals unity. An analyzer
parallel or perpendicular to the observation plane will transmit the same intensities. But
*0(9) can still be a useful experimental parameter.

For symmetric scattering, with regard to equations (35), (56) and (2), one can derive
simple relations between *D%(x/2), *R%0) and 1D%9]. Moreover, by (35), (50) and (59),
the following relations hold:

1-5'D°
£C0) = £ T4ips (68)
_ 1-*DS
tp71%0) = (69)

8ips
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If the symmetric and unsymmetric scatterings are present together, in particular for
perpendicular observation one finds from (45), (7), (9) and (11):

£, (—;i) _tg, (—Z—) = 2Ls3(5BS +14BY),

T T
*So (7) +%8, (?) = 1 Ls3(28B} +48B5 + 358} + 21B}; - 42BY"). (70)

The part of the component X related to the irreducible tensor of weight 1 equals:

T T
£S5, (—2—> + 18, (—2—) = 1 Ls3(4B; +5BY—6B}")

= 2% Ls(4b3s5—5byss) (45, —5boy). (70)

ayy

The destructive influence of BS® occurs now for B;Y > 0, i.e. when for scattering of linearly
polarized light B}’ acts constructively, and reaches a maximum for 4b3sp = Sboss. The
whole component X would then vanish if simultaneously B; and BY were zero. But the
latter would imply vanishing of the intensity component Y, i.e. a lack of perpendicular
scattering of circularly polarized light. It is an open question whether these conditions
are realistic,

The resultant azimuth is as previously determined by the greater of the components
(70). Introducing consequently one total depolarization ratio independently of the resultant
azimuth, for instance according to the definition (33), we obtain:

sp (™) = 30B3 +84B; )
2] 28B%+48B5+35BY+21BY—-42B%"’

whence

[

0<*D <—) < 4 (73)

in agreement with [4]. The upper limit corresponds to pure unsymmetric scattering and
is the inverse of the value (61).
For forward total scattering we have:

*S0(0)F *S5(0) = 30Ls3B3,
£5,(0)+ £S5(0) = 2 Ls2(28B5 +3B5 +35BY +21B5 —42BY"). (74)

The contribution from the irreducible tensor of weight 1 contained in the second of the
components (74) is twice as great as for perpendicular scattering (71). Since it is multi-
plied by a numerical factor only, the same conditions for constructive and destructive
influence hold. The first of the intensity components (74)-remains purely symmetric.
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From (74) we get directly:

_ 45B%
~ 28B3+3B5+35BV+21BY— 42850

*R(0) (75)
The forms of *C(0) and *p~1(0) can easily be obtained from (75) on insertion thereof into
the relations (24) and (25). All these three quantities range within the same limits as their
purely symmetric counterparts.

5.3. Natural incident light

For the completeness of our discussion, let us mention scattering of natural light.
In the early days of three-photon light scattering, the description of nonlinear scattering of
natural light was, as it were, borrowed bodily from linear scattering processes. Thus,
natural light was treated as a superposition of two modes with perpendicular polarizations
and equal constant amplitudes albeit with phases fluctuating independently, which led to
Strizhevsky and Klimenko’s result [20], or was dealt with as one wave with constant
amplitude but with fluctuating polarization direction [7-9, 21, 22]. Already Strizhevsky
[23] proved this approach to be inadequate for the correct description of nonlinear
scattering of natural light, and the matter was later discussed in Refs [5, 12, 24, 25].

There are three possible ways to define natural light. From the viewpoint of mathe-
matics the simplest way is to define natural light as a superposition of two orthogonal
linearly polarized waves with independently fluctuating Gaussian amplitudes of equal
mean intensities. A somewhat more complicated way leading to the same final result
is to describe natural light as a superposition of two contrary-handed, either circularly
or elliptically polarized waves with azimuth differing by /2 and equal mean independently
fluctuating intensities. Thus we have to perform an appropriate statistical averaging in
(26) over the complex amplitudes of the incident light, which as already stated — are
time-dependent for quasi-monochromatic light. Considering integral scattering, the calcula-
tion of the Stokes parameters (26) involves the use of appropriate second-order correlation
functions of the incident amplitudes for zero delay time 7 = 0.

On all three definitions:

55> = 3¢ = 3¢5y = 3¢y = § (sod?,
$S081) = {50820 = {So53) = {5;55) = (5,5;> = 0. (76)
On insertion of (76) into (26) we arrive at:
NSo(8) = £ L{sod? {124 +88+(3y+35+4 Re &) (1+cos® 9},
NS1(9) = L L{so>? (3y+36+4 Re &) sin? 9, (77)
which with regard to (7) and (9) decompose into:

NS3(9) = L L<so>2 {98B% +93BS + 5(14BS +3BS) cos? 8}, (78)
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NSS$(9) = 3 L{so>* (14B} +3B3) sin? 9,
NSU9) = I L{so)*B3(11—5 cos® 9),
NSU9) = —3% L{so2Bj sin” 9. (79

Light scattered forwards remains unpolarized in both (symmetric and unsymmetric)

cases.
Generally, the azimuths of both scatterings again differ by 7/2. Hence, from (33)

and (34) we have, respectively:

14B5 +39B5 + 5(14B5 4 3B3) cos® §

NDS 9) = , 80
©) 84BS + 54B5 (80)
NDU(S) = _..__E*,__ , (81)
8—5 cos? &
whence ND(0) = ¥DY(0) = 1 and
‘7
NDU (?) = %5 (82)
14B5 +39B5
Nps () _ 1 3
( 2) T 8aBS+54B3 (83)
which varies within:
¥
<7D (5) <% (84)

in full accordance with [4] and [25] but differs as to the upper limit from [23].
From equations (35), (62) and (83) one finds:

NpS 7 _ZIJ‘DS—I s
2/ 18'D%+6° (85)
1+:pS( 2
o +(3)
) 1oy
V()

(86)
2

which differ from the relations for ordinary Rayleigh and Raman processes.
When both symmetric and unsymmetric scatterings take place together, in paiticular
for perpendicular observation, one gets:

T
"o <%) —"8, (—2—> = 1 L{sop? (14B% +39B3 + 70BY + 8485 + 425,

T
NSo (;) +Ns, (

) = 1 L{so>(56B% +36B5+35BY +21B3). (87)

(ST
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Again, only one principal intensity component reveals dependence on the cross term
BSV. The whole part of scattering connected with the irreducible tensor of weight 1 is identi-
cal with (40) and the maximum of destructive influence of B;~ occurs, as previously, for
2bf,,,,, = — SbEﬂﬂ. Similarly, the whole component ¥ can be fully extinguished if simultaneo-
usly BS = BY = 0. The scattered light would then be linearly polarized in the direction
X and would arise from the B} contribution only.

The anomalous depolarization ratio calculated from the definition (33)

np () 2 28BS + 78B5 + 140BY +168BY +84BY’ 89)
2 16885 +108B5 +105BY + 63B5
can range within the limits:
N (g 8
0 < D(i)gi, (89)

where the upper limit corresponds to pure unsymmetric scattering and is the inverse of the
value (82).

5.4. Linearly polarized chaotic incident light

Let us now assume that the initially natural incident light before reaching the medium
is linearly polarized along the x-axis. In other words, we consider Gaussian linearly polar-
ized light. Usually, Gaussian light is referred to as chaotic. Then, averaging over the
amplitude E gives:

(s> = <51 = (081> = 2sod (90)
Insertion of (90) into (26) leads to:
1Sy = 2L so>? Qa+2B+y+35+2 Re 8),
1S, = 2L{spY* (7 +8+2 Re 8). ()

Simple inspection of (91) and (30) shows, at equality of the incident chaotic {s,> and
coherent s, intensities, that the parameters just calculated are twice greater. The rates
of nonlinear processes depend on higher-order coherence degrees of the incident light;
the scatterings in question depend on the second-order coherence degree 8@ = (s2>/<s50)%
This quantity, for polarized chaotic light, is twice greater than for coherent light. Hence,
polarized chaotic light is here scattered twice as effectively as coherent light. This was
alceady shown by Shen [26] and first confirmed for second-harmonic generation [27].
The same conclusion has been derived, among others, in [25] for hyper-Raman scattering.
Altmann and Strey [25] considered chaotic polarized light as a superposition of an infinite
aumber of identical polarized modes with statistically independent amplitudes. Indeed,
the resultant modulated amplitude is then Gaussian [28]. The relations (91) are valid for
single-mode filtered polarized chaotic light as well as for multi-mode polarized chaotic
light. There is no difference, since for both kinds of light g3t =0) = 2.
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In studies of the time evolution of three-photon scattered intensity or, equivalently,
of spectral broadening one should expect in general different results for single-mode and
multi-mode chaotic light depending on the time scale of the molecular relaxations. This
is directly related to the time dependence of the second-order coherence degree in the
multi-mode case which decays from two for zero delay time to unity for delay times con-
siderably exceeding the coherence time of such light.

If the number of statistically independent molecules is sufficiently great and if the
incident light is coherent, the linearly or nonlinearly scattered light will be Gaussian [29,
30]. When the incident light is Gaussian the nonlinearly scattered light does not remain
Gaussian. The intensity fluctuations in the scattered light are enhanced; this is reflected
by a value of the second-order coherence degree greater than two. In the processes in
question this quantity may reach a value of twelve. In the case of second-harmonic genera-
tion, which is a coherent process, it can amount to six. Such light is often called superchaotic.
The terms: natural light and unpolarized light mean the same in linear optics and are used
interchangeably. Unpolarized superchaotic light can no longer be called natural light
with respect to its statistics, different from the Gaussian statistics of the latter.
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