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Résumé. — Le formalisme des tenseurs multipolaires Cartésiens est appliqué a 'analyse d’un nouveau
mécanisme de diffusion de la lumiére, di a I'interférence des variations des polarisabilités moléculaires
linéaires et non linéaires induites par les fluctuations temporelles des champs multipolaires élec-
triques. Des formules générales sont proposées pour les fonctions de corrélation temporelles de
diffusion isotrope et anisotrope, ou entrent les multipolarités de rang arbitraire. Ces formules sont
appliquées aux approximations quadrupolaire, octupolaire et hexadécapolaire de molécules a
symétrie axiale, tétraédrique et octaédrique.

Abstract. — Multipole Cartesian tensor formalism is applied to analyse a new mechanism of light
scattering due to the interference of changes in linear and nonlinear molecular polarizabilities induced
by space-time fluctuations of multipole electric fields. General formulae are derived for the binary
time-correlation functions of isotropic and anisotropic scattering involving multipolarities of arbi-
trary rank and are applied to the quadrupole, octupole and hexadecapole approximations of simple
axially, tetrahedrally and octahedrally symmetric molecules.

1. Introduction. — Previously [1], we developed the theory of linear and nonlinear multipole
polarizabilities for unlike interacting molecules and applied it to the analysis of deviations from
additivity of the Clausius-Mosotti and Lorentz-Lorenz function of dense multi-component
fluids. In the present Communication we proceed to apply that consistent multipole Cartesian
tensor formalism in order to disclose a novel cross-fluctuation mechanism in coherent light
scattering. The latter resides in cross interference between fluctuational changes in the linear
multipole polarizabilities and fluctuational changes in the nonlinear multipole polarizabilities
of the molecules. In a first approximation, the contributions derived are purely binary in nature
and appear to be highly significant compared with the hitherto calculated pure and cross dipole
and multipole contributions to integral light scattering [2-7].

As done earlier for the case of collision-induced far-infrared absorption spectra [8-10], ana-
lyses in the multipole approach have appeared recently for the spectra of light scattered by
tetrahedral [11-12], axially-symmetric [13], and unlike polar arbitrarily symmetric molecules [14].
However, cross-fluctuation contributions caused by the above mechanism in spectral light
scattering have, hitherto, not been considered.
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2. Time-correlation intensity function of isotropic and anisotropic light scattering. — We
consider a stochastic medium of volume V containing N = Z N; unlike molecules (with N,

— the number density of molecules of the i-th species). The molecules are assumed to interact,
the range of radial correlations being sufficiently short compared with the light wavelength
for the phase interference factors to be negligible. The evolution in time of isotropic (h = 0)
and anisotropic (h = 2) light scattering is given by the following time-correlation functions [14] :

e =3 ( 5 3 mPe. a0 e, al) ), (1)
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where II{P(r9, 29) is the h-irreducible part of the second-rank tensor of linear polarizability
(dipolar in the case of an electric dipole transition) of a molecule p of species i having, in the
medium, the position rgi and orientation Qgi at time ¢ = 0. In equation (1), the symbol { - >
denotes the appropriate statistical-time averaging.

In a dense medium, collisional effects as well as time- and space-fluctuations of multipolar
molecular fields will in general lead to changes in the molecular polarizability tensor [2-6] :
II; (rpl’ :;l) = Al(Q ) + AHL(rpw ) + AHNL(rpv ) (2)
where A(Q;,) = ‘”A‘”(Q ;) is the second-rank tensor of linear polarizability of an isolated
molecule p of species i havmg the orientation Q;; at time ¢.

In a first approximation, the long-range field-induced change, related with the linear multi-
polar polarizabilities, is [1, 3, 6, 14] :
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where the tensor (VA{™(Q!,) of rank 1 + m determines the linear dipolar polarizability due -
to a 2™-pole electric transition and the symbol [m] denotes m-fold contraction. Whereas the
tensor of rank m + n

(M)T(n)(rpwk) = Vm Vn(rpxrk)_ (4)

defines 2™-pole — 2"-pole interaction between molecules pi and rk separated by a distance 7.
In equation (2), the additional variation due to the nonlinear polarizabilities, induced by
multipolar fields, is defined in a first approximation as [1, 3, 6] :
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where the tensor (VB{!*™(Q},) of rank 2 + m determines the nonlinear (second-order) dipole-
dipole polarizability due to a 2"-pole electric transition in a molecule p of species i. M{™(},)
defines the 2"-pole intrinsic electric moment of molecule r of species k.

We refrain from considering here multipolar contributions of higher perturbational approxi-
mations (see [1, 3, 6]).

With regard to (2)-(5), the correlation functions (1) can be written in the form of an expansion
in powers of the molar fractions x; (h = 0, 2) :

COt) = z x; CP(t) + Z X x; CP@) + Y x; x; %, CH(E), (6)
74
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where C{"(¢) are self-correlation functions describing incoherent scattering by statistically inde-
pendent molecules possessing intrinsic linear polarizabilities given by the first term of (2). The
higher correlation functions C¥(z), C{(¢), ... originate in binary, ternary, etc., molecular cor-
relations, and determine coherent scattering — a measure of the deviation from additivity of
the correlation functions given by the first term of (6).

The absolute values of the successive terms of (2) give the pure contributions to the corre-
lation functions (1) whereas the interferential terms give cross-contributions. In this Commu-
nication we shall analyse certain novel contributions to the binary correlation function arising
by interference between (as the products of) the changes in polarizability (3) and (5). Thus, with
regard to (2), these fluctuational cross-contributions to C{(¢) result from the two products
(A ATy and ( AITY™ AIT} ). When calculating these terms, however, we shall have
recourse to the simple model of radially correlated molecules the rotational motions of which
are assumed to be mutually independent, meaning that the generalized space-time binary Van
Hove distribution distinct function can be approximated as follows :

Go(rS, rl,, Q5 s t) = GR(rS, rl, 1).G5(Q5, Q1 1) Gr(QY, QL 1), 7
where G,.‘J?(r'0 ri.,t) is the usual Van Hove binary radial distribution function, whereas

i’
G35, Q;i,pt) and G (22, Q1. t) are the self-distribution functions of the free rotational motions
of molecules pi and gj.

On insertion of (2)«(5) into (1) and first performing unweighted rotational averaging over all
possible molecular orientations in accordance with the approximation (7), we obtain the follow-
ing binary correlation functions of isotropic and anisotropic light scattering resulting from

the term  AII} AIT}" )
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with the notation :
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mn

and U — the unit second-rank tensor; and the symbols { ), and ¢ D, , denote the rota-
tional averages with the time self-functions G}(t) and G7(t) involved in equation (7).
In (8) and (9), we have introduced the time radial binary correlation functions :
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with P, ,,,, — the Legendre polynomial of degree m + n + 1 and p — the averaged number
density of molecules.
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We obtain directly in analytical form the new contributions C (")(t) originating in the second
term { AII]'" AIl} > from equations (8) and (9) by an 1nterchange in the indices i and j. The
total bmary contribution to (6) thus amounts to C®(t) = CH(t) n + CH(npL-

The cognitional significance of the new contrlbutlons (8)- (10) resides i.a. in the fact that they
are negative, and can undergo a change in sign only if the tensor of one of the multipolar pola-
rizabilities or intrinsic multipole moment is negative, as can be the case for certain molecular
structures.

3. Applications to some simple molecular models. — The correlation functions (8) and (9)
contain all cross-fluctuation contributions arising by interference of linear and nonlinear mul-
tipole polarizabilities. We shall now apply them to some simple models of molecules in successive
multipole approximations. For the sake of simplicity, we shall restrict our considerations to
real values of the tensors of multipole polarizabilities (written in irreducible representation)
and omit the explicit time-rotational dependences in { g and { g,

3.1 QUADRUPOLE APPROXIMATION. — The lowest-order contributions of (8) and (9) arise
for m = n = 1, when we have for axially symmetric molecules having an intrinsic dipole
moment M, :

CPU) = — 2 (AP BY AP MY + AP BY AP MP)RP(), (11)
Cf-f)(t) _ ———{(A(')B( + A(l)B(li)A(J) M(J) + (A(l) B((jl4)_ + AU) B%’),)A(’)M(') } R(B)(t)

(11d)

where we have two irreducible parameters A, = (433 + 2 A,,)/3 and A, = 2(43; — A,,)/3
of the linear dipole-dipole polarizability VA" — A,,, one parameter A; = 2(A43.33 + 2 4;.;3)/5
of the linear dipole-quadrupole polarizability tensor MA@ — 4, and three parameters

Boy = 2(B33.33 + 4 By3.qs + Biyas + 4 B1.01)/15, Byy = B33z + 2 Byy.33)/15,

B,, = (B33.33 + 2B3.13 — 3 By;.33 — 4 B;,.1,)/15 of the nonlinear dipole-quadrupole pola-
rizability tensor (VB! *? — B ;. ..

In the same approximation we have by (8) and (9) for axially symmetric molecules with intrinsic
quadrupole moment M, :

CE?’(t) = — %{A{“ Bii) A;j) nga) + A}j) B{j) Ag) Mg% } Ri(jS)(t) , (120)

CPthp = — _{ (AP B® + 9 4P BP) AP MB + (AY BY + 9 4 BY)
x AP MY IRP (), (12b)
with the following notation of the irreducible molecular parameters :
Ay = (3A;5.3; —4A4,.3)/5, B, =3(B3z3 + 2B,,3)/5, B; = 2B;333 — 3B,3)/5.

We now shall consider the situation arising if the molecule of species (component) i are tetra-
hedral and those of species j are axially-symmetric. In this case the isotropic scattering corre-
lation function (8) vanishes whereas that of anisotropic scattering (9) takes the simple form

18

CPM = — 5 Al B AP MY RP(W). (12c)
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3.2 OCTUPOLE APPROXIMATION. — With m = 1 and n = 2, equations (8) and (9) lead to
expressions similar to (11a) and (11b) in which, in place of A, M3 R{(t), we have a term
4(A3.333 + 2 Ay.133)/5 M35 R O(t) involving the dipole-octupole polarizability VA -4, ;..
For the case of tetrahedral molecules i with octupole moment M{), and axially-symmetric

molecules j with octupole moment MY),, equations (8) and (9) yield :

40 i S
CiPhn = — 5 Af?ys M{3; AP BY RIO(0), (13)
CPtha = — '§A§l:)23 {9 B} AY M5 + M{),(AP BY + 9 49 BY) } R V(). (14)

In the same approximation, albeit for the case when the molecules of both components are
tetrahedral, the isotropic scattering function vanishes and the anisotropic scattering function
becomes :

9 . . . . )
CPWhp = — 5 Alhs ABBY; MU, + B, M) RYEV(). (15)

t

" Puttingm = 2 and n = 1 in (8) and (9) and assuming the molecules i as tetra- or octahedral
and those of species j as axially-symmetric, we obtain C{(t)p . = O and

Ci(jZ)(t)L,NL = — 6 A{);;; BY AP M) Ri(jlo)(t) ) (16)

where A{),,, is the only independent tensor component of the linear dipole-octupole polari-
zability AY, , whereas B) = (3 B{}.;; — 4 B{},,,)/5 is the irreducible anisotropic parameter
of the nonlinear dipole-quadrupole polarizability tensor B).,s for the point group symmetries
T, O, and O, [13].

Similarly, by (8) and (9), we find for m = n = 2 in the case of a mixture of octahedral mole-
cules of species i and tetrahedral molecules of species j, C{(t). x, = 0 and

360 | . . .
CPthn = — wE A 333 BP AP, MY, R{{P(t). (17)

3.3 HEXADECAPOLE APPROXIMATION. — In the approximation of m = 1, n = 3 for octahe-

dral molecules i with a hexadecapole moment M}, and tetrahedral molecules j, equations (8)
and (9) lead to :

CP(hn = — 24 A 533 MB35 AP, BY), R{{P(t). (18)

Finally, for m = 2 and n = 3 in the case when the molecules of both components are octahe-
dral, we obtain :
660

Ci(jZ)(t)L,NL =T A333 AY)353(BY M55 + BY M{),5) Ri(jl4)(t) . (19)

4. Discussion and conclusions. — The special formulae (11)-(19) derived by us are well adapted
to numerical evaluations since the irreducible parameters of the multipole polarizabilities and
the intrinsic moments are available from the literature [9, 10, 15, 16]. The evaluations confirm
the following obvious relationship between the two-body contributions

Ci(;‘)(t)Lz > Ci(}])(t)L,NL + Ci(}l)(t)NL,L > Ci(}l)(t)(NL)z'
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E.g., for CO,, the ratio of the relative values of the contributions is 9:3 :1 for isotropic scat-
tering. However, it should be stressed that the role of the binary cross-contributions analysed
in this Communication can be strongly enhanced owing to the circumstance that the values
of the binary pure contributions of the types (AL)*> and (ANL)? can undergo a considerable
reduction by negative ternary contributions [6].

The general conclusion to be drawn from the present analysis as well as our earlier calcula-
tions [6, 14] is this : when analysing the role of multipolar molecular interactions in coherent
light scattering, all possible contributions have to be taken into account. Depending on the
case under consideration, they can cancel out or enhance mutually.
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