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§ 1. Historical Developments and Outline of the Present Review

Light scattering —one of the most important aspects of interaction
between electromagnetic radiation and material systems — poses theoreti-
cal and experimental problems which, to this day, are unceasingly in the
forefront of scientific investigation. The qualitative and quantitative cvolu-
tion of numerous processes of light scattering is determined not only by
the statistics and thermodynamical state of the scattering medium, but
moreover — and, perhaps, chiefly —by the statistics of the incident light
wave and the state of its polarization. This has become evident especially
since the application of rapidly developing laser techniques in studies of
light scattering.

1.1. THE DEFINITION OF SPONTANEOUS MULTI-PHOTON SCATTERING

In a quantal approach, some of the incident photons interact with the
microsystems (electrons, atoms, molecules, particles, etc.) of the medium,
or with collective excitations (phonons, excitons, magnons, polaritons,
plasmons, etc.). As a result of this interaction the microsystem absorbs a
photon of frequency wq(k;), and simultaneously emits a photon w,(k,),
thus performing a transition from the initial quantum state |i), by way of
an intermediate state |k)(k|, to the final quantum state (f|. The energy
conservation law requires that

f(w;—w,) = E;— E; = hawy, (1.1

with an accuracy determined by the width of the line emitted.
If, during the transition, the final state (f| and initial state |i) are
identical, E;= E;, one has, with regard to eq. (1.1)

Wy, = Wy (1.13)

meaning that, in this scattering process, the photon frequency remains
unchanged although the direction of its motion generally undergoes a
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Fig. 1.1. Two-photon energy transitions: (a) Rayleigh, (b) Stokes Raman, and (c) anti-
Stokes Raman.

change, k, # k,. The elastic scattering process described above is referred
to as Rayleigh scattering (Fig. 1.1).

If the energy of the emitted photon E; differs from that of the incident
photon E;, the process is inelastic and is referred to as Raman scattering.
In the quantal picture proposed by Smekal in 1923, if w, = w; —|wg| we
deal with a Stokes process, whereas if w,=w;+|wg we have an anti-
Stokes process; i.e. by eq. (1.1):

W, = w; Flowg. (1.1b)
As the microsystem is acted on by the complex analytic signal
E(t) = E(w,)exp (—iw;t) (1.2)

of the light wave vibrating at the circular frequency w,, and if the electric
field is not excessively strong, the electric dipole moment for the transi-
tion (f| <~ |i) is (in the case of linear response)

Dgil)(t) = ag)(“wz, ;) * E(w,) exp [—i(w; + wg)t], (1.3)

where ai’(—w,, ) is a tensor of the second rank determining the linear
electric polarizability of the microsystem.

One hundred and ten years have elapsed since Lord Rayleigh laid the
foundations of the microscopic theory of light scattering and, at the same
time, explained why we perceive the sky as blue on a cloudless day. Much
later, the statistical-thermodynamical theory of Rayleigh scattering was
formulated by Smoluchowski in 1908 and Einstein in 1910, based on the
stochasticity of light scattering on thermal fluctuations of density and, in
solutions, of the concentration. The next step was made by Brillouin in
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1922, who showed that time-variable statistical fluctuations of density
cause a modulation of the spectrum of scattered light. In addition to the
central Rayleigh-Smoluchowski line (due to isobaric fluctuations of den-
sity), two symmetrically disposed lines due to adiabatic fluctuations of
density appear. This Brillouin—~Mandelshtam doublet was detected in
liquids by Gross in 1930. These matters have been discussed in numerous
monographs (see, for example, FABELINSKIT [1968] and KieLicH [1980a]).

Just over half a century ago Raman and.Krishnan, and Landsberg and
Mandelshtam, brought into being in 1928 what is now generally referred
to as Raman spectroscopy. In these days of laser techniques, Raman
scattering and the spectroscopic methods based on it have been generally
accepted as a potent instrument of study, revealing to us the properties of
atoms, molecules and macromolecules, as well as the microscopic struc-
ture of gases, liquids and solids. This completely autonomous discipline
has been dealt with comprehensively in a number of books (see, for
example, KONINGSTEIN [1972], LonG [1977], CARDONA [1975], and HAYES
and Loupon [1978])).

Equations (1.1) and (1.3) determine a two-quantum process (one
incident photon and one scattered photon). When a microsystem is in a
radiation field with a high density of the photons, processes involving
more than two photons can take place. Thus, as early as 1931, Goppert-
Mayer considered theoretically three-photon processes involving the
emission or absorption of two photons. Extending her theory BrLAToN
[1931], and later NEUGEBAUER [1963] showed that a quantal system can
produce elastic scattering at the doubled frequency 2w. GUTTINGER [1932]
analyzed the possibility of inelastic three-photon scattering at the fre-
quencies w;=w,+w,Fwg (Fig. 1.2). The quantum-mechanical founda-
tions of three- and four-photon Raman scattering have been formulated
by KieLicH [1964b] for molecular systems of arbitrary symmetry.

Accordingly, a molecular system in a strong electric field (1.2) generally
exhibits a nonlinear response when its electric dipole moment of the nth
order for a transition {f] < |i) is

D%n)(t) =I<(('on.+1) a‘fi")(_wn-%l’ wru NI (01)
x[n] E(w,) - - * El@)) exp[—i(w, + - -+ o, +ogt], (1.4)
where @i (—w, .1, W, ..., ®;) is a tensor of the (n+1)th rank deter-
mining the nth order polarizability of the scatterer. In eq. (1.4), the

symbol [n] stands for n-fold contraction of two tensors of rank n, whereas
K(w,.,) is a numerical expansion and frequency degeneracy coefficient.
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Fig. 1.2. Three-photon energy transitions: (a) hyper-Rayleigh, (b) Stokes hyper-Raman,
and (c) anti-Stokes hyper-Raman.

Equation (1.4) shows that, if n photons with different frequencies
wq,...,w, are incident on the microsystem, then an (n+ 1)th photon,
having one of the frequencies

wn+1:wn+' N '+(.01:Flwﬁl, (1.5)

is scattered in the quantal transition of transition frequency wg.
Equations (1.4) and (1.5) define (n+1)-photon spontaneous Raman
scattering, also referred to as non-degenerate hyper-Raman scattering of
the (n— 1)th order, with n = 2. In particular, if the photons have the same
frequency w, we have for (n— 1)th order degenerate hyper-Raman scat-
tering:
W, 41 = nw F|wg). (1.6)

The process, described by eq. (1.6), is also referred to as n-harmonic
Raman scattering.

For the case wg; =0, egs. (1.5) and (1.6) give the following frequencies:
Wi =@, + oy, (1.5a)
@, 41 = Nw, (1.6a)
determining respectively spontaneous non-degenerate (n+ 1)-photon
Rayleigh scattering, and degenerate spontancous Rayleigh (or (n—1)-

order hyper-Rayleigh) scattering.
Although various review articles on multi-photon spectroscopy have
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Fig. 1.3. Typical experimental geometry for the study of scattered light, of frequency w,,
propagation vector k; and polarization vector e,. The incident laser light wave has the
frequency @, propagation vector k and polarization vector e.

already appeared (see, for example, PETICOLAS [1967], VocT [1974],
FreEncH and LonG [1976], and KieLich [1977, 1980b]), we cannot refrain
from giving a brief and in some respects actualized discussion of the
matter. The laser light scattering experiment is represented in Fig. 1.3.

1.2. SPONTANEOUS HYPER-RAYLEIGH LIGHT SCATTERING STUDIES

The earliest experimental detection of Rayleigh nonlinear scattering at
the frequency 2w is due to TERHUNE, MAKER and SAVAGE [1965], who
used the light beam of a giant ruby laser and scattering liquids like CCl,
and H,O with non-centrosymmetric molecules, as suggested by the theory
(KieLicH [1964a]). BersonN, Pao and Friscu [1966], KiELicH [1964c,
1968a], and KieLicH and Kozierowski [ 1974] have analyzed the influence
of radial and angular correlations of the scatterers in hyper-Rayleigh
scattering by liquids. The preliminary observations of WEINBERG [1967]
nonetheless led to a rather weak dependence on temperature of hyper-
Rayleigh scattering in the case of CCl, and H,O, pointing to an insignific-
ant role of angular correlations. This, in fact, could have been expected;
the theory predicts that in liquids whose molecules lack a centre of
inversion, incoherent three-photon scattering is the predominant effect,
against the background of which a slight coherent (temperature-
dependent) effect is weakly perceptible.

Only liquids with molecules that have a centre of symmetry provide the
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appropriate test of the role of correlations in hyper-Rayleigh scatter-
ing since for them incoherent three-photon Rayleigh scattering is
forbidden in the electric-dipole approximation. In such liquids, only
coherent three-photon scattering due to cooperative molecular effects in
short-range regions (KieELicH [1968b]), or to molecular field in-
homogeneities (Samson and PASMANTER [1974]) is possible. The demonst-
ration of cooperative three-photon Rayleigh scattering by liquids such as
cyclohexane, benzene and carbon disulphide has been provided by
KieLicH, LALANNE and MaRrTIN [1971, 1973]. The effect has also been
analyzed theoretically by PASMANTER, SAMSON and BEN-REUVEN [1976].

In simple molecular liquids in the normal state, cooperative hyper-
Rayleigh scattering is weak. Obviously, it can be expected to become
stronger as the liquid approaches a critical point, when critical opales-
cence due to anomalous density fluctuations (according to Smoluchowski),
or concentrational fluctuations (according to Einstein), sets in. With
regard to nonlinear scattering, LayzZEROWICZ [1965] drew attention to this
circumstance, suggesting that very considerable critical scattering can
occur in liquids exhibiting phase transitions. The effect was first observed
by FrReunp [1967, 1968] for polycrystalline NH,Cl at temperatures near
the second-kind phase transition. Subsequent work by FREUND and KoPF
[1970], and LuBaN, WiseR and GREENFIELD [1970] has permitted the
utilization of critical second-harmonic scattering as a source of informa-
tion on order—disorder phase transitions.

DoLiNo, Lajzerowicz and VALLADE [1969, 1970] and DovLino [1972]
initiated studies of laser second-harmonic scattering on domain structures
of ferro-electric crystals (triglycine sulphate). INoUE [1974], and WEIN-
MANN and VoaT [1974] have carried out a detailed investigation of the
second-harmonic of light, scattered in NaNO, crystals, whereas VoGT and
NEeuMAN [1978] have pursued the same work in single crystals of NaNOj.
Second-harmonic scattering in the electric dipole-quadrupole approxima-
tion has been observed by OrRTMANN and Voot [1976] in the centrosym-
metric crystal NaNQ;, and by DeENisov, MAVRIN, PODOBEDOV, STERIN and
VARSHAL [1980] in non-centrosymmetric TiO, crystal. KosoLoBov and
SokoLovsky [1977] have observed second-harmonic scattering on defects
of LilQ; crystal structure. This type of light scattering by centrosymmetric
crystals had been predicted by RaBiN [1969].

To MAakKER [1970] are due the earliest line broadening observations for
three-photon ‘‘quasi-elastic” scattering due to rotational-translational
motions in molecular liquids. He simultaneously worked out the theory of
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its incoherent component, whereas the theory of the coherent component
related with space-time angular molecular correlations has been proposed
by Bancewicz and KieticH [1976].

Tana$ and KigLIcH [1975] have considered second-harmonic scattering
of light by a two-level system at two-photon resonance with the radiation
field, when, in addition to the central line at 2w, two side lines appear
with frequencies 2w + 8, where 8 is the level splitting, dependent on the
beam intensity in the case of two-photon resonance.

1.3. SPONTANEOUS HYPER-RAMAN SCATTERING STUDIES

The work of PLAaczek [1934] provided the foundations of the polariza-
bility theory of Raman scattering. His ideas have later been applied to the
multi-photon case (KieLicu [1964b], AkHmanov and KrysHko [1965],
StrizHEVSKY and KLIMENKO [1967], and LonG and Stanton [1970]). The
selection rules for hyper-Raman scatterings differ from those of infrared
absorption and usual Raman scattering. Those of vibrational transitions in
three-photon Raman scattering have been established by CyviN, RaucH
and DEecitus [1965] for all point groups and types of vibrations.

The theoretical formulation of hyper-Raman scattering is given in
Cartesian representation, based on eq. (1.4) (sec KiELICH [1964b], CyviN,
RaucH and Decrus [1965], and ANDREws and THIRUNAMACHANDRAN
[1978]), as well as in spherical tensor representation (see, for example,
0Ozco [1975b]). Specifically, the methods of Racah algebra are well
adapted to the description of hyper-Raman spectroscopy. They lead to
general and at the same time clear results, comprising the angular
dependences and different states of polarization of the incident and
scattered photons (see CHiu [1970], KiericH and Ozco [1973], Ozco and
KieLicH [1974, 1976], JERPHAGNON, CHEMLA and BONNEVILLE [1978], and
CHeMLA and BONNEVILLE [1978]).

Bancewicz, OzGo and KieLicH [1973a, 1975] have calculated the rota-
tional structure of hyper-Raman lines of gases consisting of spherical as
well as symmetric top molecules. ALEXIEWICZ, BANCEwICZ, KiBLICH and
0zco [1974] have worked out the theory of three-photon Raman line
broadening caused by the rotational diffusional motion of molecules. The
theory has been extended to multi-photon Raman scattering by KIELICH,
Kozierowskl and OzcGo [1977]. Quite recently, Manakov and OVsIAN-
NIKov [1980] have given a discussion of non-degenerate three-photon
Raman scattering by atomic gases.
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The resonantial amplification of hyper-Raman scattering discussed by
KieLicH [1965a] and, on a numerical basis, by LoNG and StanToN [1970],
has been analyzed anew by BEN-ZEEV, WiLsON and FrRIEDMANN [1977] for
real coherent pulse shapes, causing the emergence of a novel resonance
peak and a saturation effect such as Stark splitting, Stark shifts and
optical nutation. AGARWAL [1979] has performed an analysis of satura-
tion effects in hyper-Raman scattering by a four-level system at three-
photon resonance (see also ARUTYUNIAN, PAPAZIAN, CHILINGARIAN,
KARMENIAN and SARKISIAN [1974]).

ALTMANN and STREY [1977] have analyzed the increase in intensity of
hyper-Raman scattering due to the statistical properties of the field of
radiation (cf. MANDEL and WouF [1965]). PERINOVA, PERINA, SZLACHETKA
and KieLicH [1979], and SzLacHETKA, KiELICH, PERINA and PERINOVA
[1980]), have formulated a complete quantal theory of hyper-Raman
scattering, in which they give an analysis of the dynamics of photon correla-
tion and anti-correlation for arbitrary initial states. The effect of photon
anti-bunching is purely quantal in nature (see WarLs [1979]). It has
been detected by KiMBLE, DAGENAIS and MANDEL [1977] in resonance
fluorescence, in accordance with the predictions of CARMICHAEL and
WaLLs [1976]. Previously, SimaaN [1978] considered the quantum statis-
tical properties of Stokes hyper-Raman scattering using the master equa-
tion and Fock states (see Loupon [1980]).

In their first experiment TERHUNE, MAKER and SAVAGE [1965] ob-
served, in addition to hyper-Rayleigh lines, hyper-Raman spectra for
water. VERDIECK, PETERSON, SAVAGE and MAKER [1970] observed hyper-
Raman spectra in some gases. Soon afterwards, SAVAGE and MAKER
[1971], and FreEncH and LoNG [1975] succeeded in perfecting the tech-
nique of recording hyper-Raman spectra, thus considerably shortening
the time of exposition. FRENCH and LonG [1975] constructed a special
spectrometer, operating on one or many channels, with which they
recorded hyper-Raman spectra for the liquids H,O, CHCI; and CCl, and
later (Dines, FrencH, HaLL and Long [1976]), for a whole family of
liquids comprising chloromethanes, bromomethanes and tetrachlorides.
ScaMIp and SCHROTTER [1977] have observed vibrational hyper-Raman
spectra in solutions of C,Cl, and CCl,.

The past few years have witnessed an increase in the amount of work
devoted to the hyper-Raman phenomenon in solids, the theory of which
is due to STRIZHEVSKY and OBUKHOVSKY [1970]. With regard to scattering
on phonons in ionic crystals the theory is due to JHa and Woo [1971]
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and, for polaritons in molecular crystals, to ZAVOROTNEV and OVANDER
[1975]. Bancewicz, KieLicH and Ozco [1975] have given a discussion of
three- and four-photon electric dipole and quadrupole Raman scattering
for crystals with symmetry O,. Ozco, BancEwicz and KigLicH [1978]
have analyzed the symmetry of the hyperpolarizability tensor for all
symmetry classes and types of vibrations of crystals. BaLacurov and
Vaks [1978] have pointed out that intense critical hyper-Raman scatter-
ing can be observed in ferroelectrics.

TERHUNE, MAKER and SAVAGE [1965], in their pioneering work, ob-
served a hyper-Raman spectrum in molten quartz. SAVAGE and MAKER
{1971], using a many-channel spectrograph, recorded a hyper-Raman
spectrum from NH,CI single crystals (see also Dinks, FRENCH, HAaLL and
Long [1976]). Of great importance is the report of Yu and ALFANO
[1975] announcing the observation of three- and four-photon Raman
spectra in diamonds. Porivanov and SavakHov [1978] have observed
hyper-Raman scattering on optical phonons in calcite crystals. VocT and
NEUMANN [1976, 1979] have performed systematic studies of such spectra
for crystals of CsI, CsBr, Rbl and SrTiO;. INOUE and SAMESHIMA [1979]
and INOUE, Asal and SamestiMA [1980, 1981], studying SrTiO; crystals,
have proved hyper-Raman to be a simple and promising method for
observing the phonon polariton mode. PoLivaNnov and SAYAKHOV
[1979a, b] have reported the first observation of hyper-Raman scattering
on optical phonons in CdS. Quite recently, DENISOV, MAVRIN,
PoboBEDOV, STERIN and VarsHAL [1980] have published observations of
both two-phonon and polariton hyper-Raman scattering in TiO, crystals
subsequent to the results of DENisSOV, MAVRIN, PODOBEDOV and STERIN
[1978] for LiNbO; crystals. ScHREY, LyssENkO, KLINGSHIRN and
HONERLAGE [1979] in CdS and, more recently HONERLAGE, ROSSLER,
PHAcH, Bivas and Grun [1980] in CuBr, have observed hyper-Raman
scattering via virtually excited biexcitons. Hyper-Raman resonance scat-
tering associated with excitonic molecules in CuCl was observed by
NaGasawa, Mita and Uera [1976], HENNEBERGER, HENNEBERGER and
VoiaT [1977], and recently by GRUN [1980].

1.4. THE PURPOSE OF THIS PAPER

This review article is restricted to spontaneous multi-photon Rayleigh
and Raman scattering. We dare not enter the vast, rapidly developing
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domain of stimulated Raman, Rayleigh or Brillouin scattering effects (see,
for example, BLOEMBERGEN [1967, 1977], FaBeLINskn [1968], and
ScuuBert and WiLHELMI [1978]). Nor shall we deal with higher-order
stimulated Raman processes (CoMPAAN, WIENER-AVNEAR and CHANDRA
[1978]), Rayleigh and Raman resonant scattering by intense beams
(PrakasH, CHANDRA and VAcHAsPATI [1976], ConeEN-TaNNouDs and
REYNAUD [1977], AGARWAL and JHA [1979], BaLiacH and Coore [1980],
Frutak and VaN KrRaNENDONK [1980], and KnigHT [19807]), Doppler-free
multiphotonic spectroscopy (GRYNBERG and CacNac [1977]), or the
parametric scattering of beams discussed in the monograph of KLysHKO
[1980].

It is our intention to give a quantitative account of spontaneous
multi-photon scattering in a uniform classical and semi-classical treat-
ment, applying Cartesian representation for the description of integral
scattering and irreducible spherical representation for spectral scattering.
The formulae derived for the tensors of multi-photon scattering are
adapted to the concrete particular cases encountered in actual experimen-
tal situations. In addition to considering the role of the nonlinear optical
properties of free molecules apparent in incoherent scattering, we concen-
trate primarily on the stochastic aspects related to time-space correlations
of the molecules and their translational-rotational motion within the
scattering volume. We also expose the role played in dense media by
electric molecular fields, the time and spatial fluctuations of which give
rise to cooperative three-photon scattering. We adduce the essential
experimental observations of the various scattering effects. Our discus-
sion, moreover, comprises the angular distribution of integral intensities
for arbitrary states of polarization (linear, circular and elliptical) of the
incident and scattered photons, making no attempt to avoid the thorny
problem of the choice of a univocal model of a natural light which, in
application to nonlinear processes, is still controversial.

§ 2. Nonlinear Molecular Raman Polarizabilities

The quantum-mechanical theory of nonlinear Raman polarizabilities
has been developed previously in the electric-dipole approximation
(KieLicH [1964b]), and electric magnetic-multipole approximation
(KieLicH [1965a)) for free molecules. Here, the problem will be extended
to damping effects (BLOEMBERGEN [1965], BuTcHER [1965], and KiELICH
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[1966b]). The problem is sometimes formulated in a very simple manner
within the framework of classical Lorentz—Voigt electron theory, permit-
ting the calculation of non-linear polarizabilities, taking into account the
damping of electron vibrations as well as effects of nuclear vibrations (see,
for example, Kasprowicz-KieLicH and KieLicH [1975], and Fryrzanis
and BLOEMBERGEN [1976]).

2.1 THE MULTIPOLE INTERACTION HAMILTONIAN

We consider a microsystem composed of s point particles (nuclei and
electrons), with electric charges e, masses m;, and positional vectors r;
referred to the centre Q of the micro-system (Fig. 2.1). Its electromagne-
tic field is observed at a point P, distant by R from Q; we denote the
vector connecting P with a charge ¢ as R, = R+r;.

The Hamiltonian of the spinless microsystem, in the nonrelativistic
case, is (HEITLER [1954]):

H=Y 1o ®(®, 0+Cm) " 5-(g/0) AR, 0T} (21

in which @(R;, t) and A(R,, t) are the scalar and vector potentials of the
electromagnetic field at the time ¢ and point R; of the jth particle, having
the generalized momentum operator p;.

In eq. (2.1) we have neglected the potential-energy term of Coulomb
interactions between the particles.

We suppose that the microsystem is subjected to external space- and

Fig. 2.1. System of electric point charges of linear dimensions very small compared with the
distance |R|> |r;| at which the field of the system is studied.
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time-dependent electric and magnetic fields at the point (R, 1)

E(R,t)=—(1/c)0A(R, t)/ot —VP(R, 1),

(2.2)
HR,1))=VxXA(R,?).

At the present stage, we do not specify a particular gauge.

Quite generally, when the potentials @(R;, t) and A(R;, t) are not
constant within the region of the microsystem, one can expand these
potentials at R; = R+r; in a series in powers of r; (KiELICH [1966a]):

D(R+r, 0= Y. (n) r[n] V" B(R, 1),
n=0

AR+r, )= Y (n)'r{n] V" AR, 1), (2.3)
n=0
where V is the spatial differential operator at the position R.
After an appropriate canonical gauge transformation (see, for example,
Fiurak [1963] and Power [1978]) we have, with respect to egs. (2.1)-
(2.3):

H=H,+H'(t)=H.+H )+ H )+ H®@t)+ - - -, (2.4)

where H, is the Hamiltonian of the non-perturbated microsystem, its
first-order perturbation Hamiltonian being (KieLicH [1965a])

HP = - i [Cn—DN] "M [n] E™(R, 1), (2.5)
n=1
HP(t)=— i [Cn—DNT "M [nTH™(R, 1) (2.6)

with E™(R, t)=V"'E(R, t) and H™(R, t)=V""" H(R, t).
We have introduced above the following 2"-pole electric moments of

the microsystem s
M=) ert Y®(r) (2.7)

ji=1
and 2"-pole magnetic moments of the microsystem
M =n[(n+ el Y enY ™) %, (2.8)
i=t

wherein the vector operator Y™, of degree n (its properties resemble
those of spherical harmonic functions), is given by

YO(r) = (=1)" (n)™' P WA, (2.9)
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The higher-order Hamiltonians of interaction between the microsystem
and a strong classical electromagnetic field occurring in eq. (2.4) have been
given in earlier papers (KieLicH [1965, 1966a]).

In commonly discussed problems it is sufficient to take only the first
terms of the Hamiltonians (2.5) and (2.6):

HY=-D°-E(R,t)-3Q°:VER, ) —.. ., (2.5a)
HY=-D™-H(R,t)—..., (2.6a)

where D.=M and Q.=M® are operators of the electric dipole and
quadrupole moments respectively, and D,,= M) is the magnetic dipole
moment operator.

Obviously, in this approximation, one should take into consideration
the first term of the Hamiltonian HZ. It is given as follows (KIELICH
[1965a)):

H?=—H(R, 1) xm  HR, 1), (2.10)
where
Xo=(4c2)7" Y (&2/m)) (r;r; — 12U) 2.11)
i=1

is the operator of the magnetic polarizability of the microsystem and U
the second-rank unit tensor.

Similarly, one can calculate multipolar contributions to the electric and
magnetic polarizabilities (KiELicH [1965a, 1966a] and DE Groot [1969]).

2.2. THE EQUATION OF MOTION FOR THE VECTOR OF STATE

The expectation value of a dynamic operator M(t) for a quantum
transition {f| < i), under the influence of a perturbation, is

M(t) = (W) M |¢i(1)), (2.12)

where motion of the vector of state |y;(t}) in Hilbert space is given by the
Schrédinger equation

i7(3/61) |¢s(D)) = {Ho+ H'()} [4(1)) (2.13)
the Hamiltonian of the microsystem being given by (2.4).

We express the wave function of the perturbated system ¢(r,t) in
terms of the following expansion, involving known wave functions ¢;(r, 0)
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of stationary states of the non-perturbated system:
dilr, 0= X cult) th(r, 0) exp (i), (2.14)
14

with @, = Ej/h being the circular vibration frequency corresponding to the
eigen-energy E; of the quantal state | of the non-perturbated system. The
transition coefficients for a transition of the quantal system from the state
i) to the state (l|, under the influence of the perturbation H'(¢), are
functions of time and can be expanded in a series as follows:

a®=clO+ePO+ P+ = T 0. (@2.15)
n=0

The solution of the problem is dependent on the initial conditions
assumed, defining the state of the system while still not acted on by the
perturbation. This reduces to finding the zeroth approximation of the
expansion (2.15). Sometimes, one can assume the ideal situation when the
levels of the states of the “isolated” microsystem are of zero width; then
ciP(t) = &, is independent of time. Regrettably, however, this situation is
unrealistic, since even in the “isolated” case the levels almost always
possess a non-zero width for various reasons (e.g. polarization of vacuum,
heat reservoir, external fields, etc.). In fact, this finite width of the levels is
the factor ensuring spontaneous emission —the action of the external
electromagnetic field reducing to cause time-variations of the pre-existing
level widths. We have thus in the zeroth approximation (LourseLi. [1973])

cP(t) = &; exp (—It/2), (2.16)

where I';" is the lifetime of the quantum state ! and I is real.

With regard to the condition (2.16) we obtain, by (2.13)—(2.15), the
following equation determining the transition coefficients for n=
1,2,3,... (ProciNniczak [1980]):

ih(3/01)c (1) = ~Hh(T/2)ctP(0)+ X Hilt) ¢y (1) exp (—iwt),

« (2.17)
where the matrix elements of the perturbation Hamiltonian Hj(t) are
defined as usual.

The equations of motion (2.17) represent a modification of the ap-
proach of OrRr and WARD [1971], as well as the respective equation of
motion for the density matrix operator of a system in the presence of
damping (see BLOEMBERGEN [1965], AGARWAL [1973], and APANASEVICH
[(1977]).
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In order to derive the transition coeflicients for n=1,2, 3, ... one has
to know the perturbation Hamiltonian in analytical form, or rather its
explicit dependence on the time. From eq. (2.5), the first-order perturba-
tion Hamiltonians are seen to be linear functions of the electromagnetic
field which, in turn, can be expressed as a superposition of different
monochromatic waves in Fourier representation

ER,t) =% Z {E(R, »,) exp (—iwt) + E(R, w,)* exp (iw,t)}, (2.18)

where summation extends over all discrete vibration frequencies, with
ER, w,)*=E(R, ~o,).

Restricting our considerations to the Hamiltonian of first-order pertur-
bation, with time-dependence of the type (2.18), we obtain, with regard
to the solution of the inhomogeneous linear differential equation (2.17),
the following first-order transition coefficients:

1
ciP(0 =3 LictPwn) exp (~iwy1)
A

+ci’(—wy) exp (o0} exp [i(ws +il2)],  (2.19)

where the transition coefficient amplitudes are of the form

LU HEw) i

. 2.19
howF o, —ily ( 2

Cgil)(iw)\) =

Above, I';=(I—1TI)/2 are the difference level widths of the system for
transitions (I| < |i).

Similarly, we obtain the transition coefficients for higher and higher
approximations. Quite generally, in the nth order we have

C%?)(t) =2 Z {cﬁ”(w)\" +- +wxl) exXp [_i(w)\" te +wx,)t]
ISR W

+(2" —1) terms} exp [i(wy; +i3/2)(] (2.20)
with the nth order transition coefficient amplitude
ci(Fwy, - k@) ==
¥ U Hwy) lky 1) - - - (k| Hwy,) i)

ki i1 (o, yFan, — =il )

(2.20a)

and kg=1.
By eqgs. (2.14) and (2.15), the transition operator (2.12) can be written
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in the form of the series

Mo =Y M0, (2.21)

n=0

where the approximations of successive orders are

M) =) Y @)% My ¢ (1) exp (i) (2.22)

u=0 ki

In particular, in the zeroth approximation, we hence have for the
transition operator

Mq() = M, exp [i(ws +i5)t]. (2.23)

The above operator describes spontaneous emission and absorption.
Here, however, I'} =(I;+17)/2 is the summation level width.

The transition matrix in the first-order approximation is, by egs. (2.16),
(2.19) and (2.22),

1
Mﬁ(t)(l) = E Z Z {[Mfkcgcli)(w)‘) + cg,lc)(w)\)* M,;] exp (—iw,t)
X Kk

+[Macid (—o) + cid(—w))* Milexp (0,0} exp [i(ws+il5)e].
(2.24)

We likewise express the transition matrices of higher orders, including
the nth (2.22).

2.3. NONLINEAR POLARIZABILITIES IN THE ELECTRIC-DIPOLE
APPROXIMATION

We shall now consider the quantum transition matrices (2.22), restrict-
ing ourselves to the electric-dipole approximation in the perturbation
Hamiltonian (2.5). In this procedure, we obtain by (2.24), for the compo-
nent ¢ (in a Cartesian reference system X, Y, Z) of the electric dipole
transition moment, the following first-order approximations:

D0 =3 T {ak () E, (o) exp (-ian)

A

+ab (@) E.(—w,) exp (imy1)} exp [i(ws +ilH)t], (2.25)
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where the second-rank tensors of the linear polarizability of the microsys-
tem for the transition {f| < |i) have the form

@t (o) =1 ¥ {<f| D; k) (k| Dy iy ¢f] DS [k)<k| D5 i

h k wki:Fw}‘—iFki wkf:l:w,\ +ika

}, (2.25a)

The preceding quantum-mechanical expressions proceed beyond the
WEISSKOPF-WIGNER theory [1930] and, in the absence of damping, go
over into the well known KRAMERS—HEISENBERG result [1925] (see EBERLY
[1980]). By (2.25), the scattered frequencies are tw, +wg;+ilg.

Proceeding along similar lines we obtain, by eqgs. (2.20) and (2.22), the
second-order transition matrix of the electric dipole moment

Dt = 3 T (bl ) E.(0,) Eo(y)
Ap
x exp [—i(w, +w,)t]+3 terms} exp [i(ws +il'g)t], (2.26)

where we have introduced the third-rank tensors b%_, defining the
second-order nonlinear polarizabilities for the transition {f| < |i):

_S {f| DG |1){!| D5 |k)k| D3 |i)
- (wu )= n g{(wu—wu — o, —il) (@ — o, =N
(fl D5 |k)k| DS |1)I| D3 |i)
(Wit + o, + il @y — o) —il)
(f| D} [1){l] D% [k){k| Dg i) }
(wlf+ w, + iFlf)(wkf+ ®, T, + irkf) ’

(2.27)

Here, S, denotes the symmetrizing operation, which indicates that the
expressions following it are to be summed over the 2! possible permuta-
tions of the pairs To, and vw,.

The third-order electric dipole transition moment is:

1
Deg(t)P == ¥ {ch (@, @, @)

48 o
X Ef(we) Ev(wp,) Ep (w)\) exp [_l(ws + wu + w)\)t]
+7 terms - - -} exp [i(wq+1I'5)t], (2.28)

where the fourth-rank tensors cf

aTvpy

defining the third-order nonlinear
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polarizabilities for the transition (f| « |i), are
ch ol 0, ) =18,
. { (1] DG Im){m| D2 |1){1| D [k)(k| D, |i)
kim (0= 0, — @, — o) il )0~ 0, —o, —i) (e~ o, —il;)
(| D2 |k)(k| D, [m){m| D5 |1){I| D |i)
(o + @, TN @ — @, — o) —i6 ) (0 — oy —il)
{f] Dy [m){m| DS |k){k| Dg, [ (1| D; |i)
(@t @, + il @+ 0, + @, + il )y — o) i)
(f| D5, [m){m| D5 |D){1| D7 |k) (k| D5 lid }
(Wit o, il o+ o) + @, i) o+ o, + o, + o, +il ) )

(2.29)

The other 7 tensors of eq. (2.28) are hence derived by successively
changing the signs at the frequencies w,, w, and w,.

Finally, by (2.22) and (2.20), we have for the nth order electric dipole
transition moment (cf. KieLicH [1966b]):

D)™ =2 Y {al, @, 0) By (@) E, (@)

ArAg

xexp [—i(wy, + - -+, )]+ (2" — 1) terms} exp [i(wg +1l5)t], (2.30)

where the (n+1)th rank tensor of nonlinear nth order polarizability for
the transition (f| < |i) has the form

n
ag(rl“-(rn(w)\l, e w}\,‘) = hi" Z Sn

s=0

(8] D5, k) (ko) DS [k} ++ + (kal D5, )
x X

ko et (o st oy 4+ oy, il ) [hn—si1 (0 — 0y, —

u

Ty, *irkui)
(2.31)

Here, S, is a symmetrizing operator, implying summation over all n!
permutations of oy, ,, ..., 0,0,..

As we see, the transition dipole moments (2.30) are in general complex
quantities; to obtain their real parts, determining classical radiation of
real dipole moments, one can have recourse to the postulate of KLEIN
[1927] (see also PLaczek [1934]).
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In the non-resonance case, the nonlinear polarizabilities induced by
vibrational transitions can be described by the method proposed by
Praczek [1934] (see KieLicH [1964b]). Recently, PANDEY and SANTRY
[1980] have evaluated vibrational contributions to the polarizabilities and
hyper-polarizabilities of some simple molecules (CO, HCN and H,O).

2.4. MULTIPOLE ELECTRIC AND MAGNETIC POLARIZABILITIES

Electric dipole transitions of even orders are forbidden for certain
molecular symmetries, and one has to consider electric quadrupole or still
higher multipole transitions. To deal with these situations, we insert the
multipolar Hamiltonian (2.5) into the transition moment (2.24). This
leads to the first-order electric multipole moment for the transition

(fl < i)

ew)(o‘“:%z S [@ny— DT ("L AG (w0) 1] E™(R, @)

Ay ny=1
xexp (— lwx t)“’(n)A(n (- w)\l) [n,] E("‘)(R, wxl)* eXp (iw,\|t)}
xexp [i(wg+1I'8)t], (2.32)

where the tensors of rank s+ n, determine the linear multipole electric-
electric polarizabilities (KieLicH [1965a, 1975]):

(n;A(n >(:i: }\) hZ{<fI M(n)|k><k|M(“)|1> <f| M(")ik><k1M(") h)}

k :F(O,\ IFkl (Dkf:}:u))\ +1ka

(2.33)

Strictly, (2.33) is the tensor of 2"-pole electric polarizability induced by
2™-pole electric transitions.

Obviously, for n =1 and n,; =1 egs. (2.32), (2.33) reduce to (2.25).

In a similar way, one can write the tensors ") A" and *) A% defining
the tensors of 2"-pole electric polarizability induced by 2" -pole magnetic
transitions, and vice versa. Also, the magnetic multipole Hamiltonian
(2.6) permits the calculation of the tensor ")JA"2 determining the
2"-pole magnetic polarizabilities, induced in 2™-pole magnetic transitions
(see KieLICH [19654a]).

By having recourse to the expressions (2.20) and (2.22), we obtain, for
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the second-order 2"-pole moment, induced in multipole electric transi-
tions (2.5) and magnetic transitions (2.6) (KieLica [1965a, 1966b]),

MPOP ==Y Y T [@n - D Q- 1]

8 MAp =1 n,=1
X{["BEL T (y,, @) [+ 1] E*)(R, o) E"(R, w,,)
+ (néBgﬂgnz)(w}\,, w)\2) [n,+n,] E(n‘)(R, w)\,) H(nz)(R, w,\z)
+(";B§,',‘é;,’"2)(w}“, w)q) [ny+ny] H(n')(R, w)\,) E(nz)(R, a),\2)
+ (néBglx’Jinz)(wA,» w)\2) [n,+ns] H("‘)(R> wxl) H("”)(R, wxz)]
xexp [~i(wy, + o, ) 1]+ - -} exp [i(wg +il§)1], (2.34)
where, as an example, we write out the quantum-mechanical form of the
(n+n,+n,)-rank pseudo-tensor:
("ngﬁgnz)(w)\,, w)\z) = h_ZS(nle, nzwxz)
<Y { & M |1 (I M k) (k| M2 iy
i Wy~ Wy, — wxzﬁirn)(wki“ w/\g_irki)
(LM o) (K| MY D M
(¢t oy +i oy — oy, — 1)

(| M [ DL ME k) (k| ME i) }
(s + o, Til) (@ + oy, + @y, +ily)

(2.35)

determining the 2"-pole electric second-order nonlinear polarizability,
induced by 2™-pole electric and 2™-pole magnetic transitions. Clearly, by
the interchange of M{? and M{ in eq. (2.35) one arrives at the
quantum-mechanical expression for the tensor "\B "™ (w, , w,,). Similar
interchanges lead to the other tensors of the expansions (2.34). It is worth
noting in particular that the second-order electric dipole transition mo-
ment (2.26) results from (2.34) for n =n, = n, = 1. Likewise, eqs. (2.34)
and (2.35) lead to the quadrupole and higher electric and electro-
magnetic transition moments.

We have seen how expressions are derived for third-order and higher-
order electric or magnetic multipole moments. However, in the calcula-
tions, one has to keep in mind the fact that, from the second-order
approximation upwards, Hamiltonians of the second order and, in the
relativistic case, Hamiltonians of higher orders, should be taken when
calculating the vectors of state (2.27) (see KieLicH [1965a, 1966a]). In
some cases, the contributions from the second-order Hamiltonian (2.10)



I, §2] MOLECULAR RAMAN POLARIZABILITIES 177

are highly essential, e.g. in nonlinear optical activity, as well as in the
nonlinear Faraday effect of diamagnetic gases (KIELicH, MaNAkov and
Ovsiannikov [1978], and Manakov, Ovsiannikov and KieLicH [1980]).

In particular, we get for the second-order electric dipole moment
induced by a direct magnetic transition (2.10):

D&a(1)? = Z (b5 (®,, @) Ho(w,) H, ()
x exp [~i(w, + )]+ - - -yexp [i(wg +ilpt], (2.36)

where we have introduced the third-rank pseudo-tensor (KIELICH
[1965a])

b (w0, wy) :% ¥ {<f| Dg |k) <kl xm 1i) L (X3 Nk G| DG i)

oty .
wki—wu—wk—lrk, wkf+a) +(,0/\+1ka

}, (2.37)

determining the second-order nonlinear electric polarizability induced by
a magnetic transition, due to the square of the magnetic field strength H?
(quadratic transition).

The third-order electric dipole moment, induced by a simultaneous
electric dipole transition (2.5a) and magnetic transition (2.10), has the
form

Dzﬁ(t)(LZ) = Z {Czir:r:i(we, wu.) w)\) E'r(we) Hv(wu) Hp(wX)

)\ue

xexp [~iw, + w, +w)t]+- - Jexp[i(ws+ilF)t], (2.38)

where the fourth-rank tensor

eemfi

co"r:vp(ws’ wpu w)\) = hAzSZ
y { (f| Dg |11l D5 |k)<k| xT 1i)
a Woi—w, TW, T Wy —ily) (wki_wp, —w, —ily)
(fl-D5 |k)<k| D |1)<l|x li)
(0t o, +ily) (0~ o, —w, —iI};)
(fl xao |1 D |k><k| D¢ |i) }
(0 + o) + o, +il N+ o, + @, + o, +il;)
(2.39)

determines the third-order nonlinear electric polarizability, induced by
electric dipole and magnetic quadratic transitions (2.10).
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§ 3. Incoherent and Nonresonant Multi-Photon Scattering
by Free Molecules

3.1. THE ELECTRIC AND MAGNETIC FIELDS OF THE SCATTERED WAVE

We consider the molecular system defined in Fig. 2.1. Since we are
concerned with the field in the wave zone, i.e. at distances from the
radiating molecular system considerably exceeding the light wavelength
(R »A), we can write (see HEITLER [1954]), at the space-time point (R, t):

Es(R, t)=(1/R3>¢®) {RX[RX Z(1')}, (3.1)
Hy(R, )= —(1/R*c){Rx Z(1")}, (3.2)

where
Z(t)=) ¢n(t) (3.3)

is the Hertz vector at the retarded moment of time
ti=t—(Rj/c)=t—c ' |R+r, (3.4)

since R; = R+r; (Fig. 2.1).
On expanding the vector (3.3) in a series in powers of r;, and taking
into consideration (3.4), we obtain (KieLica [1965a]):

Z(tY=Z(t—R/c)+Z,(t—R/c), (3.5)

where the first term of the Hertz vector,

Z(t—Rlc)= i [(Qn—DN (R T R [n—1]@" "/ot™ ) M (t—R/c)

n=1

(3.5a)
describes electric multipole radiation and the second,
Z.(t—-Rlc)=— Y, [@n-DUR"" 'R [n—1]
n=1
X{Rx (8" '/at" "} M™(t— R/c) (3.5b)

describe magnetic multipole radiation (see egs. (2.7) and (2.8)).
By the definition of the Poyntings vector of electromagnetic radiation:

S(R, 1) = (c/4m) Es(R, t) X Hy(R, 1)
and with regard to egs. (3.1) and (3.2), we obtain for the mean value:

(S(R, 1)) =(c/47R") (R?8,, — R,R,)IS.R. (3.6)
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Above, we have introduced the intensity tensor of light scattered by the
molecular system:

I3, = (N12¢*) (Z,(t— R[c)* Z.(t— RI)ae, (3.7)

where the symbol { )q r denotes appropriate averaging over the orienta-
tions 2 of the molecules and averaging over the states of the incident
field of light E, whereas N is the number of molecules, reorienting freely
in the scattering volume. The geometry of scattered light observation is
shown in Fig. 1.3.

3.2. HARMONIC ELECTRIC-DIPOLE ELASTIC SCATTERING PROCESSES

We shall first consider the electric-dipole approximation, on the as-
sumption of monochromatic incident light sufficiently intense to cause
nonlinear polarization of the molecule. Taking into account purely har-

monic terms, with frequencies o, 2, 3w, ..., we obtain
Z,(t—R/c)= Y. D,(nw)cos [nw(t—R/c)], (3.8)
n=1

where the amplitude of the nth harmonic of the electric dipole moment
induced in the molecule is

D, (nw)=02" 'nY) " ame ... . Es (@) E, (w). (3.9)

The (n+1)th rank tensor aje ..., defining the nth order nonlinear
polarizability can be dealt with as completely symmetric in the non-
resonant case.

On the insertion of (3.8) into (3.7) we have:

.= Ie=I12+ 122+ 320+ - -, (3.10)
n=1
where
I"* =2 Y(nw/c)*N(DX(nw) D,(nw))o (3.11)

is the intensity tensor of the light scattered at the nth harmonic fre-
quency; with regard to eq. (3.9), it has the following, explicit form:

I"=N[2*" '(n)?]" (nw/c)*
X{Ages. .. 5, O ...,"Ef’:](w) s Ef"(w) E. (@) E, (0)ag.
(3.12)
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The averaging of the Cartesian tensor products of (3.12) is readily
performed for n=1,2,3 (KieLich [1961], and ANDREws and
THIRUNAMACHANDRAN [1977a]), but is in general a highly complex affair if
n=4. However, (3.12) is easy to calculate for arbitrary n if the incident
beam is assumed to be linearly polarized, since in this case one obtains
(KieLicH [1967a, 1968b], see also Appendix B):

= (nw/c)* (8,.F,, + €,€,Gp, )I"g™ (3.13)

with: I=(|E|*»/2 the intensity of incident linearly polarized light, and e
the unit vector in the direction of the field E.

Equation (3.13) involves two molecular parameters of elastic n-
harmonic scattering (KieLicH and Kozierowskr [1972]):

an = Na;;‘f’ Cay, ag‘gl s B fuB“lB] B : 31 (3143)

G =Naoay . o, Q53, - g, BaparB - - - By (3.14b)

where the tensor operators: fogq g, - .. a,8, aNd Eopays, . - a8, are defined in
Appendix B.

We have also introduced in eq. (3.13) the degree of nth order coher-
ence of the incident linearly polarized beam

g™ =(E(0)’")s/(E(0))g, (3.15)
leading to (MANDEL and WoLr [1965])

0 {1 for coherent light,
n! for chaotic light. (3.15a)

The molecular parameters (3.14) are valid for all symmetries of the
tensor aqq, ..., . In the case of completely symmetric nonlinear polariza-
bility tensors, the final results simplify considerably, and can be expressed
in terms of the least number of irreducible invariants for the rank n+1
under consideration.

(i) Rayleigh scattering. In particular, for linear Rayleigh scattering
{(n=1) we have:

=(N10)[a2P, G, =(N3)ladP+(1/10) |a@P]  (3.16)
involving the parameters of isotropic and anisotropic scattering

o2 PP =(Baggass—a,casy)l3. (3.17)

la _aaaaBB/3 la’
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(ii)) Second-harmonic Rayleigh scattering. Similarly, on applying eq.
(3.14) to second-harmonic scattering (n =2) we have, for a completely
symmetric tensor of second-order nonlinear polarizability aZg, = ba,

= (N/2520)(7 |bSOI2+ 12 b)), (3.18a)
G, = (N/1260)(28 |bSL)> +3 |65, (3.18b)

with the two irreducible molecular parameters (KieLich and Ozco [1973])

bSO = (3/5)b335b2,, (3.19)
IbL)? = (1/5)(5b232b23, — 3b335b2%.). (3.19b)

(iii) Third-harmonic Rayleigh scattering. We shall still consider third-
harmonic elastic scattering (n=3). Here, for a completely symmetric
tensor of third-order nonlinear polarizability alg,s=c2g.,s we obtain
(Kozierowski [1970])

= (N/181444)(27 |22 +20 |cP), (3.20a)
= (N/60480)(84 |cO2+39 [c2P+4|cP), (3.20b)

where the following three irreducible molecular parameters, introduced
by Ozco [1975a], intervene:

|cSoP = (1/5)CotiaCiosss (3.21a)
| = (2/T)(Bcape Cass — CantsCrass)s (3.21b)

5917 = (1/35)(35 CapisC s — 30Coa%,Cotes + 3CaagaCauss).  (3.210)

The irreducible molecular parameters (3.17), (3.19) and (3.21) are, in
practice, immediately applicable to various symmetries of the molecule,
since tables giving the nonzero and mutually independent components of
the tensors aug, bae, and c,g,s for all point groups are available (see, for
example, KieLicH [1972a, b, 1980a]). The parameters react individually to
the presence of various elements of symmetry in the molecule. If, for
example, the latter, when in its ground state, possesses a centre of
symmetry, the parameters (3.19) vanish, meaning that no second-
harmonic scattering can take place in the electric-dipole approximation
considered. Centrosymmetric molecules can give rise to second-harmonic
scattering only if we go over to the electric-quadrupole approximation
(see KieLicH, Kozierowskl, OzGo and ZAWODNY [1974]).
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3.3. MULTI-PHOTON VIBRATIONAL RAMAN SCATTERING (CLASSICAL
APPROACH)

We shall now consider scattering processes due to the vibrations of
molecular nuclei in the classical treatment of PLaczex’s [1934] polariza-
bility theory, which can be extended rather easily to second- and third-
harmonic Raman scattering (KieLicH [1964b], StrizHEVSKY and KLIMENKO o
[1967], and LonG and Stanton [1970]). According to Placzek, the
polarizability of a molecule is not constant, but varies with time, for
example as a result of the vibrations of its nuclei. Let Q, (), with
m=1,2,...,3N—6, denote the normal coordinates of the displacements
of the nuclei with respect to their equilibrium position. Then, for har-
monic vibrations with the frequency w,, and phase shift ¢,, we have:

Qn (1) = Qu(0) exp [( @t + @)1, (3.22)

where Q,,(0) is the amplitude of the mth normal vibrational mode. In the
expansion (3.9) the nonlinear polarizability tensors are now functions of
the normal coordinates ajy, ..., (Q), of an (in general) unknown analyti-
cal form, For small vibration amplitudes, however, one can write the
following expansion:

ape,.. (Q)=am ., O+Y ak o Qut..., (3.23)

where we have used the notation

nw

e (s PI a',.:m.E (303; s o-"/aom)Q:O'

Hence, by egs. (3.7)-(3.9) and (3.22), (3.23), we have for n-harmonic
Raman scattering;:

I7en = N[22" Y (n)?] ! [(no F @,,)/c]?
X<a;:;n- LN A3 (3 a::: e Tym lQmP)ﬂ

X(E¥ (@) E% (@) E,(0) - E, (0)) (3.24)

a

ne

Above, az;....,..m is the first derivative of the nonlinear polarizability
tensor with respect to the normal coordinate Q,,.

Concerning the calculation of the tensor (3.24), we proceed as follows:
we average over the orientations of the molecule {2 in the representation
of spherical tensors, leaving the average over the fields in Cartesian basis.
Transforming from laboratory Cartesian coordinates to the spherical basis
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we write;
am .. g.m= 2 RXL _ adL(ne), (3.25)
JKL

where the RIXL are transformation coefficients between the two

goy -~ Oy

representations. a@ 5(nw) is the Kth component of the irreducible

tensor of Jth order, with components transforming from the laboratory to
the molecular system of coordinates in accordance with the relation:

+J
al = Y Dk adk, (3.26)
M=—J

the Dia(2) denoting elements of the unitary Wigner rotation matrix
possessing the property:

<D{(M(‘Q)* Dﬁ'M'(Q»n =Q2J+ 1)~1 055 Ok Onanr- (3.27)
With regard to the expressions (3.24)-(3.27) we finally obtain
oo =2 "Y1 [(nw F 0,,)/c]* N|Q,. > I"g™

X Y I+ 17 A (nw)? X, (3.28)

JKI.M

where we have introduced the following tensor:

QEL=RJKL  RIXL  (e¥ ---eX e, e.) (3.29)

oG- C T o Tn T

accounting for arbitrary polarization states of the incident and scattered
light, and arbitrary geometries of observation.

The coefficients Rf,'le ..o, Of the rotational transformation have been
tabulated by MAkeR [1970] for n =2 and by Ozco [1975a] and STONE
[1975] for n=3.

Like eq. (3.13), the tensor of n-harmonic vibrational Raman scattering
(3.28) is applicable to first-, second-, third- and higher-harmonic light
scattering processes. However, eq. (3.28) is more general than (3.13) in
that, thanks to the tensor (3.29), it is valid for arbitrary polarization states

of the fields.

3.4. ROTATIONAL, VIBRATIONAL AND ROTATIONAL-VIBRATIONAL
MULTI-PHOTON SCATTERING PROCESSES (SEMI-CLASSICAL
APPROACH)

When proceeding to the quantal (or rather semi-classical) treatment of
multi-harmonic scattering, we wish to draw attention to the following
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three aspects relating to the tensor (3.7). First, we have to deal with the
matrix element Z% of the transition from the initial quantum state |i) to
the final state (f|. Second, in place of N we now have N, the number of
freely orienting molecules in the initial state |i), since only these molecules
take part in scattering, accompanied by a change in quantum state from |i)
to (f|. And third, averaging over the molecular orientations {2 has to be
performed in a different way, since the rotational motion of the molecule
is quantized so that it can only be in rotational states such that the
projection of its angular momentum J onto the z-axis, shall be equal to
M, with —J <M <J. Thus, instead of unweighted integration { ), over all
possible values of the Euler angles, we now have to carry out a summa-
tion over all the permitted quantum numbers M, and M; of the initial and
final states of the molecule. We denote this average by the symbol
(¢ Pmu=QI+1)" Tpp, (- - +) since, with regard to spatial degeneracy,
each of the rotational levels is (2J + 1)-fold degenerate.

With the above in mind, we have in place of (3.7) the following
intensity tensor of light, scattered in the quantum transition (f| « |i):

I3, = (Ni/2¢*) (Z5(t = Ric)* Z8(t— R/c))p . (3.30)

In the case of inelastic multi-harmonic electric-dipole scattering (3.8)
we have an expansion of the type (3.10) where, now, the transition tensor
for the nth scattered harmonic is:

I3 (nw) = N[2" (a2 [(ne F oy)/ ]I

X(aga, ... o) al, .. (noWp g8 onr. . n. (3.31)

In (3.31), we have introduced the tensor of the nth order degree of
coherence of the incident beam:

85 ours - m = (B (@) - B (0) E,(0) - - - E, (0))e(| E(@)P)z".
(3.32)

In further discussions, for the sake of clarity, we shall apply certain
simplifying assumptions which, by the way, have already been used by
Praczek [1934] in his treatment of usual Raman scattering.

(i) In our description of the wave function ¢; of the molecule in the
state [i), we apply the adiabatic Born-Oppenheimer approximation, per-
mitting the factorization

¥ = Y, q) Y Q) Yri(Q2) Y(0), (3.33)

with: Ygi(r, q) the electron wave function, dependent on the coordinates r
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of the electrons and q of the nuclei; yn(Q) the vibrational wave function,
dependent on the normal coordinates Q of the vibrations and the
vibrational quantum number V'; yp({2) the rotational wave function,
dependent on the Euler angles  and the set of rotational quantum
numbers R'=(J', 7', M); and (o) the spin wave function, dependent on
the spin coordinates o and spin quantum numbers [ i of the nuclei.

(i) The vibration frequency of the incident light wave is far remote
from regions of resonance, and is so high that the vibrational and
rotational transition frequencies can be omitted in the denominators of
the transition polarizabilities (2.27) and (2.29).

(iii) In the act of scattering, the ground electron state g of the molecule
remains unchanged; moreover, the state g is non-degenerate.

On these assumptions, we are able to perform the summation over all
the intermediate vibrational states V and rotational states R in the
expressions (2.27) and (2.29) for the hyperpolarizability tensors; ie.,
going over to the spherical basis, (3.25)-(3.26), we may write

fi = JKL
aa'o'l---a'n(n'w) - Z Ro'o'l-- cay
JKI.M

X(R'| D) R (V'] 32" (nw, Q) |V}, (3.34)

Consider first the matrix element of vibrational transitions. In the
harmonic oscillator approximation (3.23) it can be written, by analogy to
linear Raman scattering (see LonG [1977]), in the form

(V1] @ (e, Q) VY = a (o)X V| V)
+Y aQL (o) VE] Qu [Vig+- -
) (3.34a)

In the latter approximation, these matrix elements have the following
properties (LonGg [1977]) for Rayleigh lines:

{0 for VI£ Vi
(V] V'>={ or V4 , (3.34b)
: 1 for Vi= Vi

and for Raman lines:
0 for Vi, =V,
(VY] Q, |VLY={ (Vi + D"’ (h20,)"? for Vi = Vi +1, (3.34¢)
(VOV2(h2w,,)"* for Vi, =Vi,—1,
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since the selection rules for the vibrational quantum number are: V! =
V.. +1 for Stokes lines nw—w,, and VI = Vi.—1 for anti-Stokes lines
nw+w,, with m=0,1,2....

We determine the vibrational and rotational wave functions of (3.34)
by methods of quantum mechanics, applying the solutions of
Schrodinger’s equation for the Hamiltonian of the quantal system. The
rotational quantum numbers R = (J, 7, M) correspond to the solutions for
molecules of the freely rotating asymmetric top kind. Henceforth, we shall
be considering symmetric top molecules, for which the quantum number
=K describes the projection of the angular momentum onto its sym-
metry axis. In this case, the solution of the Schrddinger equation gives the
following rotational wave function:

172 B
oaa( @)= *(22) " Dl = D). 339

Although these functions are of the same form for the spherical top and
symmetric top, the respective eigenvalues of the Hamiltonian operator
Hy, are different. For the spherical top we have

E;=#*AJ(J+1), (3.35a)
whereas for the symmetric top
E;x =h{BJ(J+1)+(A -B)K?, (3.35b)

with A, B the rotational constants (LoNG [1977]).

The selection rules for the rotational and rotational-vibrational transi-
tions in Raman scattering have been discussed by PLaczek and TEeLLER
[1933], ALtmanN and STREY [1972], and KONINGSTEIN [1972], as well as by
Cuiu [1970], who moreover considered magnetic-dipole and electric-
quadrupole transitions.

When calculating the intensities related to rotational transitions, one
has to apply the formulae (Epmonps [1957])

Iy T, J3>(-’1 T2 Js

3.3
K, K, K,/ \M, M, M3>’ (3.36)

<D1]<11M1Dk2M2DIJ(33M3>Q = <
where the 3J Wigner coefficients fulfill the orthogonality condition

<11 T, ]3><J1 2

=Sk nr nr.  (3.36
K, K, K5/ \M, M, K3> K, Sxcney: - (3.362)

Y (I+1)

T3K;3

Only those molecules act as scatterers for the transition V'R« VRI
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which are in the initial state given by the Boltzmann distribution
Nv,r=Ng(Vi.R) g1 Zyg exp (~Eyw/kT), (3.37)

where g(VLR") is the degree of degeneracy of the initial level, g, the
nuclear statistical weight, and Z,x the vibrational-rotational partition
function. A discussion of (3.37) for particular cases is to be found in
handbooks, for example by KoNINGsSTEIN [1972] and Long [1977].

3.4.1. Three-photon Raman scattering

We begin with three-photon Raman scattering. We have, by eq. (3.31),
I5.2w) = (Ni/8)[(2w F 0g)/ c ] TXbG,,(20)* b3y, (20)me

vpAR®

(3.38)

This tensor is readily averaged in the Cartesian basis. In the general case
of a non-symmetric tensor bf, (2w) one has to deal with five molecular
parameters, of a rather complicated analytical form (see KieLicH [1964b],
ANDREWS and THIRUNAMACHANDRAN [1978], and Strey [1980]). We re-
frain from adducing them here, preferring to go over to a discussion of
the case of completely symmetric b5, (20) in the treatment of spherical
tensors proposed by Bancewicz, Ozco and KieLicH [1973a, 1975], and
omitting the polarizational aspects and angular relationships discussed by
Ozco and KigeLicH [1974].

In order to simplify the discussion we assume the geometry shown in

Fig. 3.1. On going over in eq. (3.38) to the spherical representation (3.25)

Scattered Beams

Fig. 3.1. Geometry for the determination of the vertical and horizontal intensity compon-
ents of scattered light observed in the YZ-plane, for vertically polarized I, and horizontally
polarized I;; incident light.
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we obtain, for the vertical scattered (polarized) component and horizontal
(depolarized) component (if the incident light wave was polarized verti-
cally) (BANcEwIcz, OzGo and KieLicH [1973b])

FnvQ20) = (Nyip/280) (20 F wg)/c 138

<@l LI viseo vae
+2(_]If<f > Jl) KV b‘3)(Q)lV'>|2} (3.39a)

IivQoe)= (Nyiyixi/2520)[ Qo F wg)/c* T3 g%
£

X (2T + 1){7(_] ! Jl) KV 6(Q) VA

Ki

+12< r3 I‘) Q% b(s)(Q)|V‘)lz} (3.39b)

-K' s

These expressions are for purely rotational hyper-Raman lines if Q =0
and rotational-vibrational hyper-Raman lines if Q# 0. The properties of
the 3j Wigner coefficients in eq. (3.39) impose the following selection
rules on the rotational quantum numbers in hyper-Raman scattering:
AT =J'"-J'=0, £1, £2, +3 and AK=0, =1, +2, +3. For linear molecules
(CO,NO), if K'=K*=0, the only permitted transitions are those with
AJ ==1, £3 (Bancewicz, OzGo and KiELICH [1973a, 1975]).

The symmetry of ‘the molecule and the symmetry of the vibration
decide which of the nonlinear molecular parameters |{ VY| b{2(Q) | V)] of
€q. (3.39) are nonzero for J=1, 3. Hence, moreover, we obtain the
selection rules for the quantum number K, since the relation AK = M has
to hold always.

It is noteworthy that in three-photon scattering no isotropic intensity
component, related to a spherical tensor of order zero, occurs. A Q-
branch appears only if the selection rules AJ=0, AK =0 are permitted, in
the part described by spherical tensors of the ranks 1 and 3. At two-
photon (linear) scattering, the intensity of the line for the transition
J'K*« J')K' depends (for any AJ and well-defined AK) only on the one
molecular parameter |a{7|> (see KONINGSTEIN [1972]). Whereas at three-
photon scattering we have two parameters, [b{’|> and |bP, for the
symmetric top; one |6’]%, for the symmetries D5, and Cs,; and one,
|6?, for the symmetries D,g, T, T,. The expressions for the molecular
parameters |b{7|? for all point group symmetries have been tabulated by
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Bancewicz, KieLicH and OzZzco [1975] and ALEXIEWICZ, BANCEWICZ,
KieLicH and Ozco [1974]. StantoN [1973] has given a complete discus-
sion of the selection rules governing rotational hyper-Raman transitions.

(i) The rotational structure of the lines
Let us now introduce, with regard to eq. (3.39a), the parameter of
purely rotational structure for the vertical component of the lines 2w +
WRR?)
Fy(J'K', I'K") = exp (— Eyi/ kT)(gp /35 Zg)

, J1 I\
f+ + { ( .) b
X@IHEDRIFDIT| e ) 1B

I3 J*>2 _
+ : <3>2} 3.40
2<-Kf s ki) 10 (3.40)

where Zg denotes the rotational sum of states and gpg: the nuclear
statistical weighting factor, whereas Ej: is given by (3.35b).

We apply the rotational structure factor (3.40) to bi-atomic molecules
(C.), when K =0

Fy(J*', JY = (hB/35kT) exp [-hBJ'(J'+ 1)/kT]

) JE1 T2 o JE3 TN -
f+ T+ { ( ) (D)2 4 ( ) (3)2},
X (2T +1)(2T 1)7000 16D 2(6 0 0 1657
(3.402)

and molecules having the symmetry Cs,
Fy(J'K", 'K = [ g x/35(41% + 41 + 1)]
X[AB?h3|w(kT)*]"? exp (—Ep/ KT)2JF+ 1)

. Jt 11i>2~ I3 Ty
4 ; ‘“2+2( )
x@J 1){7(—Kf 0 ki) P2 ke g ki

- JU 3 TN\ -
<BPF+2( T 3 ) 1B9F

f i\2
+2(_1Kf _33 {() 159;2}. (3.40b)

The spectral density distributions Sy(Awg), calculated from egs. (3.40a)
and (3.40b) by Bancewicz, KieLicH and OzGo [1975], are plotted in Figs.
3.2 and 3.3. The purely rotational band distributions are strongly depen-
dent on the value and sign of the hyperpolarizability tensor components
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Fig. 3.2. Rotational structure of the spectrum calculated theoretically (BANCEWICZ, KIELICH
and Ozco [1975)) for the molecule CO applying hyperpolarizability component values of
(a) O'HARE and HUrsT [1967], and (b) HUsH and WiLL1AMS [1972].

bZg, for linear molecules. Herein we see an experimental method for
checking the theoretically calculated quantum-mechanical values of the
components b23,. It should also be stressed that the cross sections
do(2w), calculated for CO and NHj, are considerably in excess of those
of CH,, for which MAKER [1966] performed observations of the rotational
hyper-Rayleigh line structure (Fig. 3.4). The latter circumstance should
be an encouragement to further experimental studies of the rotational

structure of three-photon scattering processes in molecular gases.

(i) Vibrational hyper-Rayleigh and hyper-Raman lines
With regard to eqgs. (3.36a) and (3.37), we can carry out the summation
in (3.39) over all the permitted rotational transitions J'’K* <« J'K' thus
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Fig. 3.3. Rotational structure calculated by BANCEWICZ, KIELICH and OzGo [1975] for the
molecule NH,, applying hyperpolarizability components after (a) HusH and WILLIAMS
[1972], and (b) ARRIGHINI, MAESTRO and Moccla [1968].

obtaining the integral intensities of the purely vibrational lines in three-
photon scattering

15, (2w) = (Ny/280)[(20 + @y c 1 1382
X Y {7V BD(Q) [VHP+2 KV BP(Q) VP, (3.41a)

IﬁHV(Zw) = (Ny/2520)[ (2w + wv‘v‘)/c]‘tl%g(\%)
x Y A7 (VA B(Q) [VHP+ 12KV BP(Q) VAP (3.41b)

In the harmonic oscillator approximation (3.34a), and with regard to
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Fig. 3.4. The hyper-Raman spectrum of methane according to VERDIECK, PETERSON,

SAVAGE and MAKER [1970]. Horizontal scale is the hyper-Raman shift A =2v—v_. The

predominant line, centered about 100 cm™! , referring to the pure rotational hyper-Raman

spectrum, was predicted and observed earher by MakER [1966]. The other prominent line,

centered about 3050 cm™!, corresponds to the hyper-Raman shift due to the C-H stretching
frequency v4(F,).

(3.34b), the preceding expressions refer to hyper-Rayleigh lines at Q =0
and to vibrational hyper-Raman lines for Q# 0 when, taking (3.34c) and
the selection rules into account, we can write

I\(20) = (N280)[(2w F 0,)/c I g P fr Y {7 (B2 +2 62,7,
‘ (3.42a)
iv(20) = (N2520)[20 F w,)/c IR gQfE Y {7 |60, 2P+ 12 |53, ),

(3.42b)

where, applying (3.37) and (3.34c), we have introduced the statistical
distributions for Stokes and anti-Stokes lines (see LoNG [1977)):

fi=+(h20,)[1 - exp (Fhao,/kT)] . (3.43)

KIELicH and OzcGo [1973] have calculated the line intensities for the case
of right-circularly polarized incident light. At forward scattering (Fig.
3.5), they obtained for the right- and left-circularly polarized scattered
components

I%1.1(20) = (N/2520) 20 F 0,)/c 1 12 g 3 f5 Y 1286, 12+ 3 |52, 2,
(3.44a)

Iﬁ1+1(2w) (N/56)[(2wq:w )/C]4I+1g(+22 mZ'b(%)m'2~ (3.44b)
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Fig. 3.5. Observation of the Reversal Ratio, on the angular momentum convention. Under

the action of incident light, circularly polarized in the right sense, I,,, two circularly

polarized components appear in the scattered light, the one right-circular I, ,,,, and the
other left-circular I_,_,.

Here, it is worth noting that the component (3.44b) is dependent only on
the one molecular parameter |b%, |2, providing the opportunity of an
independent determination of its value and sign in experiment.

The nonzero values of all these molecular parameters have been
tabulated for all point groups and vibration symmetries by ALEXIEWICZ,
Bancewicz, KieuicH and Ozco [1974]. Cyvin, Rauch and Decius [1965]
have discussed the selection rules for the vibrational transition frequen-
cies of molecules and lattice vibration frequencies of crystals. A new,
complete classification of the hyper-Raman spectral lines has been given
by ANDREWs and THIRUNAMACHANDRAN [1978]. Earlier, OZzco [1975a],
and more recently STREY [1980], have proposed a systematic discussion of
rotational and vibrational selection rules, as well as a method for the
determination of the five irreducible molecular parameters |h$"? (for the
asymmetric tensor b,g,, ), from appropriate measurements of the intensity
and depolarization ratio of three-photon scattering for various states of
polarization of the incident and scattered photons. Ozco and KIELICH
[1974], as well as Ozco [1975b], have proposed a complete analysis of
the polarization state and angular dependence of three-photon scattering,
applying methods of Racah algebra. ILyinsky and TARANUKHIN [1974,
1975] have studied the problem with regard to hyper-Raman scattering,
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Fig. 3.6. The hyper-Raman spectra of ethylene observed by VERDIECK, PETERSON, SAVAGE

and MAKER [1970] under different polarization conditions: (a) represents non-analyzed

output scattering, (b) incident light circularly polarized and scattered light analyzed with
horizontal polarization.

resonantially stimulated in IR (see also BLok, KrocHIK and KRONOPULOS
[1979]).

Figure 3.6 shows the hyper-Raman spectrum of ethylene observed by
VERDIECK, PETERSON, SAVAGE and MAKER [1970], whereas Fig. 3.7 per-
mits a comparison of the normal Raman spectra of (liquid) carbon
tetrachloride and the hyper-Rayleigh and hyper-Raman spectra obtained
by FrencH and LonG [1975].

Our considerations concern electric-dipole scattering only, but can be
extended to electric and magnetic multipole transitions on the basis of eq.
(3.5). As shown recently by ANDREwS and THIRUNAMACHANDRAN
[1979], the contributions from these transitions are particularly important
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Fig. 3.7. Spectra of liquid carbon tetrachloride: (a) for normal Raman scattering, and (b)

hyper-Rayleigh and Stokes hyper-Raman scattering observed by FRENCH and Long [1975]

with multi-channel devices. The spectra labelled (1)—(4) correspond to virgin data, obtained
for various numbers of channels and laser shots.

in the case of chirial molecules, for which, beside the vibrational hyper-
Raman intensities calculated above, there appear additional cross-terms
for electric-dipole <> magnetic-dipole as well as electric-dipole < electric-
quadrupole (and vice versa) transitions. The contributions from electric-
quadrupole <> electric-quadrupole transitions calculated earlier by
KieLIcH, KoziERowskl, OzGo and ZAwoDNY [1974] are insignificant in the
visible range, but grow for UV and X-rays. They become significant in
second-harmonic Rayleigh scattering, when the latter is permitted even
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for atoms and centrosymmetric molecules, but is forbidden in the electric
dipole approximation.

(iti) Vibrational-rotational hyper-Raman lines

Returning once again to eq. (3.39), and taking into account the
harmonic term of the expansion (3.34a), we get, for the intensity of
vibrational-rotational three-photon Raman lines (BanceEwicz [1976]),

I@V(Zw) = (NJ-K1/280)[(2&) + Wy, + waRi)/C]4I%/g(\%)
JU 1 TN
X (2 + 1)f;{7(_Kf ]> 5,2

J' 37
+2(_Kf s Kl> lb§3)ml2} (3.452)

Igv(2w) = (Nygi/2520)[20 F @, + wR‘R‘)/c]‘tl\z/g(\%)

J1 J‘>2
f + |2
x(2J +1)fm{7<"Kf o ki) 1B
f 1\2
+12(_]Kf 3 J) |6, 12} (3.45b)

Similarly, we obtain for circular polarization (KieLicH and Ozco [1973])

+1+1(2w) (Nyg: /2520)[(2w F Wy, + WgrRi )/C]4I+1g(+21)

><(21f+1)fm{28< ’ J.> bM 2

. X
+3<_JI; 3 Jl>2|b<3> |2} (3.463)

I%120) = (N5l 56)[(20 F 0, + 0rir)/c]* 12,83
<o T e (3.46b)

If a vibration w, belongs to a representation I'™, of dimension
k., >1, it is degenerate; then, several normal coordinates Q% j=
1,2,..., k, correspond to the same frequency. In such cases the har-
monic term in eq. (3.23) is given by the sum Y%=, b%PQ%, where b*D js
the sth component of the spherical tensor of order k, related to the jth
normal coordinate of a mode of the type m, belonging to the irreducible
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representation I'“™ of the molecule. Accordingly, the molecular parame-
ter |b{%)|* related to the mode in question (neglecting coupling between
rotational and vibrational motion) can be calculated from the formula
(PouLer and MaTtHIEU [1970]):
B2 = 3 1BE0P. (3.47)
i=1

The nonzero molecular parameters (3.47) resulting from the vibrational
selection rules have been tabulated by ALExiEwicz, BANCEWICZ, KIELICH
and OzcGo [1974] as quadratic functions of the Cartesian components of
the tensor b,s,, for all point group symmetries and for all types of
vibrations of symmetric top and spherical top molecules. Pascaup and
PoussiquE [1978] have performed a detailed analysis of the vibrational-
rotational hyper-Raman spectra of tetrahedral molecules.

On defining the depolarization ratio Dy, of a spectral line of scattered
light as that of its horizontal component Iy, and vertical component I,
we arrive with regard to eq. (3.45), at BANCEWICZ’s formula [1976]

JO1 J‘>2 W o (Jf 3 J‘)2
+ b I?
7(—Kf ii) (Bl 12 1B

f iv2 f i\2
63( T ! ’) B 18( T > ’) BOL
for vibrational-rotational (as well as vibrational and rotational) lines. It
will be remembered that, in linear scattering, the depolarization ratio of
any line equals 3/4 (see Praczex [1934] and KONINGSTEIN [1972]). From
eq. (3.48), we note that, for second harmonic scattering, the depolariza-
tion ratio is in general a function of J and K. However, for all rotational
lines with AK =+2, £3 the depolarization ratio amounts to 2/3. Of
special interest are vibrations for which only one of the molecular
parameters (3.47) for k =3 is nonzero, since here the depolarization ratio
of any rotational line is 2/3. At the same time, for such a vibration,
provided that it is completely symmetric, the depolarization ratio of the
vibrational band or hyper-Rayleigh line is also equal to 2/3 (KIELICH
[1964a]).

Defining the reversal ratio as I"),,;(2w)/I5,,1(2w) (see Fig. 3.5), and
with regard to (3.46), one obtains in the case of forward scattering

(KreLicH and Ozco [1973])
45( ]f 3 J ) lb(3) l2
Kfs K! sem

Joo1r 1 JU 3 )
(e LY il L) i

DY (Qw) = (3.48)

RiQ2w) =

(3.49
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For molecules with the point group symmetries Ty, D3, and C,, only one
parameter |b3),|? differs from zero and the reversal ratio (3.49) assumes
the values 15. In general, one has

0=<R2w)=<15. (3.50a)
By comparison, in the case of usual Raman scattering (see LonG [1977])

0<RYw)=<6. (3.50Db)

3.4.2. Four-photon scattering

We now apply the tensor (3.31) to four-photon Raman scattering:

I5.(Bw) = (N/1449[Bo + 0g) [T T, (30)* ¢%\en(30)ns 8 hen
3.51)

The tensor has been averaged in Cartesian basis for arbitrary symmet-
ries of ¢, for linearly polarized (Kozierowskr [1970]), as well as
circularly polarized light (Kozierowski [1974]). We refrain, however,
from adducing these highly complex results but restrict ourselves to
writing out the vertical and horizontal component of (3.51) as obtained by
OzGo [1975b], in spherical basis for linearly polarized light

JU 01

oaf
XQ@I+D{63 r o x

) (V1 &) VP

]f

+36(

2 Jl> |<Vfl ~(2)(O)|V>12

w8t Y kvramovae), (352

Ifw(3w) = (Nyiyig:/181440)[ (3w + wﬁ)/c]41\3/g$)

x (2T + 1){27(_; 2 r) KV e@(Q) | VHP
w20 4 vt e e (3.520)

These components define the structure of the rotational lines as well as
that of the vibrational-rotational lines at four-photon scattering. The



L, §3] SCATTERING BY FREE MOLECULES 199

matter is well adapted to a discussion similar to that of the components
(3.39) of three-photon scattering.

Equations (3.52) lead to the selection rules, discussed by IEVLEVA and
KARAGODOVA [1967], Ozco [1968], and CxrisTiE and Lockwoop [1971]
for vibrational transitions, and by Ozco [1975] for rotational transitions.
ALExiEWICZ, OzGo and KieLicH [1975] have tabulated the molecular
parameters |é5f]> as quadratic functions of the Cartesian tensor elements

Capys for all molecular symmetry point groups.

Equations (3.52) show that the only permitted rotational transitions are
those with AJ =0, =1, +2, +3, +4 and AK =s. The permitted values of s
are to be had from the condition of non-vanishing of the molecular
parameters |c*}|*> for the vibrational transitions V!, <« V) +1 under
consideration. The branches with AJ==+3, +4 are dependent on the
parameters |¢.%),|* only. In the case of linear molecules only branches with
even AJ can occur. Especially easy to analyze are those types of scattering
which are dependent on only one molecular parameter (e.g. for K, Y, K,
and Y}), or two (e.g. T, Ty, Ty, O and Oy).

On performing the summation in egs. (3.52) over rotational transitions
J'Kf < J'K', one obtains the integral intensities of the bands due to
vibrational transitions V'« V't 1 only:

100(36) = (N /45360 Ga-+ o /eI {63 (V] €0(Q) [VIF
+ 36V Q) IVIP+8IVT (@) IVIRI], (353
i (3) = (N 181440) G-+ e T

x Y 27 KV E2(Q) |[VH2+20 KV 2(Q) VL. (3.53b)

0zc0 [1975b] derived, as well, the vibration band intensities for circu-
larly polarized light

1$,,13w) = (Ny:/181440)[(30 + 0y c]* 131841

x Y {54V E2(Q) [VHP+5 KV Q) IV, (3.54a)

1%, 1 (3w) = (Nvi/1296)[(3w + wyrvi) /]I +1g(+‘°’iz KV e2(Q) [VHI.
(3.54b)
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Thus, at circular polarization of the incident light wave, the parameter
|¢§")? defining isotropic four-photon scattering does not intervene.

Equations (3.53) and (3.54) give for the depolarization and, respec-
tively, reversal ratio of vibrational lines in four-photon scattering proces-
ses (OzaGo [1975a))

z {27 |6(2) 12+20 |6(4)
252 |C(()) ‘2+16Z {9 16(2) |2+2 |~(4) IZ}
140 ¥, |81

z {54 (2) |2+5 (4) \2}

D,(BowFw,)= (3.55)

R(BwFw,)= (3.56)
from which we have the following ranges of variability for the respective
ratios:

0=DBwFw,)<5/8, (3.55a)
0<RBwFw,)=28. (3.55b)

The same ranges of variability result as well for elastic scattering, both
with regard to the depolarization ratio (KieLicH and Kozierowski [1970])
and reversal ratio (Kozierowski [1974]).

The decomposition of all tensors c,g.s, in irreducible representations of
all point groups, has been given by Ozco and Zawobny [1970]. The
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Fig. 3.8. Observations of YU and ALFANO [1975], representing relative intensities of three-

and four-photon scattering versus the frequency v, from diamond upon the passage of

intense picosecond laser pulses (20 or more laser shots), with v, the optical phonon
frequency of the diamond lattice.
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properties of the tensors up to the fourth rank inclusively have been
analyzed in full detail for the case of icosahedral molecules by BoyLE and
0zcGo [1973] and BoyLE and ScHAFFER [1974]. Atoms and molecules of
icosahedral symmetry cannot scatter circularly polarized light elastically
(m =0), since in their case the parameters |¢2,|* and |¢\¥,* vanish.
However, they cause four-photon scattering induced by linearly polarized
light, since the parameter |¢3"], occurring in eq. (3.53), is nonzero.
Hitherto, spontaneous four-photon scattering by molecular substances
has not been observed. The only report by Yu and AvLrano [1975]
concerns three- and four-photon elastic and inelastic scattering from
diamond crystal upon the passage of intense picosecond laser pulses (Fig.

3.8).

§ 4. Linewidth Broadening in Quasi-Elastic Multi-Photon
Scattering by Correlated Molecules

4.1 THE ELECTRIC FIELD AND CORRELATION TENSOR OF SCATTERED
LIGHT

We consider a macroscopic sample of volume V and electric permittiv-
ity £ in an isotropic continuous medium of electric permittivity &.. The
macroscopic electric field (Maxwellian field) E existing in the sample
differs in general from the external field E°, acting throughout the
surrounding medium. The relation between the two fields is dependent on
the structure and shape of the sample; in the particular case of an
isotropic spherical sample it takes the form well known from electrostatics

e+2g,

E:
3e,

E=RE. (4.1)

If the external field E° is sufficiently strong the sample becomes
electrically anisotropic and its permittivity is tensorial, g,,. Instead of the
vectorial relation (4.1) we now have the tensorial formula (Kasprowicz-

KieLicu [1975)):
E¢=R,.E,. (4.2)

The tensor relating the field components E{ and E, is, in general, for a
dielectric ellipsoidal sample

Ro'-r = Ggl[SeS(" + (80—,, - SCSW)LW]’ (43)
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where L, is a field depolarization tensor, dependent on the shape of the
dielectric sample, and defined so that its trace shall equal unity L, =
L,+L,+L,=1.

In particular, for a spherical sample L, =8,,/3 and the tensor (4.3)
becomes

R, =(&,, +2€.6,.)/3¢.. (4.3a)

If, moreover, the sample is electrically isotropic, then (4.3a) becomes an
isotropic tensor:

R,.=R&,., (4.3b)

where R is given by eq. (4.1).

The above holds also for the electric fields E(¢) of the incident light
wave, and E(t) of the scattered wave. However, the permittivitics now
become functions of the frequencies w and w,.

We now assume that the scattering sample (volume V) contains N
molecules, correlated in time and space. The ‘electric field of the light
scattered by the sample, and observed at a large distance R in the
surrounding medium, is

N
E(R,1)=R(w,) Y EP(R,1), (4.4)
p=1
where, for an isotropic spherical sample, we have by eq. (4.3b),
+2
R(w,) = M__Ee 4.5)
3e,

with e(w,) the electric permittivity of the sample at the vibration fre-
quency o, of the scattered light wave.

The electric field strength vector of the light scattered by the pth
molecule of the sample is, in the wave zone at the space-time point (R, t),

EP(R,1)=(c’R})"'{R, X[R, x Z(1,)]}, (4.6)

where Z(t,) is the Hertz vector for the pth molecule at the retarded time
t,=t—R,/c, and

R,=|R~r |=R—s-r,+ - (4.6a)
r, denoting the radius vector of molecule p, and s the unit vector in the

direction of propagation (observation) of the scattered light, R= Rs.
Similarly to the integral intensity tensor of scattered light we can
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introduce, on the basis of eqs. (4.4) and (4.6), the tensor of time-
correlation of the scattered light electric field (for processes stationary in
time)

N N

ER D=1 RN Y T 2,67 ZG+0). @D
p=1g=1

With regard to the theorem of Wiener and Khinchin, the Fourier

transform of the time-correlation tensor (4.7) defines the spectral density

S,.(Ak, Aw) = (271-)_1J’m dt I (R, t) exp (iwt). (4.8

The range of applicability of this spectral approach to time-dependent
processes has recently been the subject of an analysis by EBeErRLY and
Woébpkiewicz [1977].

We now proceed to define the Hertz vector in the electric dipole
approximation, taking into account only time-dependent nonlinear com-
ponents at harmonic frequencies. We thus write in complex analytic
representation

Z3(t,) = Q2" 'n) RN (@) AL, . (rp, 2})
XE,(w,k)- - - E, (0, k) exp[in(k - r,— ot,)], (4.9

where the positional variables r;, and orientational variables 2/, determin-
ing the configuration of the molecule are taken at the retarded moment of
time . The tensors Aje ..., now define effective nonlinear
polarizabilities, dependent in general on the electric fields of neighboring
molecules (KIELICH [1965b, c] and BEDEAUX and BLOEMBERGEN [1973]).
By eqs. (4.7) and (4.9), the tensor of time-correlation of the electric

field of n-harmonically scattered light is

N N
I2R 0=Qui™(L Y A%, ..o 0% 20

p=1q=1
XAD L (re, QY exp[idk, - (r0— r;)]>
K

X 8. gerern, €Xp (—in w), (4.10)

where the parameter Q,,, is:

B 1 no\* |&(nw) +2e,
Qe S 2 ()2 ( c ) | 3e.

2 2n

e(w)+2e,
3e,

(4.11)
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In (4.10), we have introduced the following tensor of the degree of nth
order coherence of the incident electric light field

8. g om=(E¥(@0,k) - - - E¥ (0, k) E, (0, k) - - E, (0, k)
X{|E(w, K)[*s". (4.12)

When going over from eq. (4.7) to eq. (4.10) we assumed that, in a first
approximation, statistical averaging over the configurations K of the
molecules in the scattering medium (denoted by the symbol ( )x) can be
carried out independently of the averaging over the states of the incident
light field amplitudes (denoted by ( )g) (see Loupon [1973]).

The difference between the propagation vectors of the scattered wave
and incident wave amounts to Ak, =k, —nk,, and its module (Fig. 1.3)

amounts to:
Ak, =[(kn, — nk,)* +4nk,,k, sin® (6,/2)]"?, (4.13)

where 6, is the angle between the vectors k,,, and k.

4.2. LINEAR SCATTERING

Although a detailed discussion of the spectral theory of linear light
scattering would lie beyond the scope of our present aims, we nonetheless
adduce the equations which result from eq. (4.10), in order to provide a
simple illustration of certain complex aspects of light scattering on corre-
lated clusters of molecules. Accordingly, eq. (4.10) leads to

N N
I2(R. 1) = Q.,I< Y Y ALESQ* AL, 0

p=1qg=1
xexp [iAk - (rp) — r;)]> g\t exp (—iwt), (4.149)
K

where Q, is given by eq. (4.11), with n=1.
A tensor of the second rank decomposes into three irreducible
components: isotropic, antisymmetric and anisotropic (Appendix A)

Am=AQ+AL+A2.

Thus, on isotropic averaging (see Appendix B) eq. (4.14) can be reduced
to the following form:

IS (R, 1) = 35,Q,I{10A§(Ak, 1) g.?
+5A(Ak, 1) gV + A(Ak, t) g57) exp (—iwt), (4.15)
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where we now have to deal with the following time-correlation functions
(h=0,1,2):

A(Ak, t)=<z Z AL, Q0 AR, 1) exp [iAk - (° —r')]>K

p=1q=

(4.16)

characterizing the statistical-molecular dynamics of isotropic (h = 0), anti-
symmetric (h =1), and anisotropic (h =2) scatttering,
The tensors of the degree of first order coherence are

g((rl-r()) = (EjE'r)E/(lElz)Ea
8or! =(8,, |E* — E, EN)e/( E[), (4.17)
gD = (33m |El*+3E,E¥ —2EXE,)el|EP).
If the linear polarizability tensor is symmetric Ay, = Aj,, antisymmet-
ric scattering vanishes (A,(t) =0), whereas the time-correlation functions

of isotropic and anisotropic light scattering become, with regard to eq.
(4.16),

1/8 X )
AS(AK, t>:§<z Y AL, Q0* zﬁoz,,n;)exp[mk-(r2~r;)]>K,

p=1q=1

(4.18)

AS(Ak, £) == < Y Z {3AL(r0, QO* AZ(rt, 02Y)

p=1qg=1

= ALy, QN* Aga(rs, QL) exp [iAk - (r0— rf,)]>K. (4.19)

4.2.1. Isotropic incoherent and coherent scattering

To start with, we assume that the polarizabilities of the molecules are
not dependent on the distances between the latter (i.e. we assume the
approximation of isolated molecule polarizabilities), so that the correla-
tion function of isotropic scattering (4.18) can be written in the form

AP(Ak, t)=3N |a,|* F(Ak, t), (4.20)

with q, = a§,/3 the mean polarizability of the isolated molecule, and

F(Ak, t):N*1< Y Z exp [iAk - (rp-rt)]> (4.21)

p=1q=1
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the intermediate scattering correlation function, discussed in the theory of
neutron scattering (see CoPLEY and LovEsgy [1975]).

After VAN Hove [1954], we introduce the space-time binary correla-
tion function:

G(ra r’; t) = GS(r(p)y r:n t) + GD("(;:, r:p t), (422>

where the self-correlation function Gg (ry, rl, t) determines the probabil-
ity of finding a (selected) molecule p in the point r}, at the moment of time
t, if it is known to have occupied the point rj at the moment of time ¢ =0.
Similarly, the distinct correlation function Gp(r), rl, t) expresses the
probability of finding a molecule q in the point r}, if the fixed molecule p
was in ry at t =0.

The evolution in time of the functions Gg(t) and Gp(t) differs
according to the time interval considered. Usually, we distinguish three
different intervals, corresponding respectively to the short times of
molecular collisions t. <107 "s, the intermediate times of molecular
relaxations 107" <, <107%s, and the very long times of hydrodynamical
relaxations #,>107®s. It is important to find a reasonable and physically
plausible analytical construction of Gg and, especially, Gy. In spite of the
progress achieved, the problem of time-many-body correlation functions
for the different time intervals has hitherto not been solved satisfactorily
(see, for example, BERNE [1971], RowLinsoN and Evans [1975], and
Evans [1977]). Here, of essential interest to us is the interval of times ¢,
for which one may apply the solution based on the model of diffusion of
translational and rotational molecular motion.

By having recourse to the Van Hove function (4.22) we can split the
intermediate scattering correlation function into two parts (see POwWLES
[1973]): a self-correlation part, describing incoherent scattering (p = q)

F.(Ak, t) = (exp [iAk - (ry —r)])
=y JJ exp [iAk - (rp—r)] Gs(ry, rt, t) drodr,  (4.21a)

and a ‘‘distinct” part, describing coherent scattering on stochastically
correlated molecules (p# q)

F..(Ak, t) = < i exp [iAk - (r‘;—r;)]>

qFp .
=(p/V) J j exp [1Ak - (r)—r)] Gp(rd, i, t) drydr, (4.21b)

with p being the average number density of molecules.
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On the assumption of Einstein and Smoluchowski’s free translational
diffusion model, we have

Gg(r), rh, 1) = (4wDyt) > exp (= |ry, —ro|?/4Dxt). (4.23)
Thus, the correlation function (4.21a) finally takes the form
F,,(Ak, t) = exp (—|Ak|* D), (4.24)

where Dy is the coefficient of translational diffusion of Brownian parti-
cles.

The calculation of the coherent scattering function (4.21b) is by no
means simple for a lack of the analytical form of the correlation function
Gp(ry, ri, 1). In some cases use can be made of VINEYARD’s convolution
approximation [1958]

Gotrl, vy 0= | 8(r3) Gt iy ) (4.25)

where g(r,) is the (equilibrium) radial correlation function of two
molecules p and g, the centres of which are distant by rp,.

The convolution approximation of Vineyard (4.25) has been criticized
for a number of reasons i.a. because it does not lead to the Mandelshtam—
Brillouin doublet, which appears in the hydrodynamical treatment
(SINgwi and SIOLANDER [1964]). Nonetheless, it is satisfactorily fulfilled
within the interval of intermediate times t,, when the solution of the free
diffusion equation can be applied to the description of the self-correlation
function Gg.

Applying the correlation functions (4.23) and (4.25), we reduce the
coherent scattering function (4.21b) to the following form (cf. NUBOER
and RAHMAN [1966]):

COh(Ak t) F(Ak) mc(Ak, t) (426)
involving the integral parameter
A
F(Ak)=4qer; g(r, )S‘“ k’f’q 2, dr,, (4.27)

introduced by ZERNIKE and Prins [1927] in their theory of X-ray scatter-
ing by liquids.

4.2.2. Anisotropic incoherent and coherent scattering

In § 4.2.1 we have proved that, in the approximation of the polarizabil-
ity of isolated molecules, the dynamics of isotropic light scattering is
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restricted to translational motion of the molecules. We shall now show
that, within the same approximation, the anisotropic scattering function
(4.19) requires moreover the intervention of rotational molecular motion.
However, here, eq. (4.22) can be replaced by generalized correlation
functions, involving additionally the molecular orientations £2:

G(r9 r’; Q) Q,) t) = GS('S) r:)’ ‘(227 Q;” t) + GD(T(;’ '([p ‘()37 Q(’p t)
(4.28)

Regrettably, as yet, not much is known concerning the analytical form
of eq. (4.28) and hardly anything concerning Gy,. Nonetheless, by having
recourse to a procedure due to STEELE and Pecora [1965], one can
expand eq. (4.28) in a series in spherical Wigner functions:

Gs(rp, rh; 29, 25, )= Y. fane(rhy, DIk Q0) Dire (R,
JKMM'
(4.28a)

Go(ro,r; 25, 05, 0= Y Y ghhy cpm(rb 1)
JDKPMDJQKQMG

X D (0 DE g (P0Q)*. (4.28b)

In eq. (4.28b), ™02, and "2, determine the orientations of the molecules
p and g in a system of coordinates pq, defined so that its positive z-axis
coincides with rp, =ri—ro.

The analytical form of the functions f{ms(r',, t) and 815, kv (Fhgs )
can be specified for a given model of the molecular motions, the simplest
model of this kind being that of translational-rotational diffusion.

The correlation function of anisotropic scattering (4.19) has to be
expressed in the same spherical representation as that used for the
distribution function (4.28). With regard to the transformations (3.25)
and (3.26), eq. (4.19) becomes

N N
Asak 0= ¥ a7 a@( Y ¥ Didadr
KMM'

p=1q=1

X D2 (£24) exp [iAk - (rg—r;)]>, (4.29)

where we have assumed, for the sake of simplicity, that the polarizability

tensors dgy, in the system of reference of the molecule, are not dependent

explicitly on the radial and angular variables of the other molecules.
Obviously, the interference factor of eq. (4.29) has also to be written in

the spherical representation, given by the Rayleigh expansion (ROSE
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[1957])
exp (ik - r)=4m Y. Pj;(kr) Yid) Yi(0,)* (4.30)

where j; is a spherical Bessel function and the Y31, are harmonic func-
tions.

The form of eqs. (4.28)-(4.30) is such as to convince us that the
time-dependent problem of anisotropic light scattering is still, at this
stage, enormously complex and that its effective solution requires the
assumption of some model of stochastic molecular motion.

(i) Incoherent scattering

When dealing with incoherent scattering one is justified in applying the
free diffusion model and assuming that the translation motions of the
molecules are stochastically independent of their rotational motions. In
this case, the expansion coefficients of the function (4.28a) can be
expressed as follows:

frana(Pop, 1) = Snma Gs(rpp, 1) €Xp (—t/T14), (4.31)

where Gg(r}, t) is defined by eq. (4.23) and 74, denotes the Mth compon-
ent of the rotational relaxation time of the Jth order which, for the
symmetric top, is given by

mm={JJ+ 1D} +MX D% - DY)}, (4.312)

DY, and D%, being the principal values of the rotational diffusion tensor
D%

From eq. (4.29), by having recourse to the functions (4.28a) and (4.31),
we derive the time-correlation function of incoherent anisotropic scatter-
ing (cf. KNasT and KigLica [1979])

+2
ASAk, )= NF,(Ak, 1) Y. |@2[ exp (—t/72). (4.32)
M=-2

(il Coherent scattering
The expansion coefficients of (4.28b) can be expressed in the following
way (STEELE and Pecora [1965]):

gk:ﬂdp, Kqu(r:Jq’ t) = exp (_t/’rl{q'fq) J gkj?vl,,, Kqu(rpq) GS(’;)’ r:p t) drg’
(4.33)

where the equilibrium function of radial-angular correlations for two
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molecules is, in general, defined as

ek xmlroe) =0 [ [ £20,0, 220 230
X D m(Q5Y* Df o (220 dQ2 dOPs. (4.34)

In eqs. (4.28b) and (4.34), we moreover have to keep in mind the
multiplication law for Wigner functions (EpMONDS [1957]):

D, (259 =Y D, (©,) Din (Q,,). (4.34a)
L

Thus, applying the function (4.28b) together with (4.23), (4.33) and
(4.34) as well as (4.30) for J =0, we obtain the coherent part of the
time-correlation function of anisotropic scattering (4.29) (Knast and
KieLicH [1979]):

AS(AK, t)eon = NF,o (A, 1) Y, T (AK) G2 a2 exp (—1/72),
M M
(4.35)

where we have introduced a generalized STEELE and PECORA [1965]
radial-angular correlation parameter:

(—1)N~M * sinAkr
' (Ak) = —————4mp N M (rpg)———2r2, dr,,.
; 27+1 BN M. N M Akr, '°aCfa

(4.36)

In the particular case of J=M=M'= N =0, it reduces to the parameter
(4.27) for isotropic coherent light scattering.

If Akr« 1 (short-range correlation), eq. (4.36) reduces to the STEELE
parameter [1965]:

r'L(0) = Z( )N~

N 2J+1 47TPL g{‘{—M,—N,M'(rpq) rog dr,, (4.36a)

which has been calculated numerically for concrete models of molecular
interactions (see, for example KieLicH [1968c, 1972a), ANANTH, GUBBINS
and Gray [1974], and Heve and SteLL [1977]).

4.3. THREE-PHOTON SCATTERING

Let us now apply the tensor (4.10) to three-photon scattering, assuming
for simplicity the tensor A2, = B2 as completely symmetric. We finally
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obtain (see Appendix B):

I2w(R t) 315 QZm12{7B2m(Ak2a t) g(2 D
+3B3°(Ak,, t) g2} exp (—i 20t), (4.37)

where we have introduced the time-correlation functions

Bk, 0=2 (3 3 Bzt 0"

p=1qg=

ayy

X B2% (rt, Q%) exp [1Ak, - (ry —r;)]>K, (4.38)

B2(Ak, t>——<2 S (5B22 (%, Q0 B2 (!, Q)

p=1qg=1

3B233(rp’ 0)* Ba’y'y(rq’ :1)}
x exp [iAk, « (rg— r;)]> (4.39)
K
characterizing the molecular-stochastic aspects of second-harmonic scat-
tering in dense fluids.

The tensors of the degree of second-order coherence occurring in eq.
(4.37) are of the form

(8,, |E**+2E*E¥E*+2E, E,E*>*+4EXE, |[E’)g

2,1 _
8or T s
(EP%
(8,.(5 |E\* ~|E*") - 2ESEYE”
— k2 % __ % 2
(EP)E.

We shall give a discussion of these tensors in § 7.
When discussing in detail the correlation functions (4.38) and (4.39) we
proceed as in § 4.2 for linear scattering.

(i) Incoherent scattering
For incoherent scattering of second-harmonic light we have, by egs.
(4.38) and (4.39) for J =1, 3(with r,=v,—r})

in A JUSN
B3k, =N 3. (Fnelr, 0SSR 55 ) (441)
MM’ Akz r

On the free translational-rotational diffusion model, for which the
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distribution (4.31) is valid, we finally obtain

B.%m(AkZ’ t)inc = NFinc(Ak27 t) Z 155\{[)]2 exp (_t/ﬂrid) (442)
M

Taking, on the basis of eq. (4.8), the Fourier transforms of eqgs. (4.37)
and (4.42) we obtain the spectral expression first applied by MAKER
[1970] to determine the relaxation times 76 and 75 from spectral
linewidth measurements of “quasi-elastic”’ second-harmonic light scatter-
ing (see Fig. 4.1).

ALEXIEWICZ [1975] has extended Maker’s theory to asymmetric top
molecules, characterized in general by relaxation times 134 The problem
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Fig. 4.1. Spectral width of “elastic” second-harmonic light scattering observed by Maker

[1970], for N,N-dimethylformamide at room temperature: (a) Vertical and horizontal

scattered intensity, the measured points being connected by a smooth line, (b) The

molecular parameters 5 and §® derived from the data (a), together with the best fit
Lorentzian convolution.
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simplifies considerably if only one of the molecular parameters of eq.
(4.42) differs from zero corresponding to one relaxation time, e.g. 73 for
the molecular symmetries D3, D3, and Csy,, or 73 for the symmetries T, Ty
and D,g,.

(i) Coherent scattering

The coherent parts of eqgs. (4.38) and (4.39) have been analyzed in
detail by Bancewicz and KieLicH [1976]. Here, we restrict ourselves to
giving the results (J =1, 3):

B22(Aky, t)eon = NFindBky, 1) Y, Tie(AKk,) 55" BSP exp (—t/)-
M, M
(4.43)

Above, the radial-angular correlation parameter has the form (4.36) on
insertion of Ak, for Ak. In particular, it is analogical to that derived by
BERSOHN, Pao and Friscu [1966] for hyper-Rayleigh scattering in liquids.
Obviously, in order to calculate the parameter (4.36), one has to have
available the molecular correlation function (4.34) in analytical form. In a
satisfactory approximation, one may write (see KIeLicH [1972a])

g2 (hgy ) = &(1pq) i (m)™ (U, /kT)™, (4.44)
m=0

where U,, = U(r,, £2,,) is the potential energy of mutual radial-angular
interaction of two molecules p and g, and has to be expressed by spherical
harmonics (GRAY [1968] and MoraaL [1976]).

Assuming for U(r,, {,,) in eq. (4.44) intrinsic dipole-intrinsic dipole
interaction only, one obtains the first nonzero terms of the parameter
(4.36) (BANcEwICZ [1976]):

F(l)(o) . _2_ (d—2>3< 79> F(3)(0) _ 2 <£>3< —9 (4 45)
0w =75 ) Ve 0T 73675 ) el T
involving the following radial averages

(romy=4mp J; roa" 8(rg) dryg (4.46)

accessible to calculation for well defined molecular models (KIELICH
[1972a] and StELL and WEIs [1977]).
In the approximation considered, we finally obtain, with regard to eq.
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(4.43), the results (Bancewicz and KigLicu [1976]):
2N ( d?

2w Pt B

B1°(0, t)con 75 \kT

__2N (d_2
©h 3675\kT

)3 DB exp (7)), (4.43)

3
B%(0, 1) ) (DB exp (—1f73), (4.43b)
which, for integral scattering, go over into those of KieLicH [1968a].

It is of interest to note that, on the model assumed, the coherent
scattering parameter (4.43b) is negative; whereas, for incoherent scatter-
ing, the respective parameter resulting directly from (4.42) is always
positive.

Similar calculations of the parameters (4.36) can be carried out for
other models of correlated molecules, leading in all cases to a stronger or
weaker influence of temperature on the spectrum observed. Studies of
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Fig. 4.2. Spectral width of “elastic” second-harmonic light scattering measured by MAKER
[1970] for CCl, as a function of temperature from 2° to 67°C.
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this kind have been performed by Maker [1970] for CCl,, comparing his
results with the earlier integral observations by WEINBERG [1967], who
found a rather weak dependence on temperature (Fig. 4.2).

Finally, it may be worth mentioning that ALexieEwicz [1976] succeeded
in applying Mori’s formalism to the description of the spectrum of
hyper-Rayleigh coherent scattering, i.e. as was done by KeYEs and KiveL-
soN [1971] for usual Rayleigh scattering in liquids (see also KeYEs and
Lapanyi [1977)).

4.4. FOUR-PHOTON SCATTERING

Applying the tensor (4.10) to four-photon scattering (n =3), and as-
suming the tensor A%, =C3“, as completely symmetric, one obtains
(see Appendix B)

2R, 1) = (Q3w/1260)13{252C3“’(Ak3, t) g(3 9+ 9C3(Aks, 1) g(3 :2)
C3°(Aks, t) g2} exp(—i 3wt). (4.47)

The stochastic molecular mechanisms are determined by the following
three irreducible time-correlation functions:

gm(Ak39 t) - g < Z Z CaaBB(rg5 ‘(22)*

p=1qg=1

X Cllss(re, Q8) exp [1Aks « (r) —rq)]> (4.48)
C3w(Ak37 t) < Z Z {3C(xB‘y‘y(rp’ 0)* CocBSS('q) ‘Q;)
p=1qg=1
~ C2(ry 0" Clalely O} exp itk - (-1
(4.49)

Crak, =35 (% ¥ (353400 00* Ciatry 29

p=1q=1
=30C28,,(ro, Q0 Class(rs, Q)
+3Cousa(ry, 29)* Clus(rs, 20)} exp [iAks; - (r0 — rf,)]>K.
(4.50)

The tensors of the degree of third-order coherence and polarization of
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the incident and scattered photons corresponding to the individual corre-
lation functions (4.48)—(4.50) are of the form

o) =(EXE, |E*Pe/(EP),
o =((38,, |EP - SE¥E,) |[E**+ 6(EXE, |E]?+ E*E*E>
+E,E.E*?) |[EP)e/(EP),
85" =(58,.(7 |E|*~ 3 |E*?) |E>+ 15(7E,E* - 2E*E,) | E|*
—~3(37EXE, —35E,E¥) |E*
—30(EZE¥E*+ E,E.E*) [EP) 5/ EP).

(4.51)

In the approximation of invariable molecular polarizabilities, the time-
correlation function of isotropic scattering (4.48) can be expressed in the
form

Cgm(AkEn t) = SN |C3m|2 F(Ak3’ t), (452)

where c;,, = c2%34/5 is the mean nonlinear polarizability of the isolated
molecule, and F(Aks, t) the “intermediate” scattering correlation func-
tion, which takes the form (4.21) if Ak is replaced by Ak,.

The parameters (4.49) and (4.50) are well adapted to an analysis
similar to that carried out for the parameters (4.38) and (4.39). However,
with regard to volume, we refrain from pursuing the subject.

§ 5. Cooperative Three-Photon Scattering

5.1. FLUCTUATIONAL VARIATIONS OF THE NONLINEAR MOLECULAR
POLARIZABILITIES

In § 4, when considering multi-photon scattering processes in dense
media, we wrote the Hertz vector in the form (4.9), where
Ag, - on(rp ;) stood for the tensor of a certain effective nonlinear
polarizability, differing in general from the polarizability azs, ..., (€2,) of
the isolated molecule. The difference is due to the fact that, in statistically
inhomogeneous media, the nearest neighborhood of a molecule presents
regions of quasi-ordering engendered by various mechanisms of a micro-
scopic or semi-macroscopic nature. We shall not, however, consider
effects of short-range interactions, but shall concentrate essentially on the
changes in polarizability of the molecule caused by fluctuations of the
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long-range electric multipole fields of the molecules surrounding it (see,
for example, KieLicH [1965b, 1972a] and VAN KRANENDONK and SIPE
[1977)).

In a stochastic medium, the Hertz vector can be written in the form

Z(t,)=Z()+8Z(t,), (5.1

where Z(t') describes the electromagnetic properties of an individual
microscopic scattering centre, whereas 8Z(t,) moreover describes the
variation in Hertz vector due to various processes, such as collisions and
many-body interactions, or fluctuations of the molecular electric fields
F(r,t) in time and space.

When determining the variations 8 Z(t,), characterizing the stochastic
regions of correlated scatterers, we shall restrict our considerations to
contributions from long-range electric fields F(r, t). At the centre of a
molecule p, the field due to the polarized electric multipoles of the N—1
surrounding molecules is (KieLicH [1965b])

N oo
FG,,t)=2 Y (=D™[@n— DU T (1, @)[n IME (e, 1),
sFp n=1
(5.2)
where the tensor of rank (n+n,)
WOT(r, )= ViV [V, YV, —(w/c)*Ulr, expli(w/c)r, ] (5.3)

describes the (2"-pole)—(2™-pole) interactions between the molecules p
and s, separated by a distance 1.

The 2"-pole electric moment of (3.5a), induced in molecule p by the
total electric field E{(rt)+F™(r,t,) is, in h-order approximation
(KieLicH [1965b)),

1 2 ©
M;")(rp, tp)(h) — m L Z Cnl---nh (n) g (ny .+nh)(r:” ‘QL)
cmy=1 n, =1
X[ng+-- -+ nh][Eg"')(r;,) +F™(r, t,)] - (5.4)

X[E&M(rt) +F(r,, t,)]

with C,,. ..., =[Cn —DUT" - [2n, — nurt.

The expressions (5.2) and (5.4) can be evaluated by the method of
successive approximations, thus leading to the fluctuational contributions
of (5.1) (for the linear multipole polarizability, see KieLich [1980c]).
Since we shall be dealing only with three-photon scattering, given by the
parameters (4.38) and (4.39), we are justified in writing the tensor of
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i

second-order nonlinear multipole polarizability (neglecting spatial disper-
sion, i.e. assuming the electric field of the incident light wave as
homogeneous throughout the region of the molecule) in the form
(KreLicH [1980d])

W BSFV(r, Q) =L V(L) + 6 WBYLFD r,, ), (5.5)
where the tensor “b5,;" of rank n+2 refers to the (isolated molecule)
single-body approximation (in particular, for n = 1, it becomes the tensor
WbY, Y = bZ). The variation caused in the tensor (5.5) by fluctuations of
the electric multipole fields contains, in general, many-body contributions
and, in the two-body interaction approximation, has the form

N oo oo
8 UBL T 2= ) Y Y (F1)2G,,, [bL ()
sFEp ny=1n,=1
+ O QI I T (rt ) [1,]a P (QY),
(5.6)
where W TC(rt) = "T™(r . w) exp (ik - r.
It turns out that, in atomic fluids, essentially important are the three-
body interaction contributions
) oo N N
S(n)B(ZE-I)(rL’QLh: Z [N Z Cn,--~n4 Z {Z (__1)n2+n4
ni=1 ng=1 s#Ep ‘uFs
X[BEI () + b D[, 1 T )

X [n]"2aS (2] DT " (rt ) ng] “0a>(42%)

N
+ 2 (=1 ORG () 1y + ny] T ()

u¥Fp

X[ all (@) T (e ] a2 .
(5.7)

The two- and three-body multipole contributions (5.6) and (5.7), derived
above by the molecular-statistical method, are consistent with the results
of the quantum-mechanical method developed by PASMANTER, SAMSON
and BEN-REUVEN [1976].

In addition to the variations (5.6) and (5.7) due to multipole moments
(5.4) of the first and second order, one has still to take into account
many-body contributions from multipole moments of the third-order.
Here, we shall restrict ourselves to the second-order approximation of
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nonlinear electric dipole polarizability (KieLicH [1968a])
5 VBL U, Q) = VCLT (Y - Fl) + (5.8)

where, by expression (5.2), the field of electrically polarizable multipoles
(in the absence of external fields) is (KiELICH [1965c¢])

Foy=Y 3 (-1 o DTt ), IME (@)

sFp n,=1

N N oo oo
+ 3 X XX (D) G, OT ()

sEp uFs ny=1 na=1

X[n,] "Pag2( QY] T (e ) n M Q) +- - (5.9)

M%) denoting the intrinsic 2™-pole electric moment of molecule s.

5.2. THE TIME-CORRELATION FUNCTION FOR INTERACTING ATOMS AND
CENTROSYMMETRIC MOLECULES

We have seen that, in the general case, when the nonlinear
polarizabilities have the form (5.5) for n =1, the time-correlation func-
tions (4.38) and (4.39) split into three parts. The first is related with the
intrinsic polarizability of the molecules b23,, and has been discussed in
§ 4.3. The second part is related to the cross terms

aBy(QO)* BaBy(rqa Q ) + SBO(By(rpy‘ QO)* aB’y(‘Qt)

and vanishes if b25.(€25) =0, as in fact is the case for molecules possessing
a centre of symmetry. Obviously, in this case the first part also vanishes.
As a consequence of this, for systems composed of centrosymmetric
molecules, the time-correlation functions (4.38) and (4.39) take the form

Bzm(AkZ’ t)coh 5 <Z Z SBQBB 0 g)*

p=1q=1

X 8B2% (rl, Q) exp [iAk, « (r) — rq)]> (5.10)

Bzw(Ak27 t)ooh < Z z {5 SBaB'y(rp’ QO)*SBQB'V t :1)

p=1qg=1
35B22,(r%, Q0% 8B22.(r!, 1)} exp [iAk, - (r— r;)]>.
(5.11)

Since variations 8BZ3, exist only in the presence of well defined many-
body molecular interactions, the time-correlation functions (5.10) and
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Fig. 5.1. Models of coherent three-photon scattering: (a) the electric field F (rpe t) of

molecule s removes the inversion centre of molecule p, which now produces scattering at w,

(KieLicH [1968a, 1977]), (b) the dipole moment induced at the frequency w, in molecule s

gives rise to the electric field gradient VF(w,, r,s) in molecule p, which performs an electric

dipole-quadrupole transition and produces a photon at w; (PASMANTER, SaMsON and
BEN-REUVEN [1976]).

(5.11) describe solely and exclusively three-photon coherent scattering,
caused by cooperative effects in regions of quasi-ordering.
We now proceed to discuss the two simple models shown in Fig. 5.1.

5.2.1. Many-body atomic multipole interaction

Samson and PASMANTER [1974] have drawn attention to the fact that
mixed interaction between a dipole induced in one atom, and the electric
field gradient produced by the dipole induced in another atom (see Fig.
5.1b), causes three-photon coherent elastic light scattering. This effect is
contained in our expansion (5.6) for n=1, n, =2 and n,=1:

1 N
8B ) = =3 L [635.6u( ) + 2050 o( Q)] Toer (1) a(425),
s¥p
(5.6a)

where the fourth-rank tensor bZ3.s describes the second-order nonlinear
electric-dipole polarizability induced by a mixed electric dipole-electric
quadrupole transition. This tensor is of interest in that it is non-zero for
atoms and centrosymmetric molecules. Its nonzero and mutually indepen-
dent components have been tabulated by KieLIcH, KozIEROWSKI, OZGO
and ZAwoDNY [1974] for all point group symmetries. The tensor Tsen(rps)
describes quadrupole-dipole interaction @T™(r,,).

Let us consider the simplest case of atoms and molecules with the point



111, § 5] COOPERATIVE THREE-PHOTON SCATTERING 221

group symmetries Y and K. The expression (5.6a) now reduces to

8BZ(rt) = —2 Y G20t T g (), (5.12)
s¥p
where a, =3a%, and q*° ={5bZ3. us-
For the model considered in the approximation (5.12) the correlation
function (5.10) vanishes, whereas the function (5.11) assumes the form

Bgm(Ak2, t)coh <Z Z Z z q*quqma;ma;)

p=1qg=1 s¥p u¥#q

X Ty (r0)* Tagy () exp [iAk, - (rg—r;)]>. (5.13)

The two-body contribution

N N
B3*(8ks., 1)oon = 4< Y X Alapeasl exp [iAks - (75— r)] Top, (13)* Tog, ()

p=1 s¥#p

+q;2‘*’ ‘l"’qzw exp [lAkz (r _rt)] BY(rPS)* “‘By(r )}>
(5.13a)

occurring in (5.13) vanishes for like atoms (a, = a, = a; g, =g, =q) in the
absence of interference effects when T, (1)) = —T,5,(r5,).

The three- and four-body contributions occurring in eq. (5.13) are in
general nonzero even if the atoms are of the same species. However,
evaluations are difficult, since the time many-body correlation functions
are not available (see GrRooME, GUBBINS and Durry [1976] and KNAsT,
CuMieLowskl and KieLicu [1980]).

On applying eq. (5.7) to atoms we obtain the three-body contribution
of interest to us:

éB an ‘Qt) 2 z q2m “’{Z ay, TaBS(rps) Tsv(rw)

s#p u¥*s
N
43 a8 Tuns(r3) T (5.72)
u¥Fp

which now gives nonzero contributions to the two correlation functions
(5.10) and (5.11). These many-body contributions to three-photon scat-
tering by atomic systems have been analyzed and evaluated numerically
by SaMsoN and PASMANTER [1974]. Also, GELBART [1973] has considered
the possibility of three-photon scattering by three-body clusters of atoms,
taking into consideration electronic cloud distortion effects. Contributions
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from long-range interactions of unlike atoms can be calculated as well
(see GALATRY and GHARBI [1980]).

Under normal non-resonance conditions, such predominantly colli-
sional three-photon scattering effects are rather weak and their observa-
tion is beset with difficulties, as shown by the first and, hitherto, only
attempts of MAKER [1972] in the liquids nitrogen, argon, oxygen, etc.
Hitherto, only observations and studies of two-photon collisional
Rayleigh and Raman scattering have been successful (see, for example,
MCcTAGUE and BirnBaUM [1971], KNaAP and LALLEMAND [1975], FRENKEL
and McTAGUE [1980], and Tasisz [1979]).

5.2.2. Molecules with centre of inversion destroyed by the field of electric
multipoles

KieLicH, LALANNE and MARTIN (1971] have proposed yet another
mechanism leading to three-photon scattering by fluids composed of
centrosymmetric molecules. It originates in the changes in polarizability
determined by eq. (5.8), and resides in the fact that the time and spatially
fluctuating electric field F of the intrinsic multipole moments lowers the
symmetry of the molecule; if the latter possessed a centre of symmetry in
its ground state, it loses its centre of symmetry under the influence of the
field F, and is endowed with the ability to cause three-photon scattering
(Fig. 5.1a). Generally speaking, the molecular field F not only lowers the
natural symmetry of the molecule by way of the nonlinear polarizability
of the latter but, due to its very existence, causes the region of short-
range ordering to become anisotropic, with no local centre of symmetry.
To provide a simple demonstration of the aforesaid, we neglect in a first
approximation the anisotropy of the tensor Wl =c2e in eq. (5.8)
so that, now, the correlation function (5.10) is nonzero

N N
B3*(Aks, t)eon = 3 c20 |2 < Y X F@)* -F(r.) exp[iAk, - (r::—rm),

p=1q=1

(5.14)

whereas the correlation function (5.11) vanishes.

One sees that, on this model, coherent three-photon scattering is in fact
caused by the square of the time and spatially fluctuating electric multi-
pole molecular fields, determined generally by eq. (5.9).
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(i) Quadrupolar molecules

For centrosymmetric molecules with an intrinsic quadrupole moment
M? = @ (neglecting hexadecapole moments) we obtain, by egs. (5.9) and
(5.14),

N N N N
Bi(aks, D = ilesel (X L X 2 Tug ()

p=1qg=1 s#p u¥q

X Toe () O (0" 04 (42 exp [iBhe - (0-r)]). (5.15)

The function (5.15) leads to a result noteworthy for its simplicity when
we consider integral scattering. Thus, for axially symmetric molecules
having a quadrupole @ = @s;, we obtain in the approximation of two-body
correlations (KIELICH, LALANNE and MARTIN [1971])

B%w(o)coh :% ‘62(‘)12 @2 N<r;: s (516)

where the radial parameter (r,>) is given by (4.46).

Dropping the assumption of isotropicity of the tensor c28.5 we obtain
by egs. (5.8), (5.10) and (5.11) in the integral case (KieLich [1968a,
1980a))

B%w(o)coh = (2/25)N(5C;g§a ch'y'yS @En @en ;;g'y @ Céeen @87]) (r;;
(5.17)

B29(0)eon = (2/3675) N{245(5¢5% Cabvs

- 3C;{§‘é’8 Cay’yS) £n t—:n - 9C;(§;§‘y ay Cg:—:"en @sn}<r;:>- (518)

These formulae are applicable to various symmetries of quadrupole
molecules.

(ii) Multipole molecules

The use of the time-correlation function (5.14) is especially justified in
the case of molecules of a high degree of symmetry, e.g. tetrahedral,
octahedral etc. molecules. Taking into account the multipole field (5.9),
we now obtain for two-body correlation (KieLicH [1965¢, 1968a])

n+1)

For quadrupole molecules, eq. (5.19) immediately leads to the result
(5.16).
For tetrahedral molecules (CH,, CCl,), with an octupole moment
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M =55, and a hexadecapole moment M = @, ., we obtain, with
regard to eq. (5.19),

B%w(o)coh =16 |C2¢u|2 N{Q%23<r;qm>+ (25/7)@%1330;;2)}. (5.19a)

Obviously, one should keep in mind that tetrahedral molecules cause, in
the first place, incoherent three-photon scattering (3.12).

In octahedral molecules (SFg), the first nonzero moment is a hexa-
decapole, and eq. (5.19a) leads to

B1°(0) o = (400/7) 20l N @3 35(rp0 ). (5.19b)

pq
Since, at present, we have available the numerical values of the
nonlinear polarizabilities c,,, as well as the quadrupole, octupole and
hexadecapole moments of various simpler molecules (STOGRYN [1966]
and KIELICH [1972a, 1980a]), the formulae (5.16)-(5.18), (5.19a) and
(5.19b) are directly applicable for numerical evaluation. The three-
photon cooperative scattering evaluated in this way is, in some cases, by
two orders of magnitude greater than the scattering effects caused by the
many-body collisional effects discussed in § 5.2.1. The collisional con-
tributions to three-photon scattering are accessible to evaluation for
tetrahedral molecules, since the numerical values of their multipole
polarizabilities are known (Amos [1979]).

(iii) The depolarization ratio
Going over in eq. (4.37) to integral scattering, we obtain, for the
depolarization ratio of three-photon cooperative scattering
2o _ 7B3(0)+ 12B2(0)
Y " 63B3°(0)+ 18B3*(0)

(5.20)

As mentioned in § 3, B}*=0 for incoherent scattering by tetrahedral
molecules, so that (5.20) gives D3* =% (KikLicH [1964a]). For coherent
scattering and the model described by eq. (5.19), the depolarization ratio
(5.20) gives D3* =3. We see that, depending on the type of scattering and
the molecular model assumed, the depolarization ratio (5.20) takes a
value ranging from 5 to § (KieLicH, LALANNE and MARTIN [1973]):

§=0.11<sD¥<%2=0.66. (5.20a)

Table 5.1 shows that the theoretical relation (5.20a) is satisfactorily
confirmed by the existing experimental results for three-photon scatter-
ing, both for liquids composed of molecules without a centre of symmetry
and for ones composed of centrosymmetric molecules.
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TABLE 5.1
Experimental values of the depolarization ratio D¢ for linear scattering and D2 for
second-harmonic scattering by molecular liquids

Point
Liquid group D¢ D% Authors
H,O C,, 0.057 0.116 TERHUNE, MAKER, SAVAGE [1965]
CCl, Ty 0.02 0.345 TERHUNE, MAKER, SAVAGE [1965]
0.51 MAKER [1970]
0.45 KIELICH, LALANNE, MARTIN [1972]
CHCl, Cs, 0.11 0.65  MAKER [1970]
C,H,,0 0.038 0.16  MAKER [1970]
JH,, C, 0.058  0.10 MAKER [1970]
CH,OH C,, 0.025 0.17  MAKER [1970]
n-C;H,OH C, 0.025 0.45  MAKER [1970]
1s0-C;H,OH 0.02 0.21 MAKER [1970]
CoHy, Diq 0.025 0.12  KieLICH, LALANNE, MARTIN [1971, 1972]
C,Cl, D, 0.20  KieELICH, LALANNE, MARTIN [1971]
C,H,Cl, Con 0.25 0.24  KIELICH, LALANNE, MARTIN [1971]
C¢H, D, 0.27 0.17  KIELICH, LALANNE, MARTIN [1973, 1972}
CS, D, 0.48 0.21 KIELICH, LALANNE, MARTIN [1973, 1972]
CH,;CN Cooy 0.10 TERHUNE, MAKER, SAVAGE [1965]

LaLanne, MARTIN and KieLicH [1975] have applied the earlier disco-
vered and studied cooperative three-photon scattering (KieLICH, LALANNE
and MaRTIN [1971, 1972, 1973]) to the numerical determination of the
quadrupole moments of centrosymmetric molecules from egs. (5.16)-
(5.18). Maybe in the near future egs. (5.19a) and (5.19b) can be used to
determine molecular octupoles and hexadecapoles, as hitherto done with
success on the basis of collision-induced far infrared absorption (see, for
example, GrRAY [1971] and BirnBaUM and CoHEN [1975]) and dielectric
measurements (KieLicH [1965b, ¢] and ISNARD, ROBERT and GALATRY
[1980)).

Quite recently, TELLE and LauBereau [1980] have observed a sharp
increase of second-harmonic generation of picosecond laser pulses, sug-
gesting this increase may be caused by a cooperative mechanism of
clusters due to hydrogen bonding in water. In our approach, when dealing
with this case, all successive contributions from intrinsic dipoles, quad-
rupoles and octupoles, the numerical values of which are available for
H,O (see STOGRYN [1966]), have to be taken into account in eq. (5.19),
and the function B2“(0).,, (containing, like eq. (5.18) quadrupole con-
tributions only) has to be calculated.
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Worriko and KieLicH [1975] have analyzed the influence exerted on
three-photon scattering by statistical molecular reorientation induced by
an intense laser beam. NrrsoLov [1977] has considered the influence of
thermal fluctuations of density on three-photon scattering of the dipole-
quadrupole type.

KieLicH, KoziEROWSKI and LALANNE [1975] have developed a theory of
three-photon scattering in solutions consisting of atoms and molecules
with electric multipoles. The only hitherto known observations by
LALANNE, KIELICH, KoziERowskl and PLANNER [1976] concern CCl,-
CeH 1, solutions. Studies of solutions of this kind are highly relevant, since
in CCl, we deal chiefly with incoherent three-photon scattering, whereas
(as we have seen) C¢H,, gives rise to coherent three-photon scattering
only. It is worth noting that Schmip and SCHROTTER [1977] have reported
observations of hyper-Raman spectra from CCl,~C,Cl, solutions.

ANDREWS [1979a] has analyzed hyper-Raman scattering by oriented
molecules in liquid and molecular crystals.

Four-photon scattering is less sensitive to cooperative effects, as was
confirmed recently by KipaL and BRUEck [1980] when studying third-
harmonic generation in cryogenic liquids.

§ 6. Raman Line Broadeningin Multi-Photon Scattering
(Classical Treatment)

The discussions in §§ 4 and 5 make it clear that, in general, not only
incoherent scattering on free molecules but moreover — and in some cases
primarily - coherent scattering on statistically correlated molecules has to
be taken into consideration. Mathematically, however, the description of
coherent scattering processes, though formally feasible, is beset with
difficulties when it comes to concrete numerical evaluations, chiefly for a
lack of the analytical form of the many-body correlation functions.
Luckily the situation is quite different with regard to the analysis of
Raman multi-photon spectra since, in this case, coherent scattering may
be neglected with sufficient accuracy. This is so because the normal
vibrations of molecules (even in certain liquids) can be treated as statisti-
cally independent (BArRTOLI and Litovitz [1972] and NAFE and
PeticoLas [1972]). Within this approximation Raman line shape studies
provide information regarding the translational and rotational motions of
the individual molecules in contradistinction to Rayleigh scattering, where
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molecular correlations play an outstanding role and may not be neglected,
expecially in liquids (see, for example, § 5 for a discussion of cooperative
scattering).

As in the case of usual Raman scattering, the normal vibrations are
responsible for the vibrational hyper-Raman lines, whereas the transla-
tional and rotational motions of the molecules broaden the lines by Aw,
about the central values nw +w,, of the latter. In order to prove the
aforesaid we have recourse to the classical treatment of § 3.3, which led
us to the scattering tensor (3.28). In the spectral case of § 4 it takes the
form

Ie™on(R, 1) = [Nf5/2""'(n1] [(ne F w,)/c}* I"g™
X QuYCu (1) KZ27(R, 1), (6.1)

where we have introduced the normalized vibrational autocorrelation
function

C,.(t) =(Q% QLI QL» (6.2)

and the tensor of translational-rotational and polarizational autocorrela-
tions

Kremon(R, )= ), (27+1) 7 (flnelr, 1) exp (—iAk, - 1))

JKIL.MM'
X Ak (nw)* aypt(nw) @5
x exp [-i(now F o,,)t] (6.3)

with @XL given by eq. (3.29). On calculating the Fourier transform of
(6.3) we obtain, by (4.8), the spectral density tensor of multi-photon
Raman scattering with the frequency change Aw, = o, — (no ¥ w,,)

SreTen(Ak,, Aw) = 2 (2T +1)7 fimelAk,, Aw,)
JKI.MM'
x A% (nw)* agh,(nw) I, (6.4)

where we have introduced the following spectral function:

e -
Py ) =3 | at [ dnflane(r,

x exp [i((Aw,t — Ak, - 1)) (6.5)

After GORDON [1965], for Raman processes, the spectral function (6.5)
can be calculated separately for molecular motion at short and long times.
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On taking STEELE and PECORA’s solution [1965] for the short-time ap-
proximation we can write (6.5) in the form

fim(Ak,, Aw,) = Sy GrgAk,, Aw,), (6.6)
where, for a molecule of mass m and inertia moment I,
GilAk,, Aw,) =2mmI/kT[mI(J+ 1) +1 Ak, [*T1
xexp{—|Aw, > [mI)2kT[mJ(J +1)+I |Ak,|2]]}. (6.6a)
In particular, for Ak,— 0 and J =0, we have
A}(i"rgo GidAk,, Aw,) =2m8(Aw,). (6.6b)

Thus, in the present case, the total scattered spectrum consists of a sum
of Gaussian shape functions centered about Aw,, with width determined
by the mass and moments of inertia of the scatterer.

The properties of the function (6.5) at long times may be simulated by
a stochastic (Markov) process. As mentioned in § 4, the sole stochastic
model for which the complete analytical form of fap(r, t) is known is
that of free diffusion of. translational-rotational motions of Brownian
particles, giving eqs. (4.23) and (4.31). In spite of numerous objections
the model is still in common use due to its heuristic value and simplicity,
permitting the expression of (6.5) in the form

fIJVlM'(Akn’ Awn) = SMM' LIJW(Akn, Awn) (67)

Above, we have introduced the generalized Lorentz function for the
translational-rotational shape of the spectrum

_l 1/T{W+|Akn|2 Dy
T (Aw,)?+(1/7m,+|Ak,|> D1)?°

The half-width of the preceding Lorentzian lines amounts to (A, ), =
2(1/my+|Ak, > Dy). Under normal experimental conditions 1/7i,>»
|Ak, > Dy = 71" (e.g. for molecules 7.~ 1075 s), whereas 7%,~ 10~'%s and
the effect of translational motion of the molecules in broadening the
spectral lines is determined by their rotation relaxation times 71, only:

LidAk,, Aw,) (6.7a)

1 J
Li0, Aw,) =——M

—_— .7b
7T 1+(Aw, )’ (6.7b)

where, now, (Aw, ), =1/,

In fact, the spectral functions (6.5)—(6.7) are applicable both to multi-
photon Raman scattering processes and to the incoherent Rayleigh scat-
tering processes discussed in § 4. In this sense, the applicability of the
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diffusion model (6.7) can be justified by arguments put forward by
Starunov [1965], who considers the broadening of the central part of the
spectrum of the depolarized component of Rayleigh scattering, adjacent
on the central line and extending to 3-15 cm™' on both sides of the latter,
to be due to rotational Brownian motions. All the other processes taking
place in the liquid (in short-time approximation) affect the shape and fine
structure of the wings. Maybe, in some cases, it would be profitable to
replace the model of continuous diffusion (4.31) by some other model of
molecular motion, e.g. that of “diffusion by jumps” (see VALIYEvV and
Ivanov [1973]), or the J- or M-diffusion model (see, for example, STEELE
[1976] and McCruna [1977]). However, distribution functions for jump-
wise diffusion models applicable to molecular spectroscopy are available,
strictly speaking, for the spherical top only; in the long run, they too lead
to a Lorentzian spectral distribution, albeit with other relaxation times.
Hence, on the free diffusion model and with regard to eq. (6.7), the
spectral density tensor (6.4) for the nth order hyper-Raman is, finally,
SwTe(Ak,, Aw,) = Y. (2J+1)7" Li(Ak,, Aw,) |a%E (nw)]? ®IKE.
JKLM

(6.8)

The preceding spectral theory of hyper-Raman scattering differs essen-
tially from the theory of incoherent ‘‘quasi-elastic”’ multi-photon scatter-
ing processes of §4 in two ways. First, the molecular parameters
|aNe (nw)|? of eq. (6.8) are defined via the nonzero components of the
spherical nonlinear Raman polarizability tensor, related to the normal
vibration Q,, of frequency w,,. Their selection rules are dependent on the
symmetry of the molecule and type I'™ of the vibration considered (cf.
eq. (3.47)). Second, to determine the Fourier transform of (6.1), one has
to be in a position to separate the intrinsic shape of the natural vibra-
tional line, determined by the correlation function (6.2), from the ob-
served nth order Raman spectrum.

The vibrational autocorrelation functions (6.2) are accessible to deter-
mination from IR absorption and usual Raman scattering measurements
by measuring the spectral distribution, whence the part related with
vibrations of the molecule can be separated (Narge and PETICOLAS
[1972)): 1 e
Cm(Awm)=5; J’ dt C,.(1) exp (1Aw,t). (6.9)

This Fourier transform is a function of the intrinsic vibrational line
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shape. Its independent determination from three- and five-photon scat-
tering is not possible because, as we know, processes with even harmonics
produce no isotropic scattering; the latter, however, does take place in
processes involving odd harmonics.

Hence, having available the total correlation tensor (6.1) or Fourier
transform of the hyper-Raman scattering spectrum observed and, inde-
pendently, the vibrational functions (6.2) or (6.9), one is able to deter-
mine the translational-rotational tensor (6.3) and its Fourier transform
(6.4) or (6.8).

KiEeLicH, Kozierowskr and Ozco [1977] have proposed a more general
treatment of the problem taking into account, among other things, the
fact that one has to consider the Fourier transform of the total tensor
(6.1) which, generally, is not a product of the spectral density tensor (6.4)
or (6.8) and Fourier transform of the vibrational functions (6.9). In other
words, we have in general a convolution of the intrinsic vibration line
shape with the translational-vibrational spectrum (see, for example, BAR-
toLl and Litovirz [1972]).

Equations (6.1)—(6.8) are applicable to two-, three-, four- and more-
photon Raman scattering.

6.1. THREE-PHOTON RAMAN SCATTERING

For the sake of simplicity, we shall discuss the spectral density tensor
(6.8) only. In the three-photon case it becomes

1 .
ST Aky, Awy) === Y {TLA(Aky, Aw,)| bR, 2 DX
21 KM

+3L3(Aks, Aw,) B, @21 (6.10)

Here, we have assumed the nonlinear polarizability tensor L, in the
simpler, completely symmetric form 5§}.,...

We note that the hyper-Raman line shape (6.10) is in general a
superposition of several Lorentz lines (6.7a), among which one can
distinguish spectra for J =1 and J = 3. If the anisotropy of the rotational
diffusion tensor in (4.31a) is considerable for the molecule under consid-
eration, several lines with different M-values appear within the same
value of J. The nonzero molecular parameters |b{y..|> for all groups of
molecular symmetry and all types of vibrations, active in hyper-Raman,
are to be found in tabulated form in papers by ALEXIEWICZ, BANCEWICZ,
KieLicH and Ozco [1974] and Bancewicz [1976].
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For linearly polarized incident light, the spectral density tensor (6.10)
becomes

2oFen(Ak,, Aw,) === Z [TL1(Aky, Aw,) |62+ 2L3(Ak,, Aw,y) DI,

(6.11a)
BBk Awz) =372 ) Y LAk, Awy) |BD P
+12L3(Ak,, Awy) |BD. 13, (6.11b)
whereas for light circularly polarized in the right sense
STk, ) = 31 315 & (2LAdAkKs, ws) 632,
+3L3(Aky, Aw,) |B. 2, (6.12a)
24T Ak, Awy) = Z L3A(Bky, Awo) |Bf*. (6.12b)

When studying the rotational motion of the molecules of a liquid,
special importance should be attached to those normal vibrations to
which only one molecular parameter ll;f\f}:mP corresponds, since in this
case the line-width is dependent on one relaxation time 73, only, and the
latter can be determined from eq. (6.7). For example, such is the case of
the molecules of C,Hg (point group symmetry Dg,) and their vibrations of
the types Bi,, B,, and E,,, for which eqs. (6.11) and (6.12) lead to the

relation
2oF 32w+ - 2w F _2Q2wF _ 3 2
Svmv m"‘_z v “m =6 +u{+§u S 1‘1,4-(1”"'—35[4 lb( )ml 5 (613)

where one has to put M =3 for m =B, and m =B,,, and M =2 for
m =E,,. In this way we derive from eq. (6.7) the rotational relaxational
times 73 or 3. In the case of the group Cgy,, one can also determine 73 for
vibrations of the type B, and 73 for E,,. Similarly, 73, and 73, are
accessible to determination for appropriately selected types of vibrations
and molecular symmetries.

The hyper-Raman lines of molecules without a centre of inversion are
much weaker than the hyper-Rayleigh line (cf. Fig. 3.4), and are thus
more difficult to observe. However, the outlooks become quite promising
in the case of centro-symmetric molecules for which elastic three-photon
scattering is forbidden in the electric-dipole approximation. Here, one
can observe, solely or chiefly, hyper-Raman lines (see Fig. 3.6); and
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certain of them are forbidden in IR spectroscopy or in the spectroscopy of
usual Raman scattering, which provides information on the relaxation
times 3, only. Also, the complete absence or faintness of coherent
scattering is a factor in favor of hyper-Raman, as compared to hyper-
Rayleigh, spectroscopy.

6.2. FOUR-PHOTON RAMAN SCATTERING

On the assumption of a completely symmetric tensor 4%, (30w) = &{).,.,

eq. (6.8) leads to the following spectral density tensor of four-photon
Raman scattering:

S3mxmm(Ak3a Aws) = LO(Aks, Aws) l~(0) ? D2
Z {9L} (A3, Aws) €2, > D2

+5LM(Ak3, Aw3) |67, > DY (6.14)

With the values, tabulated by Ozco [1975a], of the transformation
coefficients RJ%,, occurring in the tensor (3.29), we obtain, by (6.14), for
incident linearly polarized light

ST (Bks, Acwy) = {1L°(Ak3, Aws) |60,

Z[9LM(Ak3, Aws) 657,

315
+ 2LM(Ak3, A(O:;) |C(4) |2]}, (6158)
Sieron(Aks, Aws) = _266 2 A27L(Ak;, Aws) €., 12

and for light circularly polarized in the right sense

S39Tim(Aks, Awy) = —— Y {54L2(Aks, Aw,) |62, 2

1260
+5LidAks, Aws) |E57. /7, (6.16a)

S24Tem(Aks, Aws)—— ZL m(Aks, Aws) |E6.,.2. (6.16b)
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Equation (6.15a) conveys to us that third-harmonic Raman, like linear
Raman, contains isotropically scattered light, related to the parameter
|c§?.|?. This enables us to separate the contribution to the spectral line
shape due to vibrational motion of the molecules (6.9). The component
(6.16b) is also of interest, since it involves only one term, permitting the
determination of the new rotational relaxation time 73, hitherto inaccessi-
ble by other methods.

By comparison, in usual Raman the intensity of isotropic scattering can
be determined from the relation (BartoLl and Litovirz [1972])

L7 om = Ig3m =51 (6.17)

Similarly, for third-harmonic Raman we get, by eqs. (6.1), (6.15) and
(6.16), the relation

I;.’aswxwm — IZ\&/«;\);Fw 1613:..:4:(» _*_1513(;1%10 (618)

permitting the determination of the isotropic third-harmonic scattering

component, and hence the vibration function (6.2). In particular, for

spherical top molecules [c.,.> =0 and eqs. (6.15) and (6.16) lead to the
relation

TI8Fon = [P¥on = 28 [P0 7w,, (6.19)

with regard to which the relation (6.18) reduces to (see KIELICH,
Kozierowski and Ozco [1977]):

IiBSw:Fm _ %a\)/:Fm I3aH=m . (620)

The determination of the isotropic component of third-harmonic scatter-
ing, in this case, requires the measurement of two components only, as in
that of the usual Raman scattering effect given by the relation (6.17).

§.7. Angular Distribution and Polarization
States of Multi-Photon Scattered Light

7.1. THE SCATTERING TENSORS IN TERMS OF STOKES PARAMETERS

The state of polarization of a plane quasi-monochromatic light wave,
propagating along the Z-axis with electric vector

E(t)=E,(1)+E,(1), (7.1)
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is usually expressed in terms of the Stokes parameters (BorN and WoOLF
[1968]):
So=E%E,+E%E,, S, =E%E,-E*E,

S,=EiE,+E%E,  S,=i(E*E,-E*E,). (7.2)

These, in fact, are integral Stokes parameters. By analogy, one can
introduce spectral Stokes parameters (see PERINA [1972]). Of the four
parameters, only three are mutually independent, since the identity

S3=82+83+82
is fulfilled. With regard to (7.2), we obtain (see Born and WoLr [1968)):
EJE, =3(S;+Sy), ESE, =3(So—S)),
EXE, =3(S,+iS,), EYE, =XS,—iS;). (7.3)

We apply this relation to express the multi-photon scattered intensities in
terms of Stokes parameters.

The versors of the incident and scattered wave fields are now, respec-
tively (Fig. 7.1),

e=xsin y+e®ycosy, (7.4)
e,=x sin ¢ +e'*(y cos @ —z sin @) cos ¢, (7.5)
X
e
Y -
k
0
ks

Fig. 7.1. Systems for the calculation of the angular distribution and polarization states of
scattered light.
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where x, y and z are unit vectors in the direction of the axes X, Y and Z
of the coordinate system attached to the vector E= Ee of the incident
light wave.

Here, obviously, we have e-€*=1 and e, - ¢ =1. Equations (7.4) and
(7.5) account for all possible states of polarization of incident and
scattered light. For example, at §=0 the incident wave is linearly
polarized at an arbitrary angle to the plane of observation YZ, and we
have

e=Xx sin s +y cos . (7.4a)

If the y-component of the field is shifted in phase by 8 = /2, we have
for the elliptical polarization

e, =X sin Y iy cos 1. (7.4b)

With regard to the angular momentum convention a phase shift +/2
refers to right elliptical polarization of the wave and —a/2 to left elliptical
polarization. If, in addition, = w/4, then eq. (7.4b) gives, for a circularly
polarized wave,

e, =2""(x tiy). (7.4¢)

It is our aim to determine the angular distribution and polarization state
of the scattered wave. They are given by the intensity tensor components,
measured by the analyzer:

I () =e, I}.(t) e¥,, (7.6)

where the scattering tensor in Cartesian representation is given by eq.
(4.10). Thus, the problem reduces essentially to an analysis of the
coherence degree tensor (4.12) or, rather, of its components

(n,h) _ (n,h) %
ge':e - esa' gor:r es-r’ (77)

where the irreducible components for n =1, 2 and 3 are given respec-
tively by egs. (4.17), (4.40) and (4.51).

Thus, by (4.37) and (7.6), we obtain the intensity of integral second-
harmonic scattering in the form

172(0) = (Q,,I*/315){7B1*(0) g%+ 3B3“(0) g%} (7.6a)

With regard to the aforesaid, we express the polarization tensors of
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linear scattering (4.17) in terms of Stokes parameters:
g0 = (2Se) ™ (Sy + 81) sin® @ +(Sp—S,) cos? 6 cos? @
+(S, cos 8,+ S5 sin §,) cos 0 sin 2¢),
gl = (2So) "1 (280 — (So+ 1) sin® @ — (S — S;) cos® B cos® ¢
— (S, cos §,— S5 sin 8,) cos 0 sin 2¢),
glle? = (2(Se)) 1 (6So+(Sy+ Sy) sin® @ +(Sy— S) cos? 8 cos?
+(S, cos 8,— 585 sin &) cos 0 sin 2¢),

(7.8)

and, similarly, those of symmetric three-photon scattering (4.40):
ge =(So) 2 (ST — S3+2(255+28,8, - S sin’ ¢
+2(285—25,S; — 52%) cos® 8 cos? ¢
+28, (28, cos §,+ S5 sin §,) cos 6 sin 2¢),
g7 = (S0) ? (4S3+ 53+ (S3+ 5,8, +28Y) sin® ¢
+ (83— S80S, +283) cos® 0 cos? ¢
+ 8, (S, cos 8,— 78S sin &) cos 8 sin 2¢).

(7.9)

We now proceed to consider the polarization parameters (7.8) and (7.9)
for various states of polarization of the incident e and scattered e
photons.

7.2. NATURAL INCIDENT LIGHT

Hitherto, no unequivocal model of natural light is available (see, for
example, PrRakAsH and CHANDRA [1971]). We shall accordingly consider
some plausible models (WorEiko, Kozierowskr and KieLicH [1978]):

(a) On the traditional mode!, natural light is considered to be a
superposition of two waves, linearly polarized, or polarized circularly in
opposite senses, with amplitudes equal and constant but with uncorre-
lated phases. This is the equivalent of a single wave with fluctuating
direction of polarization and constant amplitude (see, for example, BOrN
and WoLF [1968]). In this case, by (7.4a), one has for the linear Stokes

arameters:
P (SH=(EP),  (S)=(S)=(S2)=0, (7.10)
and for the nonzero nonlinear Stokes parameters:

(S5) =2(SD) =2(S3) =(So)*, (7.11a)
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so that the parameters (7.8) reduce to the form well known from the
literature:
goh” =X(sin? ¢ +cos? ¢ cos? 6),

1.2y _

. (7.8a)
gew = 3(6+sin® @ +cos? ¢ cos? 6).

On the same model the nonlinear scattering parameters (7.9) take the
form
g% =1+4(sin? ¢ +cos? ¢ cos? 6),

2.3) _

(7.9a)
g = 4+4sin” ¢ +cos? ¢ cos? 4.

With regard to eq. (7.6a), this leads to the results of CyvIN, RAUCH and
Decius [1965] (see also KiELicH and Kozierowski [1972]).

(b) Natural light is treated as the superposition of two waves with
mutually orthogonal polarizations, equal amplitudes, and independently
fluctuating phases (STrizHEVSKY and KLIMENKO [1967]), so that the linear
Stokes parameters have the form (7.10), whereas the nonzero nonlinear
ones take the form

(S8 =2(S2) = 2(8%) =(So)*. (7.11b)

In this case, the linear parameters (7.8) have the form (7.8a), whereas the
nonlinear ones (7.9) assume the following form:

g% =31+ 6(sin® ¢ +cos? ¢ cos? 6)},
g% =39+ 4(sin? ¢ +cos? ¢ cos? 9)},

eu

(7.9b)

and eq. (7.6a) leads to the formulae of STRIZHEVSKY and KLIMENKO [1967]
for the depolarization ratios and their angular dependence.

(¢) Natural light is a superposition of two waves, orthogonally (linearly
or circularly) polarized, with independently fluctuating phases and mutu-
ally independent Gaussian amplitudes. One now has, in addition to
(7.10), the following nonzero nonlinear Stokes parameters:

(83 =3(SD) =3(S3) = 3(S3) = XSo)>. (7.11¢)
Equation (7.8a) still holds, whereas the nonlinear polarizational
parameters have the form:

gD =1+5(sin? @ +cos? ¢ cos? 6),

23)_1 . 2 2 2 (7.9¢)
gis{, =313+ 5(sin® ¢ +cos? ¢ cos? 6)],

and, for the depolarization ratios, one has the ANDREWs—
THIRUNAMACHANDRAN [1977b] relation.
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(d) Natural light is a multi-mode light (ALTMAN and STREY [1977] and
* STREY [1980]). On the assumption that all N incoherent modes have the
same intensity, and that N is infinite, this model leads to the same results
as the model (c). This is so because, as shown by PrRakAsH and CHANDRA
[1971], if two orthogonally polarized components of unpolarized light are
statistically independent, the radiation is necessarily chaotic.

We note that, in linear scattering, all four models of natural light lead
to identical results; however, nonlinear scattering is strongly model-
sensitive and can be considered as a test of the correctness of the natural
light model assumed.

7.3. LINEARLY POLARIZED INCIDENT LIGHT

(i) Incident light, polarized in the vertical plane (E, # 0, E, =0) is, with
regard to (7.2), characterized by the following Stokes parameters:

SOZSl :lExlza 52283205 (723)
causing the polarizational parameters of linear scattering (7.8) to take the
form:

gl =sin? ¢; gy =3 +sin’ o, (7.12)

and those of nonlinear scattering (7.9) to become
gx) = gP(1+8sin? ), gx) = gP(4+2sin? ). (7.13)

These parameters take the following values for the vertical scattered
component (¢ =90°):

gwW =1, g’ =4, (7.12a)

gxkP =9, geN =6g2, (7.13a)
and, for the horizontal scattered component (¢ = 0°),

g’ =0, g’ =3, (7.12b)

g =gy, ik =48V (7.13b)

In this case, by (7.6a), the depolarization ratio is given by (5.20).
(i) For incident light, polarized in the horizontal plane (E, =0, E, #0),
the Stokes parameters (7.1) take the values

S():—Sl :|Eyl29 82: S3:O (72b)

In this case, the polarizational parameters of linear (7.8) and nonlinear



11, § 7] ANGULAR DISTRIBUTION, POLARIZATION STATES 239

(7.9) scattering assume the form:

g =cos® @ cos’ 6, gD =3+cos? ¢ cos? b, (7.14)
g&4P=gP(1+8cos? cos?8),  g&P=gP(4+2cos® ¢ cos” B).
(7.15)

One obtains, for the vertical scattered component (¢ = 90°)

g =0,  gW=3, (7.14a)
g&D = @ gD =4g2, (7.15a)

and for the horizontal scattered component (¢ =0°)
guiP=cos’0, guiP =3+cos’ 6, (7.14b)
g4y =g@(1+8 cos? B), gﬁ&’ =gP(4+2cos?0). (7.15b)

Defining the depolarization ratio as D’ = I3y/I3, we have by eq. (7.6a)
(KIELICH [1968a]):

7B3°(0)+ 12B3*(0)
7B2%(0)+ 12B2°(0) + 2[28 B3*(0) + 3B3“(0)] cos> 6

DE(9)= (7.16)

yielding, at perpendicular observation, D(90°) = 1.

7.4. CIRCULARLY POLARIZED INCIDENT LIGHT

In the case of circularly polarized incident light, eq. (7.4¢) leads to only
two Stokes parameters,

So=IE.P+E P,  S3=|E_P-|EP (7.17)

When calculating the reversal ratio for incident light circularly polarized
in the right sense only (e =+1), one has to put 8,=Fu/2, ¢ = n/4, and
e.==1 in eqs. (7.8) for forward scattering. This leads to the following
results, well known from the literature, referring to isotropic, antisymmet-
ric, and anisotropic scattering (see PLACZEK [1934]):

(113)1/g+1+1 —tg /2, (7.18a)

an oy _ 1—cos® 672

g 1+1/g+1+1-m, (7.180b)

(1,2) 1,2) 13+1OCOSO+C0520

i = . Nl
goin/ghin 13—10 cos 6 +cos? 0 (7.18¢)
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Let us return to the nonlinear polarization parameters (7.9). By (7.17),
for right-circularly polarized incident light, they take the form

g =2gA(sin® ¢ +cos® 6 cos® @ —sin & cos 6 sin 2¢),

g% = g A5+ 3(sin® ¢ +cos® 8 cos” @) +7 sin § cos 6 sin 2¢].  (7.19)

(i) Depolarization ratio
At 8,=0, the expressions (7.19) take the following form for the vertical
(¢ =90° and horizontal (¢ = 0°) component, respectively:
gy =284, gvil=8g4,

gl =2g%cos” 0, gl = g5 +3cos” 6),

(7.19a)

from which (7.6a) now leads to the depolarization ratio of circularly
polarized incident light (KieLicH and Kozierowski [1974]):

15B2<(0)+[14B%*(0) + 9B3“(0)] cos® 6

7.20
14B7°(0) + 24B2°(0) (7.20)

D35(8) =
In the particular case of tetrahedrally symmetric molecules in the

absence of cooperative scattering B3(0) = 0, and the depolarization ratio

(7.19) becomes
D2(8) =(5+3 cos” 6)/8. (7.20a)

At perpendicular observation of the scattered light (6 =90°) we obtain
the value D2%(90°) =5/8, to be considered as the upper limit.

For cooperative three-photon scattering one has generally B3°(0)>»
B3“(0), so that eq. (7.19) leads to the simple result

D?2(8)=cos* 6, (7.20b)

signifying that, in the cooperative case, vertically scattered (8 = 90°) light
is completely polarized, whereas light scattered into the propagation
direction of the incident wave (6 =0°) is unpolarized.

With regard to (7.19a) and (7.19b), the range of variability of the
scattered light depolarization ratio for circularly polarized incident light is

0=<D39(90°)=<5/8. (7.20¢)
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(i) Reversal ratio
On putting ¢ = 7/4 and 8,=Fx/2 in (7.19), one obtains

2,1y _ 2 2
g4y, = g (1+cos 6),

2,3y _

(7.19b)
g3, =1g®(13F 14 cos 9+ 3 cos” 9)

from which, by (7.6a), one gets, for the angular dependence of the
reversal ratio (KieLicH and Kozierowski [1974]):

56B2%(0) sin* 6/2+3(13+ 14 cos 6 + 3 cos? 6) B3(0)

R24(0)= .
i(0) 56B2°(0) cos* 6/2+3(13— 14 cos 6+ 3 cos? 8) B3*(0)
(7.21)
In particular, at 8 =0°, eq. (7.21) leads to
45B2°(0)
R22(0°) = 2 7.21
00 =5 8B%0) + 3B27(0) (7.21a)
corresponding to the previously discussed formula (3.49).
For B3“(0)=0, formula (7.21) leads to
R2(0) =tg"6/2. (7.21b)
In the opposite case of B3*(0)=0, one obtains
13+ 14 + 2
R22(6) = cos 6+3cos” 0 (7.210)

13—14cos 6+3cos? 9’

Thus, the reversal ratio (7.21b) is the same as for the case of isotropic
linear scattering (7.18a). In particular R3%(0°) = 0, meaning that coopera-
tively scattered light is polarized circularly. Equations (7.21b) and (7.21c)
lead to the relation (3.50a).

7.5. FOUR-PHOTON LIGHT SCATTERING

The rapid progress achieved recently in the domain of various four-
photon spectroscopies stimulates us to supplement this article with an
analysis of the angular and polarizational properties of light, scattered in
the four-photon processes described by the tensors (4.51). With regard to
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egs. (7.3) and (7.7), the latter assume the form

ger” = (KSp)) " (28, (S5+ 8081~ 83) + $1(S3 - S3)]sin?
+[28, (S5—S,S:—S3)— S, (S3—5%)] cos? @ cos? ¢
+2(S5—S3) (S, cos 8,+ S sin &) cos 6 sin 2¢),

ggez) = (4(Se)*) 71 (128, (S5~ S3)
+[28, (1383 +138,S; —783) — 55, (52— §2)] sin® ©
+[2S, (1355 —-13S5,S, —783)+5S, (S2—52)]cos? 0 cos? ¢
+2[(1383+5853) S, cos 8,+(S2+552) S, sin 8,] cos 6 sin 2¢),

g3 = (4(Se)) 1 (208, (42 +352) + 3285, (452 +4S,S, +2152)
—S1(S3—S3)Isin” ¢ +3[2S, (453 — 45,S, +21S52)
+8:1(S3—S3)] cos? 0 sin? @ + 6[(4S%+ S2) S, cos 8,
—9(783—283) S sin 8,] cos 6 sin 2¢).

(7.22)

(i) Vertical polarization

For vertically polarized incident light one has (7.2a), from which the
nonlinear parameters (7.22) become
(3,0) _

g 8(3) sin” ¢, gy =gP(3+13sin” @),
gk =4¢P (5+3sin® ¢),

(7.22a)

so that, in this case, the expression (4.47) gives a formula for the
depolarization ratio D3° analogical to eq. (3.55) (cf. KieLicH and
Kozierowski [1970]).

(ii) Horizontal polarization
With regard to eq. (7.8b), we bring the nonlinear polarizational
parameters (7.22) to the form

g5 = ¢

g3 =g (3+13 cos? 6 cos? o), (7.22b)
g% =4g3 (5+3 cos? 0 cos? @).

% cos® 0 cos? o,

Thus, the depolarization ratio of four-photon scattered light at horizontal
polarization of the incident light wave is (KieLicH and KOZIEROWSKI
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Diy(6) = (7.23)

27 C34(0)+20 C3*(0) ,
27 C2(0) + 20 C3°(0) +[252 C3*(0) + 117 C3°(0) + 12 C3°(0)] cos” 6

In particular, at perpendicular observation D{°(90°) = 1.

(iii) Circular polarization
Applying the nonlinear parameters (7.22) to circular polarization of the
incident light wave, we obtain

gl =0, g22 =3 g8 (sin® ¢ +cos” 6 cos® ¢ —sin & cos 6 sin 2¢),

g3" =3 [14+15 (sin” @ +cos® 8 cos® @) +27 sin §; cos 6 sin 2¢].
(7.22¢)

Insertion of these parameters into eq. (4.47) leads to the following
depolarization ratios for the vertical and horizontal component (cf.
Kozierowski [1974]):

70 C32(0) +3 [18 C32(0) +25 C5°(0)] cos” 8

3w — . 7.24
D=(6) 54 C3*(0)+ 145 C3°(0) (7.24)
from which, at perpendicular observation
7 3w
D34(90°) = 0C40) (7.24a)

54 C3*(0)+ 145 C3(0)°

whereas at collinear observation (§ =0° D3$(0°) =1, proving that the
scattered light is natural light.

Similarly, we calculate with eqs. (4.47) and (7.22¢) the reversal ratio of
four-photon scattering (cf. KoziErowsk1 [1974])

216 C3(0) sin® 6/2+5 (43 + 54 cos 8 + 15 cos? 8) C3%(0)

216 C3°(0) cos* §/2+5 (43 —54 cos 8+ 15 cos® 8) C3°(0)
(7.25)

R31(0) =

This leads, for observation at 8 =0°, to a result corresponding to the
formula of Ozgo (3.56), whereas, for observation at 8 = 90°, it leads to
R3%(90°)=1 for arbitrary media.

In cases of incoherent scattering by atoms in their ground state
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C3(0) # 0 and C3*(0) = C3°(0) =0, showing that, here, four-photon scat-
tering of circularly polarized incident light cannot occur. In the case of
cooperative scattering due to many-body interaction the situation is quite
different (see the discussion in § 5).

7.6. RECIPROCITY RELATIONS

With regard to the definition (7.6), the tensor of n-harmonic scattering
(3.13) may be written as follows:
2= (nw/c)*[F,, + (e * € G,,] I"g™, (7.26)

where, by (7.4a) and (7.5), one has for linearly polarized light (§,=0, see
Fig. 7.1):

e, * e=sin ¢ sin Y +cos 0 cos ¢ cos .

Hence, the four components take the form (see Fig. 3.1)

I% = (nw/c)* (F,, + G,,) IS g\, (7.26a)
IS/ g5 = RIS g5 = (nw/c)* F,,, (7.26b)
I%4(0) = (nw/c)* (F,, +cos’> 0 G,,) Iy giv. (7.26¢)

Thus, at perpendicular observation, the Rayleigh-Krishnan reciprocity
relation holds for all scattered harmonics:

I Iy g\ = ITa(909)/ I giv = (nw/c)* F,,. (7.27)

Equation (7.26), moreover, leads to the following relation between the
depolarization ratios of arbitrary scattered harmonics (KIeELicH and
Kozierowski [1972]):

D (8) =Dy {D¥+(1—D%) cos® 6} 77, (7.28)

where
DY’ =F,/(Frw + G, (7.28a)
D¥(0)=F,/(F,, +cos® 0 G,,). (7.28b)

Similarly, for unpolarized incident light, one has the relation (KIELICH
and Kozierowski [1972])

D¥(0) = DE(90°) +[1— DEP(90°)] cos? 6. (7.29)

Obviously, in the case of linear scattering, the relations (7.28) and
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(7.29) are fulfilled unrestrictedly; in addition, the following relation also
holds:
DE(90°) =2D%/(1+ D). (7.30)
ANDREWS and THIRUNAMACHANDRAN [1977b, 1978] have shown that, at
nonlinear scattering, no immediate relation of the type (7.30) exists
between Dy and D%, since the circularly-polarized light intensity has to
be taken into account. Let us consider the matter more closely for the
case of second-harmonic scattering. We obtain from eqs. (7.6a) and
(7.9¢), for unpolarized incident light:

I3 =155 [14 B1*(0)+ 9 B3*(0)]12,
20(8) = 550 {14 B2(0) + 39 B2“(0) (7.31)
+5[14 B2*(0)+3 B2“(0)] cos® 8}12.
On the other hand, from egs. (7.6a), (7.13a), (7.13b), (7.15a), (7.15b) and
(7.19a) we obtain
=35 [7 B1°(0)+2 B2m(0)] I3 g7,
"I g"’ =I5/ g = IV g8
=3z [7B2“’(O) +12 B2(0)],
£2:(0) = 515 {7 B2(0) + 12 B2(0) + 2 [28 B2“(0) (7.32)
+3 B3“(0)] cos® 0} I3 g2,
Ze(0) =515 {15 B2*(0) +[14 B2<(0)
+9 B3“(0)] cos® 8} 1Z g&

Since g’ =¢{?=¢@=¢?, I, =I,;,=I-=1I, we have, with regard to
(7.31) and (7.32),

1

= 24® (3 + I+ I30),

(7.33)
(0) 2 (2){IHV+ HH(0)+I (0)}

where g =2 for chaotic light and g® =1 for coherent light.

By (7.32) and (7.33) we obtain the following relations for perpendicular

observation:
I32,(90° 1+ D% °
D2(90°) = iHU( ) =2D%" "00%)

- Cad R (7.34)
122, 1+3D%
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This proves that, in second-harmonic scattering, the relation between
D?°(90°) and D3 involves, additionally, DZ*(90°) as determined by eq.
(7.20) for 6 =90°.

Obviously, on the light model (c), and with regard to (7.16) and (5.20),
the relation (7.28) as well as (7.29) are fulfilled, with (cf. ANDREWS and
THIRUNAMACHANDRAN [1977b)):

14 B3*(0)+ 39 B3“(0)

D(90°) = :
FO0) =54 Br(0)+ 54 B(0)

(7.35)

A similar analysis can be performed for the reciprocity relations of the
third-harmonic scattering effects, discussed in § 7.5.

For a complete polarizational analysis, it is very important to know the
symmetry properties and selection rules for nonlinear responses of matter
to circularly or elliptically polarized light, as determined by TANG and
RABIN [1971], and Ozco and KigLICH [1976], on the basis of group theory
and irreducible spherical tensors.

§ 8. Concluding Remarks, and Outlook

As we have seen, the investigation of spontaneous multi-photon incoh-
erent scattering processes provides direct information concerning the
nonlinear polarizabilities of atoms and molecules. This data can be
compared with that derived from studies of optically induced bire-
fringence (KieLic [1958, 1972a, b] and HELLWARTH [1977]), DC second-
harmonic generation of laser beams (LEVINE [1977] and KiELich [1979]),
third-harmonic generation (Warp and New [1969]), and n-harmonic
generation by free molecules (ANDREWs [1980]), as well as theoretical
calculations (LEULIETTE-DEVIN and Locoueneux [1975], HaMEkA [1977]
and SUNDBERG [1977]). Particularly valuable are studies of three-photon
scattering effects, which are highly sensitive to the ground state symmetry
of the molecules.

Coherent multi-photon scattering by stochastic inhomogeneous media
are a source of information concerning the many-body correlation func-
tion. Of special importance are cooperative scattering effects, caused by
fluctuations of the molecular fields, as a source of data for the electric
multipoles and polarizabilities of molecules with various point group
symmetries for which the components are known in spherical representa-
tion (Gray and Lo [1976]). This type of cooperative scattering constitutes
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a fine example of a self-organizing process (HAKEN [1978]). In the
description of cooperative scattering, it appears that the consequences of
the Ewald-Oseen “‘extinction theorem” have to be taken into account
explicitly. This by now classical problem (see BOrN and WoLF [1968]) has
been considered in a new light by PATtaANAYAK and WoLF [1972] as well
as DE GoepE and Mazur [1972] and, more recently, by many others
(SEIN [1975], Patrranavak [1975] and VaN KRrRanNenDONK and SIPE
[1977D.

Statistical-fluctuation processes exert a strong influence on spontaneous
multi-photon scattering. In fact, molecular field fluctuations are some-
times its sole origin, for example, in the case of cooperative three-photon
scattering effects. Under extremal conditions, nonlinear light scattering is
a particularly potent method of investigation, as when occurring in optical
inhomogeneities near a critical point, in phase transitions, and in the
domain structure of a ferroelectric, as well as in defects of crystal
structure.

The truly unlimited possibilities provided by laser techniques will permit
a fuller investigation of multi-photon elastic, as well as inelastic, scatter-
ing processes as sources of data concerning translational and rotational
stochastic molecular motion. In addition to the first-order correlation
tensor of scattering electric fields discussed in this article, one can analyze
second-order correlation tensors of multi-photon scattering (KIELICH,
Kozierowskr and Tana$ [1975]) which provide finer information on the
stochastic motions of molecules. Three- and more-photon incoherent
spontaneous Raman scattering effects provide new information on the
structure of rotational, vibrational and rotational-vibrational spectra,
since the latter obey selection rules other than those of usual Raman and
absorption in the infrared. Much is to be expected from the coherent
hyper-Raman scattering processes recently analyzed by BoNNEVILLE and
CHEMLA [1978], Biarnason, Hupson and ANDERSEN [1979], and Brarna-
soN, ANDERSEN and Hubpson [1980].

To keep within the space allotted to the present review, we refrain
from discussing the theory of multi-photon scattering by molecular cryst-
als and, in general, solids. The subject has to be dealt with by the
methods of crystal lattice dynamics discussed in the comprehensive
monograph of BirMaN [1974], and applied to infrared absorption and
Raman scattering.

We have refrained from an analysis of non-degenerate multi-photon
scattering processes in which the scattering frequencies are given by sum
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frequencies (1.5) or difference frequencies (see KiELicH [1964b, 1965a,
1966b], PERINOVA, PERINA, SzZLacHETKA and KIELICH [1979], ANDREWS
[1979b], and Manakov and Ovsiannikov [1980]). Nor have we consi-
dered the hyper-parametric scatterings discussed in the monograph of
KrysHko [1980] (see also ScHUBERT and WILHELMI [1980]).

We hope to have given a detailed analysis of spontaneous hyper-
Raman scattering processes. However, the work on its stimulated elec-
tronic counterpart in metal vapors, initiated by BApALIAN, [RADIAN and
Movsesian [1968] and Yatsrv, Roknt and Barak [1968] and developed
in the past few years (VREHEN and HiksPoors [1977], CorTER, HANNA,
TurTLEBEE and YURATICH [1977], RErf and WALTHER [1978], HARTIG
[1978] and BERGER [1978]), should not be left unmentioned. This novel
type of scattering has already been applied for obtaining infrared and far
infrared radiation (KiM and Coreman [1980]), as well as in studies of
ultra-short laser pulse propagation in nonlinear media (HERMAN and
Tuompson [1981]). DNEPROVSKY, KARMENIAN and NURMINSKY [1972] and
PENZKOFER, LAUBEREAU and KAISER [1973] observed stimulated hyper-
Raman scattering in water. Perhaps, too, studies of higher-order Brillouin
scattering can achieve a similar status, as suggested by Baroccu1 [1971].

Since multi-photon scattering processes are of a stochastic nature
(GasrieL [1973] and SponN [1980]) their complete quantitative descrip-
tion has to include the statistics of matter as well as the statistics of the
radiation field in conjunction with a model of its state of polarization.
When treated on a quantum-theoretical basis, the statistical and polariza-
tional properties of the electromagnetic field should be described in terms
of the nth order correlation tensors introduced by GLAUBER [1963]. They
represent a generalization to quantal fields of the correlation tensors of
WoLF [1954] and MaNDEL and WoLF [1965] for classical fields. In the
quantal case, the polarization density matrix for n photons can be
extracted from the nth order correlation tensors and then put in a
relationship with the Stokes parameters (ATkiNs and WiLson [1972] and
TaNa$ [1979]).

Although this review does not deal with the results of quantum theories
of stimulated Raman scattering, we nonetheless have to mention the
fundamental papers of SHEN [1967], WaLLs [1973], McNEL and WALLS
[1974], SmaAaN [1975] and, more recently, GurTa and MOHANTY [1980].
Here, the difference between spontancous and stimulated coherent
Raman scattering should be kept in mind (see DEsipERIO and Hubson
[1979]). SimaaN [1978] and, independently, SzLacHETKA and KiELICH
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[1978] have drawn attention to the possibility of photon antibunching
occurring in hyper-Raman scattering. Effects of correlation and anticorre-
lation of incident and scattered photons in the presence of phonon
fluctuations have been analyzed closely by PERINOVA, PERINA, SZLACHETKA
and KieLicH [1979] and SziLacHETKA, KIELICH, PERINA and PERINOVA
[1979, 1980], for various initial statistical properties of laser and Stokes
or anti-Stokes modes, e.g. coherent, chaotic or in vacuum state.

The dynamics of photon antibunching, in processes of multi-photon
scattering as well as in processes of nonlinear light propagation, are
largely dependent on the photon polarization state (not only on the field
statistics) (ATkiNs and WiLsoN [1972], TanaS and KIELICH [1979], and
Rrrze [1980]). Under certain conditions, antibunching of laser photons in
spontaneous hyper-Raman scattering processes occurs in a similar way to
their antibunching in harmonic generation processes (WALLS and TINDLE
[1971], Kozierowskl and Tana$ [1977], MosTOwsKi and RZAZEWSKI
[1978], KieLicH, Kozierowskl and TANAS [1978], DrumMMOND, MCNEIL,
and WaLLs [1979], SziacHETKA, KIELICH, PERINA and PERINOVA [1980],
and PEeRiNna [1980)).

Although the spontaneously scattered multi-photon intensities are,
under normal conditions, weaker than those scattered at stimulation, the
labor spent on their observation is nonetheless highly rewarding, due to
the importance of the information gained. This is so because the essence
of spontaneous light scattering resides in the very foundations of stochas-
tic physics as well as quantum mechanics and electrodynamics (see, for
example, KLAUDER and SUDARSHAN [1968], RISKEN [1970], MeniTaA [1970],
SEnrTzKY [1978], MANDEL [1976] and Sponn [1980]). Accordingly, the
spontaneous effects discussed provide a test of the correctness of those
foundations, e.g. of the purely quantal structure of light apparent in the
phenomenon of photon anticorrelation (antibunching) (WaLLs [1979] and
Loupon [1980]).
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Appendix A. Irreducible Cartesian Tensors

A Cartesian tensor T™ of the nth rank has 3" components Ti, .-
Since a tensor has to be independent of the coordinate system XYZ, its
components have to obey the following transformation law when we go
over from one coordinate system to another (rotated) system:

T, .=R ‘R Ta,

iqeeiiy ijoy in0t, ot

(A1)

The transformation (rotation) coefficients R, are functions of the mutual
orientation of the two systems of reference.

An important operation on tensors consists in expressing the compon-
ents of an nth rank Cartesian tensor in weight-J irreducible representa-
tion in terms of their 2J + 1 independent components (CooPE, SNIDER and
McCourrt [1965], Coore and SNIDER [1970], and JERPHAGNON, CHEMLA
and BonNEVILLE [1978)).

Thus, we have the representation of a second-rank tensor in the form
of the sum of three irreducible components:

T, =TO+TO+TQ, (A.2)

where

T(O) = 3Tkk (Aza)

is an isotropic tensor of the second rank (trace of the tensor) obtained by
unweighted averaging of (A.2) over all directions in space. The antisym-
metric part of the tensor is

TP =XT; - T;) (A.2b)
and its anisotropic part (or deviator) is

(2) = 2(T + T ) 3Tkk (AZC)

l]

A tensor of the third rank has 3*=27 1ndependent components and can
be represented as the sum of one pseudo-scalar (J =0), three vectors
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(J=1), two pseudo-deviators (J =2), and one septor (J=3) (see, for
example, JERPHAGNON, CHEMLA and BONNEVILLE [1978]). In particular, a
completely symmetric tensor of the third rank has ten independent
components and is the sum of one vector (3) and one septor (7):

Tl]k - Tfjlk) + Tf]?,k)a (A3)

where
f;lk) = (3 T + Sjk Ty + 8 Tju)a (A.3a)
T = Ty — Tiik- (A.3b)

A tensor Ty, which in general has 3* =81 independent components, has
only fifteen in the completely symmetric case, and is the sum of one scalar
(J=0,2J+1=1), one deviator (J=2,2J+1=5), and one nonor (J=
4,27+ 1=9) (JerPHAGNON, CHEMLA and BONNEVILLE [1978]):

Ty = T+ T+ T (A.4)
where
Tf](;c)l = %Tmmnn O-i]'kla (A4a)
<;]2k)l 7(611 Tklmm + 81k Tlmm + 811 Tkmm

+ 8jk Tilmm + 8jl Tikmm + 8kl Ti]'mm - %Tmmnn O-ijkl): (A4b)
Tgfk)l = Tija — Tszk)l T?ﬁ?z, (A.do)

with the notation
ukl 81] akl + 81k 5]1 + 61! 8]k (AS)

More complete information concerning irreducible Cartesian tensors
and the transition leading from Cartesian to spherical tensors is to be
found in the original papers (see, for example, CoopPE [1970], STONE
[1975], Ozco and KieLIcH [1974, 1976], Ozco [1975b], and JERPHAGNON,
CHEMLA and BoNNEVILLE [1978]).

Appendix B. Isotropic Averaging of Cartesian Tensors

If the systems of coordinates in which the tensors T ; and T, , are
expressed are both orthogonal, the rotation transformation coefficients
R, are directional cosines, i.e. cosines of the angles between the axes i

™

and o« of the two systems of coordinates. Thus, isotropic averaging of
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Cartesian tensors reduces to the averaging of products of the directional
cosines, and we have, with regard to (A.1),

<Ti1...l> <R11a1 e Ri,,a,_)ﬂ Toq...a"’ (Bl)

where the symbol ( ), stands for unweighted averaging over all orienta-

tions:
1

<Ri|¢x, T Ri"a,‘)ﬂ ==

R, " R;, dQ B.2
.Q J’ Pyoy in0t, ( )

If n=<4, the averaging procedure is trivial, but becomes complicated
starting from n =35 (KieELIcH [1968d] and HeaLy [1975]) and has been
carried out generally for n =6 (KieLicH [1961] and McCLAIN [1972]) and
n =7 (ANDREWS and THIRUNAMACHANDRAN [1977a]). The results are of a
high degree of complexity, and shall not be given here.

The procedure of eq. (B.1) is also applicable when it comes to the
isotropic averaging of a product of tensors. For example, the following
result is obtained for the isotropic average of the product of two second-
rank tensors:

(AjAuda =3A% 8; 81 +AT (8uc 83 — 8y 8
+36A3(38y 8 +38; 8 — 28, 8ur), (B.3)
where we have the following irreducible components:
= AN AD=3A.. Age,
A2 AR AL =1(As — Ap) (Ass — Aga), (B.4)
A= AD AR = 1A+ Agy) (Aug + Apa) — 3Aua Agg.

The isotropic average of the product of two symmetric third-rank
tensors is

<Bijk Blmn >ﬂ 45B 1 O-Ejlk)lmn + 210B3 qulmm (BS)

where we have introduced the isotropic tensors:

(§Y]
Ul}klmn 81] O kimn + 81k lmn + ajk Titmns

U&?k)lmn 5[811 (8]m 6kn + 8]n Skm) + 81m (8kl 8m + akn 811) (B6)
+ Sin ( fm Bkl + Skm ] 20-

ijkimn-

The irreducible components have the form

2 _ p() [¢))] 3
B - BaB'v Ban BaBB Ba\w’

B3 =B, Bisy =3(5 Bugy Bagy—3 Bugp Bayy)-

afy OLB‘Y

(B.7)
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Similarly, we find the isotropic average of a product of two symmetric
tensors of the fourth rank:

2)
<Cijkl Cmm)p> 45C0 O.uklmnop_'_ 1260 C2 Uz]klmnop+7560 C4 0-uklmnow (BS)
where we have introduced the isotropic tensors

0 —
0-ijklmm)p - (Tijkl o-mnop’

) —
Giiklmnop - 3 (Si]’ T kimnop + 6ik O-]'lmnop + Sil Ujkmmp

(0)

+ 8jk 0-ilmnop_*— 8]1 0-tkmnop+ Skl Uumnop) 140—1]klmn0p,

“@ _ (B.9)
T iiklmnop — 35 (6i1‘  iimnop Ot Tjtmnop T 8it T jkmnop

+ 8im T jkinop + Oin T ikimop T Bio Tiktmnp 8ip T ikimno)

~15 0 Rimnop— 147 T Rimnop:
with

T itctmn = O Trctmn + 8ikc Titmn + 81 T jremn + Bim Titin + 8in T jctims

and irreducible components
C(z) = ngys Cfxoé'yS SCaaBB Cwa&
Ci= Cfgya Cfx2l;'yS (3 Cagyy Capss ™ Caape C\yy8)s (B.10)
C% - Cg‘l;vﬁ Cfx4l?)v'~/8 35(35 CuB‘vS Cva8~ 30 Caﬂvv Ca688+ 3 CauBB CV'VSS)'

Isotropic averaging (B.2) becomes highly complicated for n= 8. How-
ever, the general solution can be derived for the following isotropic
average (KiELICH and KOZIEROWSKI [1972)):

(Row Rig o, " " " €085, " " " g, Y0 = Oor PapaiBr - and, T €o € Qapa By - anBu>

(B.11)
where we have introduced the unit tensor operators:
Do, o, = [ 2(21+ 3)! (204 3) 8ug Ta g, a8~ TaBarBs--anbrls
(B.12)
Qugeporag, = [221 N [30 agarprap, — (21F3) Bap Tarpyas]

e being a real unit vector.
We have made use of (B.11) when going over from the scattering
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tensor (3.12) to (3.13). Thus, performing on (3.12) the tensorial transfor-
mation (A.1) and then putting E = E¥e, , we have

- * *
<a o a:::---TnEol e Eo'" E‘r] T E’r,‘>ﬂ,E

[e 0o SERRY N
= a;c,:(;)---an agg,~-~Bh<Ro'a R'TBeOL| T eaneBI T eB">.Q <|E‘2">E (B13)

and with regard to (B.11) we arrive at (3.13), on having introduced the
tensors

foporgy-agn =[2" (]! Dogarp,- s

(B.14)
guBaIBI---u“B“ = [2'1_1("!)2]71 ana,B,“'a"B"’

into the molecular parameters (3.14).
From (B.11) we easily find the useful expression

(€a "o g €3 o =[Cn+ DT 0up,. ap. (B.15)
with the isotropic tensor

ToiBy B 60‘131 Uasz"'aan+ 80‘132 TayBy B
RE 8‘113n a-a232"'0‘n3n—|+. o (Bl6)

and 2n+1!"=1-3-5---2n+1).
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