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Abstract. Resonance fluorescence of two-level atoms pumped by a strong
resonant laser field is examined, taking account of cooperative damping y,, and
level shifts Q;, due to radiative and dipole-dipole interaction. Applying the
Lehmberg master equation for two atoms, we derive a closed set of 15 equations
of motion for the time evolution of the atomic variables. The set is solved using
the Laplace transform and quantum regression theory for the steady-state
spectrum and intensity correlation. The steady-state solutions for y,, #y (where
2y is Einstein’s coefficient A) are shown to differ by a ‘scaling factor’ from those
for y;,=7. In the strong field limit Q> 7y (where Q is the Rabi frequency), for the
three regions (1) Q>»y>»Q.,, (2) O»Q;,>»y and (3) Q=Q,,>»7y we derive
analytical formulae for the spectra of symmetric and antisymmetric modes. The
intensity correlation function is calculated for regions (1)—(3). '

1. Introduction

Cooperative effects in resonance fluorescence arising from the interaction of
many two-level atoms with an external laser field have been studied extensively
during the past few years [1-12]. Strict solutions of the problem, however, can be
obtained only for systems of a few (two or three) atoms [13-19]. To solve the problem
for the many-atom case some approximations are needed, for example suitable
decoupling procedures [7-11]. This is precisely why two-atom resonance fluores-
cence has become a subject of extensive research in recent years. The resonance
fluorescence spectrum and intensity correlations have been considered for the small-
sample case (the $2-conserving system) as well as for an extended system (the S?
conservation breaking case) in either the master equation [5-10, 15] or Green’s
function [13—14] approach. It has been shown that the two-atom resonance
fluorescence spectrum should exhibit additional side-bands at  — w,= + 29, where
Qis the Rabi frequency. As has been shown [10, 15], these additional peaks should be
distinguishable from the background only at extremely large Q, while at moderately
large Q a cooperative system of two atoms has the three-peak structure of resonance
fluorescence spectra well known from the one-atom theory [20-23] (see also [24]). In
those calculations, the first-order dispersion forces (or dipole—dipole interactions)
between the atoms [25] were usually neglected. Freedhoff [26] and Kilin [27], using a
dressed atom approach, have included dipole—dipole interaction and obtained
analytical formulae for the resonance fluorescence spectrum. They have shown that
the spectrum consists of seven lines, with the side-lines symmetrically located with
respect to the central line. Their formulae, however, are valid only when the dipole—
dipole interaction between the atoms is comparable to the interaction of one atom

+ This research was supported by Research Project MR 1.5.
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with the field, and the lines are well resolved. Recently, Kus and Wodkiewicz [28]
and Agarwal et al. [29] have numerically obtained the two-atom spectrum, taking
into account dipole-dipole interaction, and have confirmed the Freedhoff—Kilin
results, predicting that for a strong dipole—dipole interaction additional components
can appear in the spectrum. Kus and Wédkiewicz [28] have also pointed out that the
spectrum should be asymmetric. Mavroyannis [13, 14], using the Green’s functions
approach, has also studied the influence of the dipole—dipole interaction on the
resonance fluorescence spectrum of a two-atom system, but his spectrum consists of
five lines.

In this paper we consider the effect of interatomic interactions on two-atom
resonance fluorescence. We have adapted Lehmberg’s [30] approach to the case of
coherent pumping and have obtained a closed system of 15 equations describing the
time evolution of the atomic variables. Apart from the Rabi frequency Q describing
the interaction of an individual atom with the field, this evolution depends on the
collective parameters y;, and Q,,, which describe collective damping as well as the
collective shift of energy levels. These two collective parameters, which provide a
measure of the magnitude of interatomic interaction, determine the collective
properties of the system and are the subject of the study in this paper. The system of
equations is split into two subsystems, the one of nine equations for symmetric
modes, and the other of six equations for antisymmetric modes. The steady-state
solutions of these equations are calculated for both an $2-conserving system and a
svstem without 8% conservation. We make use of the quantum regression theorem to
derive equations for the two-time correlation functions. Applying the Laplace
transform method, we obtain an analytical expression for the steady-state spectrum
of resonance fluorescence of such a system. In the strong field limit the roots of the
denominator defining the positions and widths of the spectral lines are found
approximately (up to terms in ~Q7~?) for various ranges of Q,,. This enables us to
derive the approximate analytical formulae for the spectrum in a form explicitly
showing its resonant structure. Moreover, we have calculated the time dependence
of the intensity correlation function for different values of the dipole—dipole
interaction between the atoms.

2. Equations of motion for the atomic operators

In our model we consider two identical two-level atoms, separated by a distance
712, in the field of a linearly polarized, coherent laser beam, the frequency @ of which
is tuned close to the atomic transition frequency wg. The atoms are coupled to all
other modes of the electromagnetic field which are assumed to be initially in their
vacuum state. We will assume in our calculations that both atoms experience the
same field, including its phase. In practice, a situation like this could be realized, as
Richter [31] has proposed, by fixing the atoms on the surface of a plane glass plate
placed perpendicular to the direction of the propagation of the laser beam.

To obtain equations of motion describing the time evolution of the atomic
variables, we apply Lehmberg’s approach [30] which gives us the following
equations of motion for the pseudo-spin operators of an individual atom:

S"f = —(y+iA)ST —iQST+2(y,, +1Q,)S1S5,
St = —(—iN)ST +1QST+2(y1, —€2,2)S5 53, 1)
Si==2p(ST+H+3UST ~ ST~ [(112+1Q12)ST S; +H.cl,
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where S and ST =[S, ] are operators that raise and lower the energy of atom 1,
and ST describes its energy; H.c. denotes hermitian conjugate. These operators fulfil
the well-known commutation relations

[Sz+)Sz_]=2Slz, [Slz) Sii]:isii) l'=1,2, (2)

and the operators of different atoms are assumed to commute. In equation (1), 2y is
the Einstein A4 coefficient for spontaneous emission, ) is the Rabi frequency
describing the interaction of an individual atom with the laser beam, and A=wy—w
is the detuning of the laser frequency below the atomic resonance. The collective
damping y;, and frequency shift Q0 ,, which both depend on the interatomic distance
t,,, are defined by [25, 30]

_3 ns 2 Sin(kryp) s o2 cos(krlz)_sin(krlz)
= r{ -Gt T g )| Tt~ g | ©

Q= %y{ =21 s [Si“ (Rriz) | o8(kr1) ]} *)

kri, (k”12)2 (/?"12)3

where jtand };, are unit vectors along the transition electric dipole moment and the
vector ¥y, =r; —F,, respectively, and r{, = Ir12’) k=w/c.

The equations for atom 2 have the same form as equations (1), except that the
indices 1 and 2 are interchanged. The atomic operators of equation (1) are slowly
varying parts of the operators

ST (=S{(DexpGwr), Si(t)=S7()exp(—int), Si(t)=Si(2). )

For a small sample, i.e. for kr;,«1, y;, tends to y and Q,, represents the dipole—
dipole interaction between the atoms. Ify,, =7, and discarding the frequency shift
Q,,, equations (1) with A=0 become equivalent to the master equation usually used
to describe such a cooperative system [5, 15, 32]. Equations (1) are generalizations of
the optical Bloch equations commonly used to describe optical resonance pheno-
mena [33]. The validity of equations (1) hinges on the assumption that the system is
markovian. The markovian approximation used in deriving these equations has been
discussed by Milonni and Knight [34].
Introducing the notationt

Q A
T=2yt! ﬁzi;) 5:?y azTy b:7! (6)

we rewrite equations (1) in the form

d
— ST = —4(1448)S7 —2ipS7 +(a+ib)S3S;,
T
d
ST =—3(1-id)ST +2ipS7 +(a—ib)S] S, (7
d

ZJ;Siz —(ST+DH+iB(ST —ST)—L(a+b)S;S; +H.c].

T In our previous papers [17, 18] the notation 4 =7 was used.
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For two atoms, this system of equations generates a closed system of fifteen
equations describing the evolution of the atomic variables, nine equations for

symmetric modes and six equations for antisymmetric modes. We now write both

subsystems in matrix form,

B _ixia, Y -By,
where 4 is the following real 9 x 9 matrix:
[ —3(1+a) 48 O 0 a 0 3(6+b)
-5 -1 —a 0 0 0 0
- —-a -1 0 2p 4a 0
—-p 0 | 2B 0 0
A= 0 —2B =28 =28 —3(3+a) 8B 0
0 0 0 0 —pB -2 0
—3(6+b) O 0 0 b 0 —i(+a
0 0 0 0 —-306-b6) 0 0
L 0 0 0 -9 0 0 -p

The vector X has the components
X, =S7+S; +S7+57,
X,=81S7+85S;3,
X,=8;S; +S7S7,
X,=S{S5+S7S;,
Xs=S7S;S;+S5SfS7+858587 +S{ 8593,
Xs=S{S18S353,
X;=—iST +S; —S7 —S7),

Xg=—i(S{ Sy S; =878/ Sy +87.5; Sy —S{8753),

Xo=—i(S; S5 —S}SH).

The components of the vector & are given by

o= —4Pd1;.
B is the 6 x 6 real matrix

-t —-a) 48 a 16— 0

—p -1 0 0 —b

B 0 —28 —1(3—-a) 0 0
—106-6) 0 b —11-a) 0

0 b 0 —-pB -1

3 0 0 —3(5+b) 0 2p —%(3—a)_

—b

0
(0 +b)

a

—28

&)

9)

(10)

11)

(12)
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The vector Y has the components
Y =S{ —-8; +S{ =83,
Y,=8{S8; -S7S;,
V3=S8{S{S; +S7S{S{ —S;S; ST —S{ 573,
Y= —i(S{ —S; =S{ +53),
Ys=—i(S;S1 =S/ S),
Ye=—i(S{ S S; —S7 8157 —S7S; 87 +S1S55S5).

(13)

It is obvious from equation (9) that the matrix 4 forms two separate blocks if §=0
and b=0, one of dimension 6 x 6 and the other of dimension 3 x 3. Similarly, in this
case the matrix B is found to be composed of two 3 x3 blocks. Under these
assumptions equations (8) are identical to those considered by us in an earlier
paper [17]. ,

The square of the ‘total spin’ of the two-atom system can be expressed in terms of
the X vector components as

$?=2-X,+X;+2X, (14
and, in accordance with equations (8) we have that

%SZ=~(1——a)(—X2+X3+4X6). (15)
This means that $? is conserved in the system for a=1 only, otherwise it decays on a
time-scale ~[(1 —a)2y] 1. If a is very close to 1, however, this decay time is much
longer than (2y) ~! and we can ignore this decay in times ~(2y)~ !, assuming that S2
1s conserved. This is consistent with the small sample assumption, usually made in
describing cooperative systems [5-10, 12, 15], because a tends to 1 as the interatomic
distance becomes small compared to the light wavelength. However, for interatomic
distances comparable to the wavelength, a differs considerably from 1 and we can no
longer ignore the 82 decay. This is the $? conservation breaking case [17].

The system of equations (8) can be transformed using the Laplace transform
method into a system of algebraic equations in transformed variables which can be
easily solved. To obtain the time dependence, however, we have to know the roots of
ninth- and sixth-order polynomials obtained from equations (9) and (12). These
roots can be found either numerically, or in an approximate analytic form for the case
of a strong laser field; we will proceed along the latter path. However, it is possible to
obtain an expression for the resonance fluorescence spectrum in closed form without
knowing the roots; this will also be given. To simplify slightly equations (8), we will
assume later on that the laser frequency w is tuned exactly to the atomic transition,
i.e. that §=0.

3. Steady-state solutions

The steady-state solutions of equations (8) are easily obtained. It is obvious that
only the X-vector can have non-zero steady-state solutions, while the steady-state
solutions of the Y -vector are zero. Moreover, it is important to note at this point that
there are two different steady-state solutions of X depending on whether a#1 or
a=1. This fact is connected with $2 conservation for a=1 and the reduction by one
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of the number of independent variables. In this case the determinant of the 4 matrix
vanishes because of the linear dependence of the variables. For a# 1, the steady-state
solutions for the expectation values of the atomic operators have the form

(xpy= D),
=PI
=4,

xp= LD,
o= =19,
=L

xy=

(Xg>=0,

xy=-2,

N

(16)

with

M =32p*+ 87 +1b% + $(1 +a)?,

For an S conserving system, i.e. for a= 1 when the singlet state is not populated,
the steady-state solutions for the same expectation values of the atomic operators are

e

<X3>=w1+w—2ﬁ2, (17 a)
<X4>=iv!ﬁ,

==L,
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484 )
<X6>:_]Tﬂ4v~_)

2pb
<X7>:‘]€[‘,

(17b)
<X8>:O7
28%b

Xoy=-22,

where
M=12B*+4B2+4p? +1.

The above steady-state solutions, apart from the collective damping parameter a
which is equal to 1 in an $? conserving system, also include the dipole—dipole
interaction parameter b, which can play an important role when the interatomic
distances are not too great. Using equations (16) or (17), we can calculate any steady-
state characteristic of the two-atom system, such as the intensity of fluorescent light
or its intensity correlation. The exact steady-state solutions of the master equation
for the density matrix of a cooperative system of many atoms have been discussed by
Puri and Lawande {12] and Drummond [35]. Recently, Richter [31] has obtained
results for the steady state in the two-atom problem, including also the detuning of
the laser frequency from resonance.

According to the equations (14) and (16), the square of the total spin of the two-
atom system has a steady-state expectation value of

(STy=2—16p*/M", (18)

giving, in the strong field limit, the value 3/2. This value signifies the same
population of all triplet and singlet states of the system. For an S$?-conserving
system, the singlet state remains unpopulated and (82> =2. In a similar way we can
calculate the intensity of fluorescent light, which is proportional to {(S*S™>=(X,>
+ (X3, and the normalized intensity correlation function, which is proportional to
(ST28725/(S*S™>2. For S*-conservation breaking, this quantity is given (with
the use of equations (16)) by

168*+4p>+402 +5(1+a)?

@) = 19
£70) 168°+ 857 +1 ’ 19
and for 82 conservation (from equations (17)) by
4 2,132
g(z)(O)Z 12+ 48+ 46"+ 1 20)
168*+8B%+1

The results (19) and (20) agree with those obtained previously [5, 18, 35] for 5=0.
Equation (19) gives the value 1 in the strong field limit, whereas equation (20) gives a
value of 0-75. Richter [31] has shown that this value can be reduced considerably if
the laser frequency is detuned from resonance. The dipole-dipole interaction b does
not considerably affect the initial value of the intensity correlation function g'®(0) for
the strong field. Equations (19) and (20), however, are valid for any values of the
parameters. In figure 1 equation (20) is shown, with g@(0) plotted against b for
different values of . This shows clearly that, for fields that are not too high, g‘®(0)
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Figure 1. Plots of g?(0) against b for ditferent values of §.

depends strongly on b. The possibility of g®(0) taking values less than 1 is related to
the so-called photon antibunching effect [21, 22, 36].

4. Resonance fluorescence spectrum

Using the Laplace transform method to solve equations (8), and applying the
quantum regression theorem, we calculate the resonance fluorescence power
spectrum of the two-atom system which is the transform of a suitable combination of
atomic correlation functions [30]:

o) 2
Pe(2)=wg j drexp(—zt)lim Y exp (GkR-r)(ST (DS; (t+1),  (21)
0

tow ,j=1
where

wg=(3y/4m) sin? 0,

0 being the angle between the observation direction unit vector R and the atomic
transition dipole moment u.

The resonance fluorescence spectrum can easily be obtained from equation (21)
by using the definition

Pe(w)=Re Py ( z‘w;/w" > . 22)

The spectrum Pg(2), calculated from equation (21), can be resolved into two parts:
the symmetric part P, (2) and the antisymmetric part P_(2):

Pr(2)=%wg {[1+cos (R 1 ,)]P,(2)+[1 —cos (kR r))]P_(2)}. (23)

4.1. Symmetric modes

Because the main aim in this paper is to discuss the effect of the dipole-dipole
interaction on the resonance fluorescence spectrum, we assume here that a=1.
Under this assumption, the symmetric part of the spectrum P, (2) is given by

nf(z)

AR 24
Br=M(z)’ (29

P ()=
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where
L(2)=[(z+1)2(2+2)+ 2622z + DI{(z+ 1+ 2% (2 +2)]
x [(24 1)z +2)> + 42422 + 112+ 8)] — B*2[(z +2)(z* —2)
+ 8252+ 7]} + B22l(z + )22+ 3) + 8B%1[(z + DX (2+2)°
+328* 22 +3) +4522(2 + 1)2 + 2% (= +2)(82 + 172+ 8)]

+b3(z+1) {%(z—{- D+2)(z+1)2 +(2+2)*]
1 7

+ﬁ2(2+2)|i5(z+ NC2z+1) <22+ §z+4>

+2(z+1)(E+2)+ %z(2z+3)]

b4
+2B%(52% +162° + 152+ 8)} +1—6—(z+1)2(z+2)2, (25)

1
M(z)=25+122"+ <62+ 5b2+24[32>26

9 67 1
180+ b2+ 18842 |25+ | 321+ — b2+ —b*
+<8O+2 + ﬂ)z-l—': + e

3
+(600+ 66787 + 144/34]24+ [360+33b2+ .
2\ 2 4 3 145 2
+(996+2967)B% +668p* |2+ | 248+~ b

13
+ Rb4+ (904 +495%) 2 +4(301 +b*)B* + 256 8° ]22

3
+ [96+21b2+ L2 34675+ 16(57+b62)p* +s12/36] 2

1
+16+5b*+ 1b4+ 8(10+b2)B? +4(64 +3b%)p* + 19285, (26)
and
4p*
=, 27
"M (27)

Equation (24) is the exact analytical expression for the resonance fluorescence
spectrum of a two-atom system, taking the dipole-dipole interaction into account.
The z=0 pole of equation (24) contributes to the delta—shaped coherent part of the
spectrum, which we will drop in the following discussion. The factor #, as given by
equation (27) is related to the so-called scaling factor [6]. (This factor has a different
value when a#1[17, 18].) Equation (24) is in agreement with the results obtained by
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Griffin and Harris [37]. Using equation (24) with the definition (22), the incoherent
part of the spectrum can easily be plotted with the help of a computer. Instead of
doing this, however, we calculate approximate analytical formulae for a strong laser
field and different ranges of values of the dipole—dipole interaction parameter b
revealing the explicit resonant structure of the spectrum. In the strong field limit,
B> 1, the approximate roots of the expression M(z) given by equation £26) can be
found, enabling us to derive the formulae for the spectrum in a familiar form,
namely, with resonance denominators. Our approximation includes all terms up to
the order of 1/82. Three different ranges of vilues of the parameter b are considered:
(1) B>>1>1b], (2) B> b|>>1 and (3) f~|b|>1.

(1) g>»1>» |b| In this case the dipole-dipole interaction between the two atoms is
very weak and the incoherent part of the spectrum given by equation (24) takes the
approximate form

2
P+(V)=n{<1_l+(b/8)> 1o 3/2

1682 ) v2+1/4  24B* v+ (9/4)
14+ (2/4) 5/
162 |:(v+4ﬁ)2+(25/4) Hh_ﬁ}

1 (bz_ 35b2+64>[ 1/4(7—(b%/4))

" 16 6457 )| +un)+(7—b4 4216 +”1"—“1:|

n b2 V+u1
b o
168| ru )2+ (7—bE A6 1T

2_ 2
+<1+35b 48)[ (3 +0%/4)/4 +uﬁ_u2]

19282 (v4u,)?2+(3+b%/4)*/16
+ﬁ(10—b2)[ vtz o —uﬁuz]}, (28)
(v+u2)2+<3+:(> /16
where
0=
= (29)
and
b2 3
_ 2,2 2
ul—\/<4ﬁ + I +16)’
(30)

, b 21

Although equation (28) looks rather complicated, it shows the well-known structure,
proposed by Agarwal ef al.[15] for =0, consisting of a central peak v= 0, side-peaks
at the Rabi frequency v= +2f from the central peak and additional side peaks at
v=+4f. In addition to lorentzian-type lines, it also contains dispersion-like terms .
As the dipole—dipole interaction comes into play, our equation (28) shows explicitly
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the modifications in the spectrum. The amplitudes of the =0 peaks undergo an
enhancement, proportional to b%. The lines v=+2f start to split according to
equations (30), and their 3/4 and 7/4 widths are also modified. Some additional terms
also appear. However, as long as |b[ « 1 these modifications are very small and can be
neglected. So equation (28) indicates the trend of possible changes as the dipole-
dipole interaction increases.

2) B>>|b|>> 1. In this case, the dipole—dipole interaction, still much weaker than
the interaction with the field, becomes more pronounced. The spectrum is expressed
as

pomenl(1_ Y 1 7 .1
s =m (1= 15 V(14 647 v+ (9)4)

b2 5/2
T4 [(v+4ﬂ)2+(25/4) HH_B]

1 b 3 (5+(3b/8B))/4
+5[< +@_74"1E>(v+2ﬂ+b/4>2+<5+(3b/8ﬁ>>2/16 ”“_ﬁ]
1 b 3 (5—(36/8B))/4
+5[< “@+W)(wzﬂ—b/w+<s—<3b/8ﬁ)>2/16 ””_ﬁ]
1 Sb v+28+(1/4)
" [5<1+@><v+2ﬂ+b/4>2+<5+<3b/8ﬁ)>2/16 ”3"’”’3]

1 56 v+28—-b/4
_[3<1_W)(v+2ﬁ—b/4)2+(5—(3b/8/ﬁ))2/16 ”““ﬁ]}' D

Equation (31) exhibits some interesting features. First, the lines at v= + 2f split into
doublets with components separated by /2. Because [b|> 1, this splitting is larger
than the widths of the lines and both components can be resolved. As a result, the
spectrum consists of seven lines. The side-lines are located symmetrically either-
side of the central line v=0, and are given by v= +2fFb/4, + 4B. The amplitude of

p=20
i) — b=0
- b=5
' 1m | FTops b:p L :[-s:.
8" 0 P
=< o Q
— 80| X FON
= 1\ x
a* o
| | .
5V'% o ® w0 6% B @ B D
rerer— Q r——-

Figure 2. Resonance fluorescence spectrum for symmetric modes, for f=20 and various
values of the dipole—dipole interaction between the atoms. Only one side of the
spectrum is shown as it is symmetric.
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the additional pair of side-bands at + 48 is proportional to 52/8% and is much greater
than for =0, for which it is proportional to 1/82 [10, 15]. This means that the
dipole-dipole interaction can play a crucial role in the possible observation of these
lines. The central peak amplitude decreases as 52/82. The spectrum calculated using
equation (31) for =20 and lb|=5 is plotted in figure 2. There are a number of
dispersion-like terms in equation (31). Their role in the spectrum is illustrated
separately in figure 3, where the spectrum is plotted with and without these terms. It
1s interesting that these terms somewhat worsen the resolution of the doublets at
v=12fFb/4, but improve the resolution of the peaks at v= 4 4p, although generally
they do not contribute significantly to the spectrum.

3) |b| ~ B> 1. As the interatomic distance decreases, the dipole~dipole interaction
can approach a value comparable to the Rabi frequency, and the spectrum takes the
form

B s+ (/4)—4)  (8+a?+5)/2u?
P+(V)_"{[ u’s V24 ((8+ 02 +5)/2u%)? J”"_s]
o? (3+(8/u?)/2
W[(v+2uﬁ)2+(3+(8/u2)y2/4 +ﬁ*_ﬁ]
u+o/2 [ (5 +(a/2u))/4
2 | O+upraB+ Gt @aiie TP h
u—o)2 (5 —(2/2u))/4
M [(v+uﬁ—~ocﬁ/2)2+(5—(oc/2u))2/16 H“‘ﬂ]
[ ow v+ 2uf
+ | 32018+ 02)u’B (v+2uP)? + (3 + (8/ud))?/4 +B—’"BJ
N [ (u+ a/2)(up + ag) v+uf+of/2 o
dofu(bu+a)  (v+uf+af/2)? +(5+(o/2u))?/16 -

[ (u—0/2)(up —og)

vtuf—ap/2

4ofu(6u —a)

(v+up—af/2)?+(5—(a/2u))*/16

+ﬂ—)_ﬂ:|}’ (32)
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where

2 4

b=24p, u2=4+%, s2=16+a2+%~,

295 27 1
w=4(596+TO(2+‘8—O(4+RO(6>, (33)

p=48—1202—o*, g =44+ 3o,

The parameter a provides a measure of the strength of the dipole-dipole interaction
with respect to the Rabi frequency. For a=1, 6=2f, and the dipole-dipole
interaction (in units of frequency) is equal to the Rabi frequency. In this case the
spectrum again has seven lines, but their positions and widths are different than for
the previous case. The positions are: v=0, +(u+0/2)8, +2up. The components of
the doublet in the vicinity of the Rabi frequency are very well resolved, with splitting
equal to o/f. The amplitude of the peaks at v= 4 2uf} increases substantially and they
are clearly resolved. This is shown in figure 2 for f =20 and |b| = f. The spectrum (32)
apart from the dispersion-like terms, agrees with the results obtained by Freedhoft
[26] and by Kilin [27].

4.2. Antisymmetric modes

The resonance fluorescence spectrum of two atoms consists of two parts:
symmetric P,(2) and antisymmetric P_(z) as given by equation (23). If the
interatomic distance is much smaller than the wavelength of the emitted light, the
factor 1 —cos (kR r,,) at P_(2) tends to zero and the antisymmetric modes do not
contribute much to the spectrum. For larger distances, however, their contribution
can be important. To evaluate the spectrum of antisymmetric modes we assume here
that the interatomic distance is large enough for 1 —cos (kR * r, ;) to be not too close to
zero, but we set a=1 to simplify the calculation of P_(z). This is of course an
approximation, because a=1 only for small distances. With this approximation we
easily obtain the following formula for the antisymmetric part of the spectrum:

b’ 4z +3ib)(z+2+ib) + 1 +3ib+287]
= ) ettty (e 4 1 +3i0) (5 4 1+ ib) + 4% + L + Lib)

In the strong-field limit this spectrum has the following approximate resonant
structure:

(34)

P _ﬁ{ 14(3/164%) b v—(b/2)
'(v)_Z (v—=B/2))*+(1/4) 4> (v—(b/2)*+(1/4)
3(14(5/12B) — (36 +5%)/1928%) /4
(v—=3b+2B)2+9(1 —(b/24P))?/16
3(1—(b/12B) — (36 +b%)/192p%)/4
(v—(3b/4) —2B)* +9(1 + (b/24B))*/16

+ 1 5+ /B (v—((36/4) +2B))

88| (v—(3b/4)+2B)* +9(1 —(b/24P))*/16

B G—=O/PH(v—3/4b-2p) ]} (35)
(v—(3b/4)=2P)2 +9(1+ (b/248))*/16 ||
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Figure 4. Resonance fluorescence spectrum for antisymmetric modes.

This spectrum is shown in figure 4. It has three lines at v=4b and 25+ 2. Thus, it is
shifted with respect to the symmetric part of the spectrum, the shift being
proportional to the dipole—dipole interaction between the two atoms. Because of the
factor 1/2 in equation (35), all line heights are smaller than the lines of the symmetric
part. This spectrum is asymmetric both in the positions of the lines and their
amplitudes.

5. Time dependence of the intensity correlation function
T'o calculate the intensity correlation function of the fluorescent light, we have to
calculate the time second-order correlation function (intensity correlation function),
which in the far-field zone can be expressed in terms of suitable combinations of
atomic operators. With the proper normalization (the same as used in equation (21)),
it can be written for the two-atom case we are considering, as [16]
2

GORy, Ry, t+ D) =wrg, 3, (STOSTE+DS t+0ST (1))

i k=1
x exp [ik(r; " R, + Fi* Ryl  (36)

where wy is the same as in equation (21), ry, is the vector connecting the two atoms,

and R, and R, are unit vectors in the two possible directions of observation of the

photons. A more convenient quantity to deal with is the normalized intensity

correlation function, defined as

GHR,, t; R, t+7)
G(l)(Rl) t)G(l)(Rly t+‘[) ’

gPRy, ;R 1+ 1) = (37)

where

GO(R, =wy Y. (ST (ST (1)) exp (kry; R) (38)

ij=1
is the first-order correlation function (intensity) of the fluorescent light at the space—
time point (R, ). We assume here that R, is equal to R,, i.e. that both photons are
registered at the same point R. Moreover, we assume R to be perpendicular to ry,.
Under these assumptions, equations (36)—(38) simplify considerably. In the steady
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state the normalized intensity correlation function given by equation (37) depends
only on the time difference 7. Using again the quantum regression theorem and the
equations of motion (8), together with the steady-state solutions (17), we calculate
the Laplace transform of the function g®(7) to be

79(2)=g?(0) ]]\S(z)) (39)

where

N()=[z+1+4B%1{8B* 22+ 1)(52+8)

+BH =+ )[4z +2) (72> + 182+ 10) + b2 (2 + 4)]

+2(x+ 1)’ (2 +2)[(2 +2)2 +46%1}

+2{(z+ 1) 2+ 2)[(z+ 1>+ 5021 [(z +2)* +457]

+ B2 (z+ 1)(z+2)[4(z + 1)(42* + 92+ 4) +b%(42+ 3)]

+2B%[2(142° + 4027 + 352+ 10) + b%(2+ 1)] + 16°(22 + 1)}, (40)
M(z) 1s given by equation (26) and, from equation (20), the initial value of the
normalized intensity correlation function is g2(0) (the tilde represents transformed
quantities). The expression (39) was calculated under the assumption that a=1, i.e.
for an S$2-conserving system; none the less, it is valid for any values of the parameters
B and b. In the strong field limit the approximate roots of M(z) used in the spectral
calculations can be applied here to invert the Laplace transform (39) and obtain the
time dependence of the function g¥)(t). Three different regions of the values of the

dipole-dipole interaction between the atoms can again be distinguished, and we
obtain

(1) for f>>1>|b|,

‘”(r)—i ~1£-}-lex —zr +lex
=16\ 3 Te P T2 2P
b? 1 b? b?

7 N O, — hal

L] -3 4),] (“s)

X exp 41 34+ i T | pcos(2f7) “1
I 1 b
(2) B>|p|>1,

g =1+ —exp( % ) + —exp< — ;T>cos(4ﬁt)

—%{cos<2ﬁ+ i—b>t+cos<2ﬂ—%b>r
[sin<2,3+%b)t—sin(Zﬁ—%b)rJ}exp(—;r), (42)
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v
o
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(3) for |b|~p>1 and b=2pa,
g(z)(r)=%{;+§25exp|:—%<3+%>r]cos(2uﬁ)r
1 1 s o 1
-—m—) exp| — o +Z T [cos u-l—zoc pr
1 1 o 1
T =) exp[—z<5——2;>r:|cos<u—5a>ﬂr

+_644—20a24—3a44-a6/4+—(164—5a24-a4/2y
16u?s(8 + o + )
<—8+a2+s> }
Xexp| ————— |T+s—>—s ;,

2u?

where

w=4+50? and s>=16+0o2+1a*.

(43)

The time dependence of the normalized intensity correlation function given by
equations (41)-(43) is plotted, for different values of the dipole—dipole interaction
parameter b, in figures 5 and 6. Obviously, as the dipole—dipole interaction between
the atoms becomes comparable to the Rabi frequency, this time dependence is
different from that for small 5. In the strong field limit, however, the initial value for
=0, g#(0), is independent of b and is always 0-75, in agreement with the results of

T —

Figure 5. Time dependence of the intensity correlation function g'?(1), for various

values of b.

—b=p
' 16} —-b=4f

T —

Figure 6. As figure 5, but for a very large dipole—dipole interagtion parameter.
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Agarwal et al. [5] for b=0. This means that the possibility of observing the photon
antibunching effect in a short time interval is not affected by the dipole—dipole
interaction. In the case of an $%-conservation breaking system, i.e. for a# 1, these
results will change. We have discussed previously [18] the intensity correlations in
such a system, neglecting the dipole—dipole interaction. We have shown that, in spite
of the fact that g?(0)=1 in the strong field limit, and if we observe the intensity
correlations at the same point R, it is still possible to find a configuration of two
photodetectors which allows antibunching of the two photons to be observed, i.e. a
configuration for which g? (R, R,, 0)<1. This means, however, that we need two
photodetectors to observe this effect.

6. Summary and conclusions

We have considered the problem of two-atom resonance fluorescence, paying
particular attention to the role of the interatomic interaction in the spectrum and
intensity correlations of the fluorescent light. The closed system of 15 equations
describing the system was split into two subsystems—one of dimension 9 for
symmetric modes, and one of dimension 6 for antisymmetric modes. ‘These systems
of equations have been solved by applying the Laplace transform method. This
enabled us to obtain analytical formulae for the power spectrum of resonance
fAluorescence, both for symmetric and antisymmetric modes. In the strong field limit
we obtained approximate analytical formulae that reveal the resonant structure of the
spectrum as well as the time dependence of the intensity correlation function. We
have considered three ranges of values of the interatomic interaction, which is of the
dipole—dipole type. There are two different sets of solutions, depending on whether
or not the system is $2 conserving. The steady-state solutions are discussed for both
cases. The role of the dispersion-like terms in the spectrum is also discussed. We
have shown that, for small values of the dipole-dipole interaction, the spectrum is
slightly different from that obtained by Agarwal et al. [15]. Our formula shows
explicitly the trend of these modifications. The lines at the Rabi frequency away from
the center (v==+2f) start to split, but their splitting ~b%/f is very small and is
masked by the linewidth. There are also small changes in the widths 3/4 and 7/4 of
these lines. The amplitudes of the lines are augmented by some extra b-dependent
terms. As the dipole—dipole interaction increases, i.e. the interatomic distance
decreases, we can have a situation in which f>» |b|>>1. In this case the spectrum
differs significantly from the previous one. The doublets in the vicinity of v= 128,
separated by a distance b/2, become clearly resolved and the spectrum consists of
seven lines. The amplitude of the additional pair of side-bands at v= +4f, the
existence of which several authors have dealt with {8-10, 15, 17], now becomes
proportional to b2/f? and is much largerthan 1/8% when b=0. Thus, the existence of
these lines can be attributed to the dipole-dipole interaction rather than collective
damping in the small sample case. Moreover, we have shown that a number of
dispersion-like terms appearing in the spectrum lead to a worsening of the resolution
of the doublets at +2p yet, surprisingly, improving the resolution of the lines at
+4f. For still smaller interatomic distances the dipole-dipole interaction can
become comparable to the interaction of the atoms with the field; the splitting of the
doublets is very clearly visible and the amplitude of the peaks at +4f drastically
increases. Our formula, obtained for this case by discarding the dispersion-like
terms, reproduces the spectrum obtained by Freedhoff [26], who used the dressed
state formalism, as well as that obtained by Kilin ([27]. We should mention at this
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point that the way we have calculated the spectrum makes it impossible to recover the
spectrum of Agarwal et al. [15] simply by setting b =0 in the formulae, except for the
case of small b.

The antisymmetric modes in the strong field limit show a three-line spectrum,
asymmetric both in the positions and amplitudes of the lines. The spectrum for
antisymmetric modes has been discussed by Mavroyannis [13]. Our calculations of
the intensity correlation function g®(t) for different ranges of values of the dipole—
dipole interaction show clearly that, as this interaction increases, the time behaviour
of g(1) becomes more complicated, but its initial value g®(0) does not depend on b
very strongly in the strong field limit. As is clear from our discussion of the steady-
state solutions, this value is different for $? conserving (a=1) and S?-conservation
breaking (a# 1) systems. This fact can be of importance in the context of the so-
called photon antibunching effect observed by Dagenais et al. [36] in the one-atom
case.

The problem of two interacting atoms in a strong resonant laser field considered
in this paper is closely related to the problem of one atom in a resonant field in the
presence of a conducting metallic surface [38, 39]%.

La fluorescence 4 la résonance d’atomes a deux niveaux pompés par un fort champ laser
résonnant est étudiée en tenant compte de 'amortissement y, , et des décalages de niveaux Q, ,
dus aux interactions radiatives et dipdle-dipdle. En appliquant ’équation de Lehmberg pour
deux atomes, on obtient un systéme de 15 équations de mouvement pour I’évolution
temporelle des variables atomiques. Le systéme est résolu en utilisant la transformée de
Laplace et la théorie de la régression quantique pour la corrélation du spectre d’état stable et de
P'intensité. On montre que les solutions de I’état stable pour y,,#7, 2y étant le coefficient
d’Einstein A4, different par un ‘facteur d’échelle’ de celles pour y,,=y. Dans la limite du
champ fort Q>»y, ou Q est la fréquence de Rabi, et les trois régions (i) Q»y>»€,,
(if) Q»Qy,>7 et (iil) Q~Q,,»7, on trouve des formules analytiques pour les spectres des
modes symétriques et antisymétriques. La fonction de corrélation de Pintensité pour (i)—(iii)
est calculée.

Die Resonanzfluoreszenz von Zweiniveau-Atomen, die von einem starken resonanten
Laserfeld gepumpt werden, wird unter Berlicksichtigung von kooperativer Dimpfung 7,
und Niveauverschiebungen Q,, durch Strahlungs- und Dipol-Dipol-Wechselwirkung be-
trachtet. Mit der Lehmberg-Master-Gleichung fiir zwei Atome leiten wir einen
geschlossenen Satz von 15 Bewegungsgleichungen flir die Zeitentwicklung der atomaren
Variablen her. Dieser Satz wird mit Laplace-Transformation und Quanten-
Regressionstheorie flir steady-state-Spektrum und Intensititskorrelation geldst. Es wird
gezeigt, daf} die steady-state-I.osungen flr y,,7#y—2y ist der Einsteinkoeffizient A—durch
einen Skalierungsfaktor von jenen fiir y,, =7y abweichen. Im Grenzfall starker Felder Q> y—
worin (2 die Rabifrequenz ist—undin den drei Bereichen (i) Q»y>Q,,, (i) @»Q,,»y und
(iii) Q~Q,,>»7 leiten wir die analytischen Formeln fiir die Spektren symmetrischer und
antisymmetrischer Moden her. Die Intensitatskorrelation fiir (i)—(iii) wird berechnet.
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