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In Lehmberg’s approach, we consider the resonance fluorescence spectrum of two radiatively interacting atoms. In the
strong field limit we have obtained analytical solutions for the spectrum of the symmetric and antisymmetric modes with-
out decoupling approximation. Our solutions are valid for all values of the distance ry, separating the atoms. The spectrum
of the symmetric modes contains additional sidebands in 2Q (Q is the Rabi frequency) with amplitude dependent on
(a/Q)?, where a is a parameter dependent on rq,. The antisymmetric part of the spectrum has no additional sidebands in
2. For small distances r15 (¢ = 1) our results for the symmetric modes are identical with those of Agarwal et al. apart
from the so-called scaling factor. For large distances 71, (¢ = 0) the spectra of the symmetric and antisymmetric modes
are identical with the well-known one-atom spectrum.

1. Introduction

Recently, Carmichael [1] and Agarwal et al. [2] have confirmed an earlier suggestion of Senitzky [3] that
the resonance fluorescence spectrum of a cooperative system of atoms should exhibit additional sidebands at
w — wq = £2Q, where Q is the Rabi frequency. As it has been shown [1,2], these additional peaks should be
distinguishable in experiment at extremely large €2, while at moderately large £ a cooperative system of two at-
oms has the three-peak structure of the resonance fluorescence spectrum well known from the one-atom theory
[4—7] . The numerical calculations of Carmichael [1] and Agarwal et al. [2] are based on the solution of the
master equation describing the evolution of a cooperative system under the influence of the laser field in terms
of the collective variables. Agarwal et al. [2] have also obtained an exact analytical expression for the two atom
resonance fluorescence spectrum with a polynomial of the fifth order in the denominator. From this expression,
an approximate resonant structure has been extracted proving the existence of additional sidebands as well as
some nonresonant terms. In the master equation approach used in refs. {1] and [2], a strong cooperativity of
the system is assumed and no possibility exists to discuss a dependence of the spectrum on the distance between
the atoms. Mavroyannis, using the Green function approach, has calculated approximately two-atom resonance
fluorescence spectra without [8] and with [9] additional sidebands, depending on the approximations used. Her
results include a dipole—dipole type of interaction between the atoms. The role of the dipole—dipole interaction
in the resonance fluorescence spectrum has also been discussed by Freedhoff [10] in the dressed-atom descrip-
tion. Steudel and Richter [11] have discussed the radiation properties of an incoherently pumped two-atom sys-
tem within the framework of Lehmberg’s [12] master equation. Their discussion includes the dependence of
the radiation properties of such a system on the interatomic distance. The master equation approach has been
also extensively discussed by Agarwal [13].

In this paper, we derive the resonance fluorescence spectrum of a two-atom system coherently driven by a res-
onant laser field, for different interatomic distances. To this aim, we have adapted Lehmberg’s [12] approach
to the case of coherent pumping, and have obtained a closed system of 15 equations for atomic correlation func-
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tions which has been solved by means of the Laplace transform method. According to these solutions as well as
the quantum-regression theorem we have calculated the resonance fluorescence spectrum of the system depen-
dent on the interatomic distance. Unfortunately, this expression involves a sixth-order polynomial in the denomi-
nator, the roots of which cannot be found strictly. In the strong field limit, however, the approximate roots of
this polynomial can be found and we give an approximate analytical formula revealing the resonant structure of
the spectrum.

2. Time-evolution of atomic variables

Within the framework of our model we consider two identical twelevel atoms, distant by ry,, in the field of
a strong resonance laser beam. We assume electric dipole transitions between the levels of either atom. For sim-
plicity, the laser frequency w is assumed as exactly equal to the atomic transition frequency wy, i.e. detuning is
zero. The strong pumping laser beam is moreover assumed to be in the coherent state |a). On these assumptions,
application of Lehmberg’s [12] master equation approach leads to the following equations of motion describing
the time evolution of the pseudo-spin operators of an individual atom (we have ignored here level shifts as well
as dipole—dipole interaction):

Y= —178] —iQST +7,878], S =4S +iQ5T +v,,5%8;
§ ==(ST+1) + 31T~ 57) — §7;,(57S; +8757), M

where SJIr and S = [S;]T are operators raising and lowering the energy of atom 1 and Sf describes its energy.
The equations for the operators of the other atom are of the same form as (l’), albeit with the interchange
1 <= 2 of the indices. The operators fulfil the well known commutation relations:
573871 =287, [S7:S71=x87,  i=1,2, (2)

and the operators of the two atoms are here assumed to commute. In (1) , ¥ is the Einstein coefficient 4, where-
as 71, which is dependent on r,,, describes the radiative interaction between the atoms and has the form [12]:

sink y;
=3 v V2 0%12 e )2
712 ‘57{[1 = (n°yy) } ko¥is 1 =3y ][

cos ko'ﬂz sin ko‘rlz] )
(ko'ﬁz)2 (ko"'iz)3

where &k = wq/c.

If the atoms are far remote y;5 — 0, whereas if they are close to each other Y12 = 7. If 715 =7 the equations
(1) are equivalent to the master equation used by Carmichael [1] and Agarwal et al. [2]. §2 is the Rabi frequen-
cy describing interaction of an individual atom with the laser beam.

The atomic operators of eq. (1) are slowly varying parts of the full operators:

ST =S1(0) e, Fr(r)=S7(H) e, §7(r)=57(r), (4)
Defining collective operators
$*=87+S85 and ST =S7+52, (5)
one can transform equations (1) to the form:
$" =30y, — ST HIQST 4y, STS%, ST =4y, ST~ 108 +y,8°5 7,
SZ=(712—7)(SZ+1)+§iQ(S+—S“)—7le+S". (6)
Fory , =7, these equations simplify considerably and become equivalent [14] to the master equation used in
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[1] and [2] to describe the time evolution of the density matrix of such a cooperative system. Both systems of
equations (1) and (6) lead to a finite hierarchy of equations for the correlation functions of the system which can
be solved by means of the Laplace transform method. In the case of two atoms we have a system of 15 equations.
In our calculations we have solved the system generated by equations (1) for individual atoms rather than for col-
lective variables (5). The system under consideration can be transformed into the following independent subsys-
tems: three of dimension 3 and one of dimension 6:

dU/dr = AU, dV/dr =BV, dw/dr = CW, dX/dr =DX +a, (D
with
l(1-a) 48 o« “l(1-a) a 0 1
A=1-8 -1 0 , B=| 0 —5(3—a) 26,
L0 ~28 —3(3-a)] LB 26 -1
l(lta) 0 1
cC=| 0 ~1(3+a) 28 1 , (7a)
B % -1
r 1 “
l(1ta) 48 O 0
-8 S - 0
- —1 2 4
b —a 8 a
B 0 0 -1 28 0
28 28 28 —L(3+a) 88
L 0 0 0 -8 -2 |
and
- - + - + — octo— +o—
o, = —4B5 ;. U =S +8 -85 -85, Uy=SS] —5357,

ot o—o— , otota— Fa—a— + ot o—
Uy =5181 8, +8185,8) = 5,581 =515,5,,

_o— + -, ot ot o— o— + ot o— + o— o + ot o— _ ot o— + o—
Vi=S{ =8-S, t58;, Vy=S818) — 818,81 —5,5,87 +5,8,8;, V355,51 =515,
o oo + ot o— o totom 4 cta—a—  otota— omo—  otot
Wy =81 =81+8; -5, Wy =S1818y — 818587 +8,8, 8] =815585,  W3=58.5;, =515,
— ot + - - _oto— +o— _ oto— + o—
X =St +S5HSTHSy, X, =SIST 4SSy, X, =STS; +SiST,

. otot — _ otoe— - + ot o — + - + ot - _ctoto—o—
X, =818, 1818y, X5 =8875; 85,57 +5,5,5] +875,85,  Xg=815,55;.
We have introduced the notation

T=vt,  B=Q2y,  a=vyp/r. (8)

From {7} it is evident that U and V' represent antisymmetric combinations of atomic operators while Wand X
are symmetric combinations. Non-zero steady-state solutions arise from the X quantities only. It is worth noting
here that the steady-state solutions as calculated from (6) lead to expectation values of the atomic operators other
than in the case @ = 1, considered by Agarwal et al. [2]. This fact is connected with the $2 conservation breaking
in our case. The determinant of the D matrix becomes zero as a = 1. This means a reduction of the dimension of
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the system from 6 to 5 because of the linear dependence of the variables due to §2-conservation. The reduced
system is identical with that considered by Agarwal et al. [2]. Also the so-called scaling factor discussed previous-
ly [15] appears in the system with §2 conserved and does not appear in the steady-state solutions of (6), which
have the form (a # 1):

_ 3283 +48(a+1) _328% + 442 462 _4B%(a+1)
Xy = =S ) = 2 K= X =
__leg _8p*
(Xgh === (X =%, 9)

where
M=326%+8p% + 1(1 +a)?.
Because the suqgare of the total spin of the system can be expressed by the X operators as follows:
§7 =2 X, + X, 42X,
its steady-state expectation value, according to (9), is
(1) =2 - 16%/M. (9a)

The system reaches this steady-state value even for very small deviations of the parameter @ from unity i.e. in the
majority of real situations.

3. Resonance fluorescence spectrum
Using the Laplace transform method to solve the equations (6) and applying the quantum-regression theorem,

we calculated the resonance fluorescence spectrum of the system under discussion which is the transform of a
suitable combination of atomic correlation functions [12] :

P 2
Pe(@)=wp [ dre™ lim 21 exp (ikR"r ) (ST S; (¢ + 1), (10)
0 t—oo o,B=

where
Wg = (3v/8m) sin2®,

with © the angle between the observation direction unit vector R and the atomic transition dipole moment u, k
= w/c, and r{, the vector connecting the two atoms.
The resonance fluorescence spectrum can easily be obtained from (10) by having recourse to the definition:

W9y
Pp(w) =Re Py (1 ), (11)
where wy, is the atomic transition frequency.
The result of our calculations for (10) is:
Pp(z)= %WR [(1 —coskRer ;)P _(z) + (1 +coskR-r ,)P,(2)], (12)
with
b e =,(z+1) (22+3—a)(X2—X3—X4)S -~ 2[3(22+3—2a)()(5)S - 4tz(z+1)(X6)S

(z+1) (2z+1—a) (2z+3—a) + 88%(22+3—2a)
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. [(z+1) (22+3—a) + 862 ] (X, X, +X,) +2aB(X ), — da(z+1) (X ),

, (13)
(z+1) (2z+1—a) (2z+3—a) + 862 (2z+1)
p o)~ [(z+1) (2243+a) + 867 [ Xy + X, X)) — 2aB(X,)_+ da(z+1)(X,) L NG) (14
* (z4+1) Qz+14a) (22+43+a) + 862(2z+1) Mz)”
where

N(z) = (z+1-a) {[46%(z+1)% — 2aB?(2+2) + L(z+2) (z+1+a)[(z+1) (22+3+a) + 168%] ]
X (X + X+ X)) — (28/z)CX )] + %B<X5>S [(z+1) (z42) (2z+3+a) — a(z+1—a) (z+2) + 1662(2z+3—a)]
+a[(z42) (z+1+a) — 16821 [(z+1)( X — KX ) 1} +8ap’z[(z+1)( X ) — KX ], (15)
M(z) = (z+1) (z42) (z+1-a) (z+1+2) [2% + (2+a)z + }(1+a) (3+a)]
+ 2% (z+1—a) [2(z+] +a) (22+1+a) (2243 —a) + 24%(22+1+a)
— a(z+2)(5z+2a+4) + (z+1) (z+2) (2z+3+a)] + 3264 [222 +(5-2a)z + (1—a)(3+a)]. (16)

In (15), the quantities (X, {X3);, ... are given by (9).

P_(2) represents the antisymmetric part of the spectrum, and P, (z) the symmetric part. The antisymmetric
part of the spectrum does not appear in the case of strong cooperativity when the atoms are very close together
but the symmetric part has its maximum. If we put 2 = 1 in (14) and replace the steady-state solutions (9) by the
appropriate steady-state solutions for a strongly cooperative system, our spectrum goes over into the spectrum
of Agarwal et al. [2].

In the strong field limit 8> 1 the approximate roots of the denominators in (13) and (14) can be found and
the analytical formula describing the resonance structure of the spectrum can be obtained. Our calculations, up
to terms of the order 1/62 give the following formulas for the anti-symmetric and symmetric parts of the spec-
trum (incoherent part):

— 2
= Rer- (i - 7%): " {(1 -%—62;2—2) V21+1 ' (l "fé%)[@ - 2§)2 +2 v —ﬁ]
4 16

5 (=28 @ 16 —a)
+l—-—-~ +B—>—ﬁ:|+-—[ 272 e_:'} a7
L 88 _2p2+2 16 Lo —agesg—a? 0 FIf

w-w 2+20-2\ 1 2 —a+1\[ - 2
P (w)=ReP (1———-Q)=n{(l—a * +(1— )[ 4 +ﬁ—>—ﬁ]
+ oy 1682 )V2+§ 86? v—28°+%

5 (v-2p) :| a* [ ;G +a) ]
+]_ _ L +(3-> -+ — +B_)_B
[ 8 (v _ 282 + & i AP (v =28 +4G +0)’

2 3 2 2 1 _ 2 o, 1 (m
+a_[ G +a) +B+-B]+ a [6a —Sa—} +(7-6a)A  6a”—5a—§ — (7 6a)AJ}
168% L(v — 46) + (2 +a)? 3282aL v+ L(5-2a+40)?  v?+ L(5—2a-40)°
(18)
where, for simplicity, we have used the notation:
n=31-1/4%, v=(w-w)y, A=}12a>—da+ 112 (19)
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4. Discussion and conclusions

The formulas (17) and (18) together with (12) give the resonant structure as well as the dependence on inter-
atomic distance of the resonance fluorescence spectrum of two atoms coherently driven by a strong resonant la-
ser field. Because @ = v1,(r15)/y and the dpendence of v;,(r5) on r, can be given explicitly [12], our formulas
describe the complete dependence of the spectrum on the interatomic distance 1 as well as the angular depen-
dence for both symmetric and antisymmetric modes. These formulas hold for the whole range of F{y.1f the at-
oms are far apart, 2 > 0 and our spectrum reproduces the well known three-peak spectrum of one atom [4—7]
except for a factor 2 standing for two atoms. In the case of very short interatomic distances, ¢ ~ 1 and the spec-
trum goes over into the one obtained by Agarwal et al. [2], apart from the factor # which has to be replaced by

i1-1 /382) in connection with the so-called scaling factor [15]. As already mentioned above, this scaling fac-
tor appears only in the strictly cooperative case when ¢ = 1 and even small deviations of @ from unity lead to our
factor n. This fact is due to §% conservation breaking and possible transitions between triplet and singlet states.
Only the symmetric part of the spectrum has the additional sideband displaced from the central peak at double
Rabi frequency the amplitude of which is proportional to (a/8)? and tends to zero as the interatomic distance
increases. This result is in agreement with Mavroyannis [9] . Both the antisymmetric and symmetric parts have
nonresonant terms which are independent of # and exist even in the one-atom case. There are also additional con-
tributions to the central line. Also, the widths of some lines depend on the degree of cooperativity @ and change
considerably with the change in @, as it is evident from (17) and (18).

For weak laser fields formulas (17) and (18) fail to hold, in contrast to the formulas (13) and (14) which are
valid for any strength of the field and with the use of which the spectrum can easily be plotted with the help of
a computer. Although the solutions (13)—(16) are rather complicated, they present the advantage of being exact
solutions, obtained without any decorrelation of the correlation functions in question.
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