Spectral distribution of scattered light by fluid mixtures of correlated atoms

and molecules

S. KIELICH, T. BANCEWICZ, AND S. WOZNIAK
Nonlinear Optics Dicision, Institute of Physics, A. Mickiewicz University, 60-780 Poznan, Polz)nd
Received January 29, 1981

A stochastic theory of the spectral distribution of light scattered by mixtures of atoms and
molecules, colliding in time and space. is proposed. New time-correlation functions C'°%¢) and
C*¥(¢t) are introduced describing respectively the statistical microscopic mechanisms of isotropic
and anisotropic coherent scattering, related with changes in the first and second perturbation of
the molecular polarizability tensor due to the long-range fields of induced molecular electric
multipoles. In this way. not only anisotropic but also isotropic scattering is shown to have a
rotational spectral structure due to orientational motions and angular collisions of the polar
molecules. The hitherto not considered cross approximations 0.1 and 0.2 of the functions C\°%¢)
and C*?(r) involve the first power of the dipole-quadrupole, dipole~octupole, and quadrupole-
quadrupole tensors thus permitting first determinations of the signs of the successive multipolar
molecular polarizabilities.

On donne une théorie stochastique de la répartition spectrale de la lumiere diffusée par des
melanges d’atomes et de molécules en collisions dans le temps et dans I'espace. De nouvelles
fonctions C?(t) et C'2(t) sont introduites. décrivant respectivement les mécanismes microsco-
piques-statistiques de la diffusion cohérente isotrope et anisotrope liée aux variations de la
premiére et deuxiéme perturbation du tenseur de polarisabilité moléculaire due aux champs a
longue portée des multipdles électriques moléculaires induits. On montre ainsi que non seulement
la diffusion anisotrope mais aussi la diffusion isotrope posséde une structure spectrale de rotation
due aux mouvements d'orientation et aux collisions angulaires des molécules polaires. Les
approximations mixtes 0.1 et 0,2 jusqu'a présent non considérées des fonctions C'(t) et C'¥(¢)
contiennent les premieres puissances des tenseurs de la polarisabilité dipolaire-quadrupolaire,
dipolaire-octupolaire et quadrupolaire~quadrupolaire ce qui. pour la premiére fois. permet de

déterminer les signes des polarisabilités multipolaires successives des molécules.
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1. Introduction

Owing to laser light, scattering spectra have
become an effective tool in the study of structural
and dynamical subtleties of statistical media, com-
posed of atoms, molecules, and particles (1-3).
Yvon (4) was the first to show that transiational
fluctuations of binary and ternary atomic correla-
tions of dipolar types cause a depolarization of the
scattered light. However, quite generally, variations
in the polarizability of atoms arise not only as the
result of electric fields of the dipolar type (DID) but
moreover in higher, multipole orders; this is apparent
in molecular refraction (5, 6) and, hence, in light
scattering (7, 8). Although the experimental observa-
tions of recent years point to the dipole approx-
imation as sufficiently accurate with regard to
atomic fluids (9-12) complete agreement with experi-
ment requires the inclusion of other mechanisms,
e.g., multiple-scattering effects (13-15) or short-
range collisional effects (9-12).

In molecular fluids the situation is more complex
due to the coexistence of many mechanisms (3).
Even in the case of highly (tetrahedrally and octa-
hedrally) symmetric molecules one has to proceed

beyond the dipolar field approximation to higher
multipolar approximations (6-8, 17-20). In that f
low-symmetry molecules with intrinsic optxal
anisotropy, e.g., N,, CO,, C.H,, etc., the calcule
tions become much more complicated, as not odh
translational but also translational-orientatioad-
and orientational fluctuations strongly affecting ta;
scattered light depolarization have to be taken i=
account (7, 21-25). For polar molecules, agreerr.‘::xl:f
between the theory and scattered light observations
can be enhanced by considering binary and ternzy
correlation factors (7, 22-28), of great importan
in Kerr's effect and other, nonlinear effects {2,
29-31). Also, highly relevant are local field modss
(24, 32, 33).

This paper is aimed" at presenting a stochasti
treatment (2, 3, 34) of the spectral distribution o
light, scattered by many-component systems o
atoms and molecules, correlated in time and spaz=.*
Our approach is of sufficient generality to comprse-
various processes of fluctuations of the multipele
molecular fields as well as many-body atomi--
molecular correlations of the dispersional, eleca>-
static, and inductional types. We have hitherto com:
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sibered these mechanisms for the integral scattered
fgit intensity in mixtures (7, 21, 35, 36): spectral
dmories have, as yet, not analyzed them explicitly
md sufficiently generally, though first attempts have
¥=a made by us with respect to one-component
ssems in the spherical tensor approach in the DID
mproximation (37, 38).

2. Scattering Correlation Tensor

We consider a spherical sample of volume V and
&etric permittivity &, immersed in an isotropic
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continuous medium of permittivity €,. The well
known relation (g, + 2g4)E(t) = 3¢eqEy(t) holds
between the mean macroscopic electric field E(r)
within the scattering sample and the field Ey(¢) outside
the sample. The volume V' is considered to contain
N = YN, molecules (N, is the number of those of
the /ith species), the position and orientation of
molecule p of species / being given at the moment of
time ¢ by the variables r,;" and Q,;'". Restricting
the problem to electric-dipole scattering in the wave
zone, we write the time-dependent intensity tensor
for the multi-component system in the form:

,Q,/) exp [in(r,} ~ r,,.~°)1>Ev(0)*E,(t>
n? +2

(=)

r the incident and scattered light frequencies, respec-

iy, and # = k — k, is the difference between the propagation vectors of the incident & and scattered .,
waves. Generally the form of D, is dependent on the shape of the sample and the conditions of observation

of the scattered light (3, 24, 32, 33).

~ On decomposing the effective polarizability tensor into three irreducible tensors (2): I,
— M1,,)/2 (antisymmetric tensor), and n,? =

‘sotropic tensor), IT,,") = (1,

0)

ns
(nor + HTG)/Z

(Esisotropic tensor or deviator), and on performing an averaging in [I] over all possible orientations of the

i.';mlecules, we obtain respectively:
?‘m L) = 22 cOE0)E,1)
R :

B 600 = B Cn) (5, EL0)*Er) ~

Eq 101(2 )(l) =

E,0)E(D*

]

"’ 76 C (B8 ELO)*EL(1) + 3Eo(0)E‘(f)* — 2E,(0)*E (1))

;Above we have introduced the time-dependent correlation functions (# = 0, 1, 2)

3 ¥n

p=1g=1

“’ C(M(t) = Z q[}“‘)(rpx H plo)*naﬂ(h)(r

rp.~°>1>

ai > Q) exp [in-(ry;" -

Emmcterizing the molecular-statistical dynamics of isotropic (# = 0), antisymmetric (h = 1), and aniso-

[wopic (h = 2) scattering.

,‘)_.

3. Effective Polarizability Tensor

*. Ifthe N molecules in volume ¥ interact with one another, a given molecule p of species / is acted on (in
x%dmon to the field E(r) of the light wave) by the field F(r,;"), produced by the induced multipole electric

‘moments of the other N — 1 molecules. Accordingly
gecies /, amounts in an approximation linear in E(t)

1

a

ﬂ CM(r Q) = Ag(Q,DEND + m; mA

, the total dipole moment, induced in molecule p of
to:

1 ...a,,.(Qpi’)Fal ...am(rpit,

| oz Qpi‘)

afere Ap(Q,;") is the second-rank tensor of linear dipole dipole polarizability in the absence of a molecular

§dd F(r,,). Similarly, the (1 + m)th rank tensor A,,
s pole type.

... (&,;) defines the linear polarizability of dipole -
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The 2™-pole electric field, produced at r,; by the 2"-pole induced electric multipoles My, ;. (r,;") of the
N — | surrounding molecules, is (6, 20): '

N;j o (__ 1)n
(7] F“l--~°‘m(rl"'" QP"‘) = ZJ: q;p "Z:l'(m T;l--~umBl~--Bn(rf“"Jj‘)Mﬂl~~Bn(r4j" quf)

where the (m + n)-rank tensor (5, 20)
[8] Tux---ame.-.Bn("piqil) = Vﬂzp-n:mvﬁzq.-.ﬁn(va xpVan - kzsanﬁn)rpiqjul €xp (ikrpl'qjt)

describes the (2"-pole) — (2"-pole) dynamic< interactions between molecules p; and g;, separated by a distance
Fpigj-
By [6] and [7] we obtain in a satisfactory approximation the effective polarizability tensor in the form:

) (1) (2)
[9] nup = HGD + Hua + Hlﬂ + ...
where, in the zeroth approximation,
(0) .
Haﬂ = AuD(Qpi
while the first- and second-order approximations are of the form:

0

(¢)) Ny
[10] Huﬂ(rpit’ Qpl‘) = Z Z Z (_ l)ncmnAu:'n...am(Qpl")T;x...a,..B,...B"(rpiqj‘)Aﬁl...ﬁ,‘:B(qu')

Jj qEpmn=1
N; Nk @

(2)
[1 1] H(rpir! Qpi‘) = Z Z Z Z (_ l)n+wcmnuwAu:ul...um(Qp})Tul..,amm...B,.(rpiqjt)Aﬁl...B,.:n...~/u(qu')

jk g#prEqm..w=1
H
X Ty....y.,s....sw("quk )As,...aw:a(ﬂn'}
with the notation

| 1
Cmcw = B = DI (2w — DI

4. Time-correlation Functions

With regard to [9]-[11], the time-correlation functions [5] take the form of a series expansion in power
of the molar fractions x; = N/N:

[12] ¢ = inci“')(t) + inxjcij(h)(t) + Z xixjxkcijk(h)(’) + Z Xif\'jxkxtciju(h"(t) +
T i 7k e

with the C;(¢), self-correlation functions, describing incoherent light scattering by statistically independer
atoms or molecules. The other correlation functions Cy;*)(t), Cij™ (1), Cipa™(¢) refer to binary, ternan
and quaternary assemblages of molecules moving interdependently in time and space. These functios
describe how C™(¢) deviates from additivity and account for coherent scattering of light.

We shall now discuss the various terms of [12] for several models of molecular systems.

4.1. Statistically Independent Molecules

Excluding antisymmetric light scattering from our further considerations we obtain from [5], in tk
absence of all molecular correlations, the following self-correlation functions of isotropic and anisotrop:
scattering: :

[13] C/1)e0 = 3pldiI2fff exp liu- (r,) = £GP (r,°, v}, Q%) dr,’ dQ,° dQ)
[14] Cl'(Z)(t)O,O = %fff {3Aaﬂ(i)(on)*Auﬁ(i)(Qp') - A:u(i)(on)*ABﬂ(i)(Qp')} exP [iu'(rpl - rpo)]
x GO0, rf, Q2 Q,)dr) dQ)d0

where G, (r,', r,0, Q,', Q,°) is the generalized Van Hove space-time ordinary (sclf) correlation functic
p the average number density of the fluid, and 4; = A,,'?/3 the mean polarizability of a molecule of t
species i
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Obviously, [13] and [14] are results analogous to those derived for a one-component system (2, 39), and
we shall not stop to discuss them.

4.2. Correlated Molecules without Change of Polarizability

If the molecules are correlated statistically but if we neglect the changes in their polarizabilities caused
by the molecular fields (the zeroth approximation of [9]), we obtain by [5], for the distinct-correlation
functions,

15 Cif2t)o,0 = 3p?4,%4, ffff exp [iu- (r)' = NGB (r,% r, Q,° Q") dr,% dr, dQ,° dQ,!

2
1 ;%000 =5 [ [ [ [ 34,590,940, = 490,240y 0,1 exp line(ry = 7,9
x Gy B(r,% 1, Q,°, Q) dr,0 dr, dQ,° dQ,;
where G;;(r,%, ", Q,°, Q,") is the generalized Van Hove space-time binary correlation function (40).

4.3. Dipole - Induced Dipole Approximation ) W

. We shall now consider the cross term of the (0,1) approximation: (M, ™M(0)* T, ™ (¢)) restricting
ourselves in [10] to collisions of the dipole - induced dipole type. For binary correlations, the correlation
fnction C;;™(t)e,, = C;;(t), o, has been discussed by Bancewicz (38) (see also refs, 21-25) and we shall
not consider it here. We prefer to give the results for ternary molecular correlations:

[17] Cijk(o)(’)o,l

I

3
i f AR, A5, Q) Ay Q) Ty (1) exp [ (ry" — 1,9)]

3 o] ! t [s] t t o] 1
x Gijk( )(rp A ’Qp s Qq ,Qr)dl‘p dQ,

: 3 . . . .
. [18] C,-jk(z)(t)O,l —_ _p3_ f f {3Aap(:)(QPO)*A“(J)(Qqc)AW(k)(er) - A"(n)(QPO)*AM(J)(qu)Aw(k)(er)}
x Tt (r,,") exp [ius(r,' - rIG (0, ) r, Q0 Q,),Qdr,0 ... dQ,

where G (r,0%, r,f, 1t Q,°, Q. Q,") is the generalized Van Hove space-time ternary correlation function
(3,41), defining the probability that two molecules g; and r, shall be at the configurations (r,;, Q,;") and
{ra’y Q') in the moment of time ¢ under the condition that a third molecule, p;, was in the configuration
(r,%, Q,:°) at the moment of time ¢ = 0, A o m

Similarly, we calculate the (1,1) approximation of thé function (1™ (0)* I,;™(¢)), which splits into the
binary contribution C;;*’(¢), ; and ternary contribution Ciun™(1),,; discussed previously for various
models (7, 21, 36), and quaternary contributions of the following form:

4
[19] C.‘ju(o)(t)x,x = %f fA“(:)(QPO)*ABe(J)(qu)Asu(k)(Qro)*Aw(l)(er)']-;s(:k)(rpro)*Tm(ﬂ)(rqsr)
x exp [iu(ry — r, NG (r,0 vl 10k, Q0,00 00 Q) dr,0 ... dQ,
q 14 J p q s 14 q p
4
[20] CUH(Z)(;)L1 =%f fAdv(‘)(on)*{3A¢£U)(qu)ASB(k)(Qro)* - Aa:U)(Qq')ASa(k)(QrO)*}

. . . ¢ 0
X An[)(1)(Qs’)Tyﬁ(',\)(rpro)*’Teq“l)(rqsr) exp [”"(rql - rpo)]Gijkl(4)(r ° r ! ’,0 rs[) Qp ) Qq', Qr ’Qs‘)

p b q ’ r 0
0 t
x dr,0 ... dQ,

-where G “(r % r', 1,0, r Q0,04 Q.0 Q1) is the generalized Van Hove space-time quaternary correlation
‘function defined in (3, 42).
In order to achieve complete results in this approximation we still have to reach back to the second-order

© @ @ ©
perturbation of [11] and calculate contributions of the type (Mg ™(0)* M, ™(¢)> and (1,4 (0) * N, ™))
discussed previously for integral scattering M.
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4.4. Dipole — Induced Quadrupole Approximation

In the expansion [10] we now have recourse to the terms related with the third-rank tensors 4,.,p and
A, describing dipole-quadrupole and quadrupole-dipole polarizabilities respectively. For the correlation
functions {5] and in the approximation (0,1) we now obtain:

1 Ni N Nk . .
[21] C(O)(I)O.l = 32 Z Z Z Aﬁi(Qpio)*[AB‘/(qu‘)ABc:ﬁ(Qrk’) - Aﬂ:y&(qul)As[}(Qrk )] T{EL(."quk)

ijk \p=1q=1r#tgq

x exp [iu-(r, — rpio)]>

R l N Njo Nk
22] CH0on =52 L L 3 Beup( Q) [An( Q) 5@ = Axyal Q) A Qi)

ijk \p=1g=1r#gq

- A:z(Qpio)*[AB*/(qul)Aﬁt:B(Qrkr) - AB:'{&(qu,)At[)(Qrkr)]}T‘(éa(rquk[) €Xp [i“'("qj! - rpio)]>

As above, we can decompose the functions [21] and [22] into binary components C;;"'(¢),, and ternary
components C, ;™ (t),.,, which play a very important role with regard to molecules possessing an intrinsic
electric dipole or quadrupole and contribute proportionally to {r;;~®> (see ref. 20). The relevance of the
functions [21] and [22] consists in the fact that they contain the dipole-quadrupole polarizability tensors
A, .,p and A,g., in the first power, in contradistinction to the (l.1) contribution C™(t),,, which contains
products of these tensors. The effect of the latter approximation on binary collisional scattering of light by
tetrahedral molecules has been discussed recently by Buckingham and Tabisz (17) and Posch (18) (see also
ref. 19). For molecules of arbitrary symmetry, these contributions in relation to binary and ternary collisions
have been calculated recently for integral scattering (20) together with a higher approximation of the type
(0, 2), based on the expansion [11). We refrain from writing here the explicit form of the correlation functions
C™(t), , and C™(t)y, = C¥")(1),, or their contributions, proportional to <r,;"8) and (ry;™*r;™*), to
the expansion [12].

4.5. Quadrupole-Quadrupole Polarizability Effect

In the case of centrosymmetric molccules the dipole-quadrupole polarizability tensor components 4,4,
vanish. As a consequence of this, for such molccules (atoms), the nonvanishing quadrupole-quadrupole
polarizability tensors A,.,s occurring in the second perturbation {11] form = w = landn = u = 2 become
very important. The correlation functions [5] now become
1 i Nk Ng

Ni N
- ﬁ Z Z Z Z Z An(QniO)*Ap‘/(qur)Ada:n).(Qrk‘)Auﬁ(Qsll)

ijkl \p=1q=1r#qs#*r

[23] C(1) .

X T'/ée(rqukr)Tn).p(rrkslt) €Xp [l'll'(l'qjt - rpio)]>

1 Ni Nj N Ny { r t
- 2_7 i§1 Z Z Z Z {3A:B(Qpi0)*A‘17(qu) - A:a(QpiO)AB'((qu )}Aéc:ni.(Qrk )AuB(Qﬂ()

p=1g=1r¥qs*r

(24] C(Z)(f)o,z

X Tyﬁz(rquk!) Tq).u(rrksl{) exp [iu'(rqj’ - rpio)]>

" In particular, for atoms, the correlation function of anisotropic light scattering [24] vanishes whereas that
of isotropic scattering [23] reduces to:

Ni Ny N Ny
[25] C(O)(t)o'z = —-é Z Ai*AiQkAl Z Z Z Z TaB'r("qukt)T:x[lv(rrksl{) exXp [iu°(rqj' - "P"O)]>
ikl p=1qg=1r#*qs#r

where Q; = A,5.,,"'/5 is the mean quadrupole-quadrupole polarizability of an atom of the species k.

The correlation functions [23]-[25] give binary, ternary, and quaternary contributions to the expansion
[12] proportional, respectively, to the statistical averages {r;;” %) and {r;;™*r;~*). Characteristically, these
functions contain the quadrupole-quadrupole polarizability in the first power thus permitting the deter-
mination of its sign.
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4.6. Dipole~Octupole Polarizability Effect

1625

Finally, we shall consider the effect due to terms of [10] with m =1, 7 =3 and m = 3, n = |, related
with the tensors A, and A,y ., of dipole-octupole and octupole-dipole polarizability. In the (0, 1)
approximation the correlation functions now assume the form:

N Njo N

26] C(O)(Y)o.l

ijk p=1gq=1r*gqg

N

RO

ijk \p=1 qg=1req

271 C*(1)o,,

1
—“BE(E T Y An@uO A Q) s g Qu!) + Apad )4 04(20))

X T:{o'cn(’.qukl) exp [iu'(rqj{ - rpio)]>

Z {BA:B(QpiO)*[Azy(qu')Aéen:ﬂ(Qrk’) + A::y&z(qu,)Anﬂ(Qrk[)]

- A::(Qpio)*[AB',(qu')Aﬁtn:ﬂ(Qrk!)_ + AB:-,E:(qul)Anﬂ(Qrk!)]}T‘(Ben(rqukl) €Xp [i"'("qj' - "pio)]>

These functions give nonzero contributions for
an appropriately chosen distribution function, e.g.,
involving electrostatic intrinsic quadrupole-quad-
rupole interaction, when [27] contributes propor-
tionally to <r;;~'°> for binary correlations.

Since [26] and [27] contain the tensors Aj,,p, and
Aupy:s In the first power, we are able to determine
their sign. By analogy, a discussion can be carried
out for the (I, 1) approximation, involving products
of the tensors A;.,p, and A, 5, as done by Bucking-
ham and Tabisz (17) for octahedral molecules.

5. Discussion and Conclusions

The time-correlation functions [12]-[27] derived
above have now to be applied to the concrete experi-
mental situations one deals with in spectral and
integral observations of scattered light. This is a
rather straightforward procedure, consisting, in each
case, in the determination of the form of the multi-
pole polarizability tensors occurring in the expan-
sions [10] and [I1] for various molecular (point
group) symmetries, and in the calculation of the
analytical shape of the many-body correlation
functions. It can be performed in Cartesian basis
(29) or by having recourse to the formalism of
spherical tensors (43). The latter representation
is highly advantageous, the irreducible representa-
tion of spherical tensors of arbitrary order (3, 44)
leading to final resuits of great clarity. However, it
was not our aim to give here that complete, math-
ematically complex analysis of the correlation
functions [12]-[27]; nonetheless, their practical
value when it comes to gaining a complete, uniform
description of light scattering experiments (9-12,
16-19, 25-27) is worth stressing.

One notes immediately from the general outline
of our theory that, besides the hitherto considered
correlation functions C"(¢), , in the (1, 1) approx-

imation, an essential role belongs to the cross
correlation functions C"(t),, = C'"(r),, and
C™(t)g., = C™(t), o which, for certain molecular
models, give not only numerical contributions to
integral scattering, but morcover, additional con-
tributions to the rotational structure of the scattercd
light spectrum.

Especially noteworthy is the circumstance that,
on taking into account the changes in molecular
polarizabilities caused by the electric fields of induced
multipoles [7], the isotropic scattering is found to
possess a spectral structure, related not only with
translational but also with orientational motions as
has been proved beyond doubt by us (45) for Raman
spectra in the DID approximation.

Interesting results are obtained when applying the
new correlation functions [17]-[27] derived by us to
mixtures of two and three components, one of which
consists of atoms and the others of simple axially
symmetric molecules (N,, CO,), tetrahedral mole-
cules (CH,), or octahedral ones {SFy). In this case
the spectral structure is described by novel radial-
angular functions, differing from those analyzed
hitherto and expressed by Legendre polynomials
(46).

As to the stochastic aspect of our approach, it
involves generalized Van Hove many-body space-
time correlation functions G;;*), G, G, . ..
and thus provides new information concerning them
and their relation to the equilibrium many-body
correlation functions (3). In this way, similar to
intermolecular infrared spectroscopy (47), inter-
molecular Rayleigh and Raman spectroscopy be-
comes a strong tool for investigations leading
beyond the structure of individual atoms and mole-
cules into the domain of their translational and
rotational motions as well as their many-body
collisional effects.
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