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SQUEEZED STATES IN HARMONIC GENERATION OF A LASER BEAM
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Harmonic generation processes are shown to minimize quantum fluctuations of the electromagnetic field in the funda-
mental as well as in every generated beam. For the harmonics, sqeezing is additionally dependent on the polarisation prop-
erties of both beams.

1. Introduction. The quantum description of the electromagnetic field closest to the classical one is its descrip-
tion in the representation of coherent states. If in particular the field is in a pure coherent state, the product of
the uncertainties of the momentum P and coordinate Q takes the minimal value unity.

In this paper, we shall be referring to squeezed states of the electromagnetic field as ones with a value of the
dispersion of whichever the canonical variables less than unity {1]:

LM <1 o AP, )

These states by no means imply a more “classical” nature of the field. On the contrary, fields being in such states
have no classical counterparts.

For some years the statistical properties of light relevant to obtaining a negative Hanbury-Brown and Twiss ef-
fect have been under study. This effect immediately reflects photon antibunching. Light, the field of which is in
states with antibunched photons, has no classical analog either. Dispersion of the photon number in the mode is
then less than the mean photon number. Maximalisation of photon antibunching is achieved for ((An)2) =0, i.e.
for the field in a pure number state. However, for such light ((AQ)?) and (AP)2) are greater than unity. There is
no general connection between both these purely quantum effects. However, the mechanism of obtaining such
fields is identical, namely through nonlinear interaction of coherent light with the medium [1-3].

One of the possibilities in this respect is offered by harmonic-generation processes of laser light. Recent years
have brought strong experimental evidence of 3rd, Sth, 7th and 9th harmonic generation of laser light in atomic
and molecular gases and, particularly, metal vapours [4]. This stimulates us to undertake an analysis of squeezed
states not only with regard to the second harmonic but moreover to higher harmonics of light. In this context
the study of odd harmonics, generated in isotropic media by optical nonlinearities induced in the atoms and mol-
ecules by electric dipole transtiions, is especially promising [4].

Mandel {1], using our “short optical paths” expansion [5], has shown that the field of the fundamental beam
has to be in a squeezed state after traversing the nonlinear medium. Aiming at a more extensive treatment of the
matter, we generalize Mandel’s results [1] to higher harmonic-generation processes, based on our earlier calcula-
tions for the kth harmonic [6,7].

2. Theory. The operators Q and P corresponding to observables are hermitian,
Q=a+a*, P=il@*-a), 2)

where 7 and a* are photon annihilation and creation operators, respectively. Hence we get
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(AQ)D =1 +2m — 2@™a) + {(Aa™)?) + (Aa)y, (AP =1 + 2 — 2a ™)) —~ (Aad™)D) - (Aa)D). 3)
The effective interaction hamiltonian between the one-mode fundamental (f) and generated (kw) beams in the

electric dipole approximation has the form [6]:

H=Fuly ap df +he.. @

Ly, denotes the coupling constants, dependent on the nonlinear properties of the medium and the state of polar-

isation of the incident and generated modes; v is the velocity of light, equal for both beams at phase matching,
The Heisenberg equations of motion for the slowly varying parts of the appropriate operators have the form {6]

dag(z)/dz = KL}, [af@)] % Lag ,(2),  dag,(2)/dz =Ly df(z) . )

This set of equations is inaccessible to strict solution but accessible to the iteration method only. With accuracy
to the approximations of interest to us, we find:

ag(z) = af0) — 3Ly 1222 [a}(0)] ¥~ 1aE 0 + ...,

k-1 m
. . m\ (k-1 1. —1-
%) 7 L2 0) — Skl P2 B 3 ()( et s sy 4 )

where we have omitted all terms involving operators az ,(0) or ., (0), assuming that at the plane z = 0 at the in-
put into the medium there are no photons of the kth harmonic mode and hence its amplitude equals zero. None
of these terms affects the final resuits,

From the second of egs. (6) we easily calculate [6,7] that

k-1 m

k—1 -1~

0= Ly PO - Yty 12t 2 T () () 000 ™
m=0 §=

and from the energy conservation principle in nondissipative media we further have:

(ng(z)) = (n g0 — klny (2D (8)

The mean photon number of the fundamental mode, thus calculated, would involve a term of the fourth order

which is unnecessary in our further discussion. Restricting ourselves to the quadratic approximation only, we

write

(nelz) = (O — kL 122285 (0) + ..., : ©)

where gfk)(o) is the kth order correlation function of the incident beam equal to (a?k(O)alf(O)), and for coherent
light at the same time

#9(0) = (ng(Op* = le** | (10)
where o represents an amplitude-eigenvalue of the photon annihilation operator:

([Bag())? = ([Aag(0)] D) — 5h(k — DILg ., 122X [af (0)}*~2aF (0] .

— kILy 1222 {([ag (0)1 %~ 1 *1(0) — ([a} (0)]*~ LaF(ODa; (0P} + ... an
The solution for ([Aaf(z)] 2) is obtained from eq. (11) by hermitial coupling;
(af(z){ag(z)) = af(ONag(0) = $KILy 1222 (@ (0)aF~ L (ONag(OY + (afX[af(0)]*~ Lak(OM} + ... (12)

For a coherent incident beam and with the approximations used above
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(np (2D = {aF W ag(2)) = log |2 = KIL g, 122210l 2K, ([Daz)) D= — §k(k — DLy, 122 log 2K Dad |

([8af ()] % = — k(k — DLy, 1222 ag 2k~ a2 | (13)
Taking a; = | oglel?, from egs. (3) and with respect to eqs. (13) we arrive at

(A0:(@] D=1 — Kk — DL, 1222 ad?*=D c0s 20, ([AP(2)]2=1+k(k — DLy, 1222 ag 2k~ Dcos 20 .
(14)

It is easily seen from these dependences that for well-defined phases 8 we obtain minimalisation of quantum fluc-
tuations either in Qf or in Py. The results (14) go over for k = 2 into Mandel’s [1] results for second-harmonic
generation.

Let us recall at this point that the scaled Hanbury-Brown and Twiss effect [g(2) — (g(1))2]/g(1) for the fun-
damental beam amounts to [7,8] —k(k ~ DIL 1222} 26— 1), 5o that the deviation from unity in eqs. (14) is
of the same order.

On performing similar calculations for the generated harmonic beams, for a coherent incident beam, we get:
k-1 m

S!(m)(k—l) lo 2(2k =15 |
m=0 s=0 SIS

(i@ = 4 (2B, (2D = Ly, | 22200126 ~ SKIL, 1424 20
kw w w w
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« W m=0 s=0 =1 § $ t t
If we take Ly = IL; texp(igy), then
k-1 m k-1-s X 1 x
w5 — — | -
(ARg @)D =1+ 3Ky 42 ZJO ‘26 Z% se! (’;’)( S‘)( , s)(t)aaf|2(2k—1—s—t> cos 2gy, + k0,
m=0 s= t=

(16)
where the upper + sign refers to the dispersion of R = Q whereas ~ refers to R = P, Again, depending on the sign
of the phase, but now given as ¢ + k9, the one or other quadrature component is squeezed. The deviation from
unity is of the same order as photon antibunching in the generated beam [6,7].

3. Discussion. In particular, for the second harmonic
[Rp@1D=1£3IL, [*24 agl* cos 2p, +20), R=P,Q, 7

while the scaled Hanbury-Brown and Twiss effect is— %|L2;l4z4laf|4 [5]. Mandel [1] did not carry out calcu-
lations for the generated second-harmonic component since minimalisation of quantum fluctuations is not so ef-
fective in this case as for the fundamental beam. However, it is worth stressing that for the generated beams the
effect under consideration is additionally dependent on the new phase ¢y, arising from the complexity of the cou-
pling constant. This originates in the polarisation properties of both beams.

In particular, let us assume that the incident light is linearly polarized. Then we can assume g =0, and a sim-
ple analysis of eqs. (14) and (16) shows that simultaneous squeezing for Q¢ and Qy, (k =2, 3) is possible for the
phases 8 € (7/4k, n/4), and fork >4 at6 € (m/ak, 3m/4k); for Qf and Py, for 8 <mf4k; and for Py and O, for
8 € (m/4, 31/8) for the second harmonic only. One can never get simultaneous squeezing for P; and Py
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