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In an isotropic medium in which light self-induces a cubic optical nonlinearity, the light field is shown to be in
squeezed states on traversal of the medium. The dependence of the squeezing effect on the polarization state of the field
and the nonlinear molecular parameters is derived explicitly. A comparison is made to the photon antibunching effect in
the same phenomenon, i

1. Introduction:

Recently, considerable activity is directed to the generation of so-called “squeezed states” of the electromag-
netic field which allow to reduce the uncertainty in the measurement of one observable at the expense of in-
creased uncertainty in another, non commuting observable. This activity is stimulated by the potential use of
squeezed states in the detection of gravitational waves [1]. Squeezing, like photon antibunching, is a“purely quan-
tum mechanical phenomenon and both are often encountered together.

A number of nonlinear optical processes have been shown theoretically to exhibit squeezing: degenerate para-
metric amplification [2,3], resonance fluorescence [4], degenerate four-wave mixing [5], optical bistability [6],
free-electron lasers 7], Jaynes—Cummings model [8] and second-harmonic generation [9]. Mandel [9] has
shown that in the case of second-harmonic generation the maximum of squeezing in the fundamental mode has
the same value as the photon antibunching [10].

As we have shown previously [11], using a perturbative approach, there exists a possibility of photon anti-
bunching in the self-induced rotation of a polarization ellipse during the propagation of a strong, elliptically
polarized light beam through a nonlinear, isotropic medium. Our results have since been ¢confirmed by Ritze [12],
who used a more general approach and obtained the strict, nonperturbative solution of the problem.

In this paper we will show that the process of light propagation in a nonlinear, optically isotropic medium can
also produce squeezed states.

2. Equations of motion

Let us consider the interaction of an intense light beam and an isotropic medium, consisting of N atoms (mole-
cules). The interaction between the light and an individual atom will be described by the following effective
hamiltonian (in the electric-dipole approximation):

Hy =~ () EOED — 4y, (EOEOEMED, (1)
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where o (w) = &, (—w, w) and ymp(w) =9, wp(—w,+—w, W, w; are polarizability and hyperpolarizability
tensors of the molecule [13], and the field operators E(a) and Ef;’ are given by

ED = [EON* = i(hw/2ey) e e g. )

We assume here that the incoming beam is a single radiation mode of frequency w, elliptically polarized and
propagating in the z-direction of the laboratory reference frame. e o 18 its polarization vector component, a the
photon annihilation operator, and k = w/c. We decompose this mode into two orthogonal modes using the
relation

ey = Py + P, | e

ef,l) and ef,2) being the o-components of the orthogonal unit polarization vectors eD and e@ of the two modes
ay and a,. Applying the orthogonality condition for the polarization vectors we obtain the following formula

a=efa; +ela,, 4)

where e’f =e*. el es =e*: e are components of the original polarization vector in the new reference frame
and the operators a;, a5 are the annihilation operators of the new modes fulfilling the boson commutation rules

[apa;-] 251] (l,]=1,2) ' (5)
So far the decomposition (3) (or equivalently (4)) is quite general and can be further specified either to two

modes of mutually perpendicular linear polarizations or to right and left circularly polarized modes.
If we assume the new modes to be linearly polarized along the axis x or y, we get from (4):

a=ea, +efa, (6)
with e, and e, given by [14]:

y =cosncosf —isinnsin g, ey=cosnsin0+isinncos(), (N
where 6 denotes the azimuth and n the ellipticity of the incident beam polarization ellipse.

For freely orienting molecules, the molecular polarizability and hyperpolarizability tensors should be averaged
over all possible orientations Q of the molecule giving

(aor(w».ﬂ = a(w)aar’ (7orvp (w»ﬂ =7 (w)5078 vp R b) ((“’)8008 TP + 73(("’)‘S oparu' @) -
Above, a(w), 71 (w), Y5 (w), v3(w) are the appropriate rotational invariants of the molecular polarizability and
hyperpolarizability tensors [13]. ‘

According to (2), (3), (6) and (8) the interaction hamiltonian (1) transforms to

Hy = ~a(w)dza, +a5a,) —3 {7, (@)a5” +a;2)a5 +ad) + y() + V()] (@522 +a32ad + u;a;ayaxn,(_ |

9
where we have introduced the abreviation o w) = (hw/2ep) o w) and y(w) = (h‘w/2eo)27,»(w).

Using the hamiltonian (9) and the commutation rules (5) we obtain the quantum equations of motion, in
the Heisenberg picture, for the operators a, and a,. We perform the interchange z = —ct, because the problem

under consideration is one of propagation type and not of a field in a cavity. As a result, the quantum equations
of motion for the slowly varying parts (free evolution eliminated) of the field operators take the form:

(d/dz)a, (z) = ~(iN/fic) {8(w) 2, (2) + ¥ («) a5 (2) () + a2 (2)]

+ [72(0) + 73(W)] [a5(2) 2, (2) + & (2) 2, (2) ]2 (2)). ' (10)

The equation for the operator a), can be obtained from (10) by way of the interchange x < y and the correspond-
ing equations for the creation operators a;, a; by taking the hermitian conjugate of (10). We have taken into ac-
count in (10) that the number of molecules interacting with the field is N,
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We have solved eqgs. (10) perturbatively in our previous paper [11] showing the possibility of photon anti-
bunching. As Ritze [12] has shown, these equations can be solved strictly provided there is no absorption in the
system. On introducing the circular basis associated with the right circular polarization vector &) = (1 /\ﬁ)

X (% +1p) and left circular polarization vector e® = (1/+/2)(%— i) (with % and  being the unit vectors along
the x- and y-axis, respzctively), we have in agreement with (3) and (4):

a =(INDa, —ia)),  ay =(1N2)ay tiay), an
and eqgs. (1) take the form
(d/dz)ay (z) = ~(iN/fic) {d{w) + (13 (w) + T3(w)]a](2)a,(z)

+ [27)(w) +75(w) + 7 3(w)] a5 (2) a5(2)}ay (2). ‘ (12)

For a,(z) we have to perform the interchange 1 ¢ 2. If there is no absorption in the system ®(w) and 71 (w),
’72 (w), 73(0.») are real and aJ{(z)al(z) as well as a;(z) a,(z) are constants of motion, permitting the strict solution
of egs. (12) [12], giving

ay(z) = exp{i[e(z) + e(z)(a1(0) a1 (0) + 2da3(0) 2, (0))]}a, (0),

a5(2) = exp{i[p(z) + e(2)(@5(0) a,(0) + 2da’ (0) a; (0))]}a,(0), (13)
where we have introduced the notation
o(z) = —(NVzffhic) o w), €(2) = —~(WVz/hic) [y, (w) + Y3 (w)], 2 =1+ 27, () (¥ (@) + Ta(@)]. (14)

With this notation clear correspondence is established between our phenomenological molecular parameters and
the parameters calculated by Ritze [12] for a particular atomic level structure.

3. Squeezing

Let us introduce the canonical variables
— + - +y. _
QO-aO ‘t'ao’ Pa__l(ao'_ag)’ 0‘1,20”5,)’, (15)
which obey the commutation relation
[Q,,P,] =2i8,. (16)

A squeezed state of the electromagnetic field is defined [4] as a quantum state in which the square of the uncer-
tainty of either Q / or P, is less than unity

©@D-©Q2<1 o<1, an
On introducing normal ordering of the operators the definition (17) can be rewritten in the form [4]
(:sz)—(Qa)2 <0 or (:Pﬁ:)—(Pa)2 <O0. (18)

Having the solutions (13) for the field operators on traversal of the path z in the nonlinear medium, we can insert
them into the definition (18) and after taking the expectation value in the quantum state of the incoming beam
we are able to answer the question of squeezing in a particular component of the outgoing beam.

Assuming the incoming beam as being in the coherent state |a) defined with respect to the operator a(0) given
by (4)i.e.:

a(0)la) = a|a), | (19)

we calculated the appropriate expectation values and obtained:
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¢0§(2)) = (0 (D = ((ay(2) +a}(2))*) — (a1(2) +a} ()
=2 Re {a% exp[2ig(z) + ie(z) + (2@ _ Dlg, 2 + (e4de) _ 1)la2|2]
- a% exp [2ip(z) + 2(e!€@ — l)lali2 +2(e2de?) _ Dia,y 11}
+ 2|0¢1|2 {1 —exp[2(cos ¢(z) — 1)| ozl|2 +2(cos 2de(z) — l)lazlz}, ‘ : (20)

where, according to (19) with (3), (7) and (11),

o = (1/\/2)(cos n +sinn) e ¥ q, 0y = (1/7/2)(cos  — sin 1) elfq, D
and_-l(JtI2 = |y |2 +]a,(2. Similarly,
CPH(z)) — (Py(2)Y* = =2 Re {..} + 210y 12 (..}, (22)

where the expressions in parentheses are the same as in eq. (20).
In order to obtain suitable formulae for the operators Q,(z) and P,(z) it suffices to interchange the indices 1
and 2 in (20) and (22) while for the operators 0,(2) and P, (z) we have:

03 — (0, () =(a,(2) + a4 (D)) — @ (2) +af(2)?
=1[((a1(2) +ay(2) +al(2) +a5(2))*) — {ay (2) + ay(2) +a}(z) +ab(2)?]
= Re{o} exp[2ig(z) +ie(z) + (e29?) — 1)ja, | + (49D _ 1)ja, 2]
— o exp[2ipz) + 2(?“‘” ~ Dl |2 +2(e299) _ 1))q, 2]

+ o expl2ig(z) +ie(z) + (2D — 1)y + (59O _ 1) ]

— o exp[2ip(z) + 2(1°@ — D], +2(e29€D _ 1)je 2]

+ 2010, exp[2ip(z) + 2ide(z) + (1)@ _ 1)42)

— 20y exp[2ig(z) + (€@ + 2@ _ 21423

+ {lai? — lay 1% exp[2(cos e(z) — D12 + 2(cos 2de(z) — Dlaey)?]
— logl?exp[2(cos e(z) — Dlay)? + 2(cos 2de(z) — 1)y 2]

+2 Ref{afay exp[(e (172D €@ _ 1)|q,|2 + ((I1-2D)e@) _ layi?]

_ 0‘1‘0"2 exp [(e—ie(z) + 2ide@) _ Dley 12 + (eiE(Z) + e 2de(2) _ 2)|a212]}} (23)
and
CP2(2):) — (P(2)Y = —Re{.} + {..}, (24)

with the same expressions in the parentheses as in eq. (23).

Although the expressions (20)—(24) are exact formulae describing fluctuations in a particular component of
the field in the outgoing beam after its traversal of the path z in the medium, it is not easy to say without a de-
tailed numerical analysis whether they are negative or not.
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()
T

(2)> -<afz]y?

1+
d=0
Ndx 0 4 i J
7 w 2 2 Fig. 1. (:Q,zc(z):) - (Q,c(z))2 versus e(z)|al?, as given by eq.
p E(z)led” | (23), for 6 = n =0 and (z) + g = 0.

In order to make the analysis a little bit simpler, let us assume the incoming beam to be polarized linearly
(n =0) with the azimuth 6 = 0. On this assumption, according to (21), a; =, =(1 \/2)a, and the complex
number ¢ can be written in the form '

a=jalel, (25)

where g denotes the initial phase of the incoming beam. Choosing g in such a way that (z) + ¢y = 0, we further
reduce the number of parameters to be dealt with in eq. (23). Making the above assumptions, we have plotted in
fig. 1 the expressions given by eq. (23) as a function of e(z)|a |2 for several values of the molecular parameter d.
Fig. 1 shows clear evidence of squeezing in Q. .(z). The maximum squeezing in this component amounting to
—0.66 makes 2/3 of the value —1 allowed by quantum mechanics for thus defined operators @ and P. In order to
achieve this maximum value, e(z)ia |2 should be of the order of unity or so, depending on the molecular param-
eter d. This requires a great number of photons la|? if €(z) is very small, as it usually is in real physical situations.
In our numerical calculations we have taken e(z) = 10~*, but even for e(z)y ~ 1070 or less the requirement
e(z)lozl2 ~ 1 is met quite realistically.

If e(z)lax 12 < 1, however, we are justified in expanding our formulae (20)—(24) in power series retaining the
terms linear in e(z)|a 2 only. This gives us approximate analytical formulae which are much simpler than the
exact ones and make it possible to compare the present results with our earlier results [11] for photon anti-
bunching. In this approximation we arrive at:

¢ Q%(z):) - (Ql(z))2 ~ —e(z)lal2(1 +sin 2n) sin 2(gy + @(z) - 0). (265

For the operator P;(z) we obtain the same value as in (25) albeit with the opposite sign. Similarly, from (23) we
get .

¢ Q,z‘(z):) - (Qx(z))2 ~ —¢(2)la 12 [(cos 26 +2d cos 21) sin 2(¢y + ¥(2))

— sin 26 sin 27 cos 2(py + ¢(2))], 27N

and on changing the sign of (27) we obtain the result for the operator P, (z). So, in this approximation, either
Q(z) or P(z) is negative, signifying squeezing in either the variable Q or P of the outgoing beam. Explicit depen-
dence of the squeezing effect on the polarization parameters 6 and n of the incoming beam and its initial phase
¢ is also inherent in (25)—(27). ¢(z) describes the change in phase of the field due to linear interaction with
the medium (refractive index of the latter). The approximation used in deriving the formulae (26) and (27) is
valid for e(z)|a12 < 1 and thus the squeezing effect is also small within the range of validity of this approxima-
tion. Unlike second harmonic generation [9], in this case the relation between photon antibunching [11,12] and
squeezing is not so simple. The photon antibunching effect which is proportional to 71 (w) sin 4n necessarily re-
quires the beam to be elliptically polarized and attains its maximum value for n = n/8 whereas the squeezing ef-
fect is not so sensitive to the polarization state of the field and can exist for any polarization. For the parameters
6 = n/4 and n = /8, for which the antibunching has its maxinlum value, the squeezing effect in the variables O
or P, depends according to (27) on the molecular parameter 71(w) alone only if 2(py + ¢(2)) = 7/4 + nw and its
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value is then Nz(hc) 1|a|2 1(w). If the incoming beam is circularly polarized the amount of squeezing is
Nz(hc)‘ joe| [Nz(w) + 73(w)] sin 2(g, + ¢(2) ¥ 6) with the upper sign for'the rlght sense. In the case of a linear-
ly polarized beam with § = 0 (along the x-axis) the effect is equal to 2Nz(hc)_ la| rl(w) + 72(w)

+73(w)]sin 2(gg + 9(2)).

Particularly interesting is the case when the incident field is polarized perpendicularly to the observed field
i.e. for 8 = n/2. In this case we still have 4 non-zero effect with the value 2Nz(hc)“ lat? 71(w) sin 2(gg + ¢(2))
and with the same molecular parameter y 1(w) which contributed to the photon antibunching effect. It should
be noted at this point that the appearance of the field with polarization perpendicular to the linear polarization
of the incoming field is a purely quantum effect [12]; moreover, this field exhibits squeezing but does not ex-
hibit photon antibunching.

As we have shown in this paper, light propagating through a nonlinear optically isotropic medium can emerge
from the medium in a squeezed quantum state which is produced by the light itself. Accordingly, we refer to this
new effect as self-squeezing.
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