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Statistical fluctuations of multipolar electric molecular fields, leading to variations of isotropic and anisotropic light
scattering, are moreover shown to give rise to a temperature-dependent nonlinear refractive index of dense fluids. Some
selected models of dipolar and quadrupolar molecules, linearly and nonlinearly polarizable and correlated in binary as well
as ternary assemblages, are discussed. The formulae derived for the isotropic and anisotropic scattering constants are applic-
able to one- and many-component fluids, consisting of atoms and polar molecules, and provide the basis for a deeper inter-
pretation of the latest experimental results.

1. Introduction

According to Yvon [1], statistical translational fluctuations of the dipolar type cause the effective polarizability
of an atom in a fluid to be a function of the density as the result of two- and three-body correlations. These varia-
tions in the polarizability of atoms are of the nature of an induced optical anisotropy, leading to depolarization of
the light scattered by dense atomic fluids. When Yvon’s theory is extended to molecules having intrinsic aniso-
tropy, translational-orientational as well as orientational fluctuations have to be taken into consideration consider-
ably affecting the depolarization of scattered light [2,3]. In recent years numerous authors have discussed anew
the applicability of the dipolar approximation of the electric molecular field and its utility for the interpretation of
the newest experimental observations of scattered light [4,5]. In the case of polar molecules, agreement between
the theory and experiment can be enhanced by taking into consideration angular dispersional, electrostatic and
inductional interactions in the approximation of binary and ternary correlations [2,3,6]. In atomic gases, as proved
by the latest studies [7], it suffices to consider induced anisotropy in the dipole-induced dipole (DID) approxima-
tion.

Obviously, beside DID, when studying molecular fluids one has generally to take into consideration the quadru-
polar (QIQ) and higher approximations of the molecular electric field giving rise to an additional induced aniso-
tropy of multipolar polarizabilities apparent e.g. as density-dependent molecular refraction or distortional polari-
zation [8—10]. Here, we restrict our considerations to changes in molecular polarizabilities due to long-range elec-
tric multipole fields [8], to the exclusion of effects of short-range interactions.

The above discussed fluctuational-statistic processes are apparent moreover as nonlinear changes of refractive
index induced in liquids by strong laser light [11—13]. The fact is of great importance for the experimental and
theoretical aspects of the two effects in which the stochastic-fluctuational processes taking place in molecular
fluids are apparent. We believe that now is the moment to formulate a uniform description of both effects suffi-
ciently general to comprise the various parameters characterizing the electrical properties (intrinsic multipole
moments) and optical properties (linear and nonlinear multipolar polarizabilities) of the individual molecules, as
well as the parameters characterizing the microstructure of fluids with many-body interactions.
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2. The intensity of fluctuationally scattered light

We consider only the integral light scattering due to fluctuations of the electric dipole moment
AM(?) = ATIL(w) - Ey(2) (1)

induced by the electric field Ey(2) = Ey(w) exp(—iwt) of a light wave outside the scattering sample, of volume V.
By definition, the fluctuations of the second-rank tensor of linear electric polarizability are given as

AT (w) =T (w) — (W)}, ()]
where ( ) denotes appropriate statistical averaging at zero external fields.
On defining the intensity tensor of light scattered on the fluctuations (1) as
I, = 5(w/c)HAM(t) AM(D)*) 3)
and neglecting, for simplicity, effects of phase interference and scattering of the antisymmetric type [14], we ob-
tain

I, = 3 (ol LU {SRE@) EG) + Sy [BUIE@) 1 + BE@)*E() — 2E() E(1)*]} @
where U is the second-rank unit tensor.
In eq. (4) there appear quantities responsible for the fluctuational-molecular mechanisms of scattering, iso-

tropic as well as anisotropic:

S = 5([AIKw): U] [AII(w)" : U]), ®)
. = 35¢3AIM W) : AT w)* — [All(w): U] [AIT(w)": U]) . (6)

In our semi-macroscopical model, the parameter LS is a result of the difference between the Maxwell electric
field E(¢), existing within the scattering sample of electric permittivity €, and the field E;(¢) existing in the sur-
rounding medium, of permittivity ;. In particular, for a spherical sample and for scattered light observed outside
the sample, one has: ,

LYs = (ewS + 260)2(€w + 260)2/8168 : (42)

where €,  and €, are the electric permittivities at the scattered light frequency wg and incident frequency w, re-
spectively; usually, €., = €. Quite generally, the form of LS is dependent on the shape of the sample [9] and
the conditions in which the scattered light is observed.

Similarly, scattered light intensities of the magnetic dipole, electric quadrupole, and higher multipole types can
be calculated [15].

3. Nonlinear refractive index
When the intense electric field of laser light is incident on the isotropic medium, the electric permittivity under-
goes a tensorial variation, given as:
Ag(w)  E(t) = 4nAP(r) . 0

The nonlinear change in electric dipole polarization P(z) is caused by a variety of mechanisms [16]; here, we shall
consider only the changes due to statistical fluctuations of the dipole moment (1):

AP = (1/ VAT w))g * Ey(2) . ‘ @®)

Here the mean statistical value of fluctuations in the linear polarizability tensor (2) is calculated in the presence of
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the electric field £ by way of the perturbed distribution function
fNEy = f(rV){1+ (4kT) L AIT{w): Ey (1) Ey(1)*} ©
with: f(7/V) the grand canonical distribution function for the ensemble of N molecules having the configuration
™V atE=0,
By (8) and (9), we obtain finally

AP(@) = 57 (S BB + 554 [3EW"E@? + EQ)E@) ]}, (10)

4kTV
where the macroscopic parameter L* can have the form (4a) for e , =€, or some other form depending on the
conditions of observation and the properties of the sample [9].

Thus we have shown that, on the model assumed, both effects -- that of linear light scattering (4) and that of
temperature-dependent nonlinear polarization (10) — originate in the same stochastic fluctuation processes.

Egs. (10) and (7) permit the calculation of the electric dipole contribution to nonlinear refractive indices An
~ (Ae wAuw)l/ 2 for various states of polarization of the laser beam. The calculation of the magnetic contribution
proceeds similarly and can be easily extended to that of higher multipolar contributions, essential in the case of
optically active bodies and ones exhibiting spatial dispersion [9].

4. Variations in polarizability tensor due to multipolar molecular fields

Previously [15], we developed the quantum-mechanical theory of the linear and nonlinear multipolar polariza-
bilities of molecules in variable electromagnetic fields, where they possess the semi-classical perturbation hamil-
tonian

oo

(<] 1 n n
H1=—’§mM()[n]E6) (11)

(the symbol [n] denotes n-fold contraction of the product of the two tensors M) and E®) of rank #). In a linear
approximation, the 2m‘-pole electric moment induced in the isolated molecule at the space-time point (r, £) is [15]

M(m)(r 1) = E @ A () EQ(r, 1) | (12)

n_ 1)n

where the m+n-th rank tensor ™4 determines the linear polarizability of the 2" -pole of an ith molecule due to
the n-degree electric field E&")(r H=v" lEo(r t). The quantum-mechanical frequency-dependence of the tensor,
(M 4)(w), is given in ref. [9], where it is split into complex symmetric and antisymmetric parts.

Here, however, we are concerned with the changes in polarizability of an ensemble of N molecules caused by
the long-range fields F (”)(r,-, t) produced in the centre of an ith molecule by the polarized electric multipoles of
the N—1 surrounding molecules. We have in general [8,9]:

FO@,, 1) = QSEI (2(s 1)1),, OGO sIMI, . 1), (13)

where the Green tensor of rank (n +5) ,

W6® = vi-lvs-l(v vy — k20! explikr,,) (13a)
describes the (2"-pole) — (2%-pole) dynamic interactions between the molecules i and k, separated by a distance
rik .
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Hence, in eq. (12), the field E(g")(r, t) has to be replaced by the total field E(()”)(r, )+ F(”)(rl., t). This leads, for
the electric dipole moment induced in the sample by the homogeneous electric field of the light wave, to

M(1) =T(w) Ey(?) , (14)
where
M(w) =NOw) + MO (W) + TP W) + ... (15)

is the tensor of linear dipolar polarization of the medium in the presence of fluctuations of the multipolar electric
molecular fields.

In the zeroth approximation we assume no long-range electric molecular field to be present, so that the polariza-
bility tensor of the medium takes the form of the sum:

N
“,(O)("’) = @1 1) A}”(w) (16)

of polarizability tensors (I)Al(l)(w) of the individual molecules.
The successive terms of the expansion (15) determine variations of the first, second, ... order due to the action
of the multipolar molecular fields (13) in the medium:

l'l(l)(w) EE E e 1) DA () [m] MW [n] MaD(w) (17)

i=1 k#im,n

N N
+ 1) 4(m) (m(n) (n) 4(8) @)W1 W) 41)
D T 1 e AP ) PGP ] VAP 6 1] VAP .
(18)

where, for brevity, we have denoted the numerical coefficients of the expansion as ¢, , =1/Q2m —1)!!+++ 1/
(Qu - N,

The electric field of the molecules in cooperation with that of the light wave not only cause linear molecular
polarizabilities but moreover, in general, nonlinear multipolar polarizabilities [8,9]. On taking this circumstance
into account we obtain the following, additional variations of the first and second order, respectively:

D’Jz

H(Z)(w)

—

i=

) (w) = Z}%} z {( 1™ e, OB (o) [m] DT (] M (19)
N N N o0
MQ@ =2 2 2 D ey 1" QBN ) m] PTG DaP(eo)ls) O M

+HD OB (@) fm +r) (DT 1O W6 ] ©af(w)

+ GO [5] O 4D () DT [u] Mz(“)l} , (20)

where the (1 + m + n)-rank tensor (I)Bl(mm) defines the nonlinear dipole — 2™*"-pole polarizability of the mole-

cule, (m)T(") vitver z_kl is the tensor of electrostatic interactions between the multipolar molecules i and k,

whereas M Q¥ is the intrinsic 2”-pole electric moment of molecule .

5. Scattering constants for selected models

We exclude from our considerations the zeroth-order contributions SO0 ~ (IIOTIO) to the scattering constants;
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rather, we shall concentrate on the contributions of the types § 02) ~ (HOM@) and § O ~ (WMD) for several
selected models.

5.1. Linear dipole—dipole and dipole—quadrupole polarizabilities
Let us consider, in the expansion (17), the first terms containing the tensors of linear dipole—dipole, dipole—

quadrupole, and quadrupole—dipole polarizabilities (I)AIQ), (I)AI(Z) and (2)A§1), respectively. We obtain the follow-
ing contributions to (5) and (6) in the binary correlation approximation:

N N

5(11)_@<Z) Z)(AzG(33)+ %D;: DK(33)),—8>, @1)
=1 j#i

(11)-_&_ 2p(3,3) . 13 3,3)y,-8

sAD = & <§]§(AP< +38D;: DRI > (22)

with 4, = (I)A(l) U/3, the mean linear dipole—dipole polarlzablhty, and D, = (I)A(l) A, U, the deviation tensor
of lmear dlpole —dipole polarizability. The molecular parameters G( ’ ) R(3 34 are in general rather highly com-
phcated combinations of scalar products of the tensors (I)A(z) and (2)A(1) and are equal to the product (I)A 2
1@ 4D on restriction to the symmetric parts (I)A(z) (2)A W,
Beside the binary correlation contributions (21) and (22) the model under consideration leads, by egs. (5), (6)
and (17), to the following contributions related with ternary molecular correlations:

N N N
S(ll) - _ <E E Z} A G(3 3)A (l)T(Z) (2)T(1)> (23)
15 i=1 j#i k#j#i
N N N
S(ll) -4 _ <E E 2 A P(3 3)A (l)T(2) (2)T(l)> 24)
anis 9 i=1 j#i k#j#i /

which are independent of dipole polarizability anisotropy D;.
The model moreover leads to contributions, resulting from the second approximation (18), namely for binary
correlations

N N

50V =3 <Z) Z}Az((l)A(z) (2)A(1)),—8> , (25)
i=1 j#i
N N

50D = % <Z%]ZE{A D, ((1),4(2) (2)A(1))]+ S(Dj:D]_)W&(3,3)},i78>’ 26)

where the symmetric part W].(3’3) = (I)A]Q) : (Z)A;l).

5.2. Linear dipole—dipole and quadrupole—quadrupole polarizabilities

We now take the next term of (18) containing the linear quadrupole—quadrupole polarizability 4 IQ). For
binary correlations, we obtain:"

502 = <Z§ 23 4,42 +3D,: D)(U,3:P4P: v, oy > 27)
i=1 j+i
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anis

N N
S(02)~%<EE{(A2+3OD :D)D,: PAP:Uyy)

i=1 j#i
+2[D;:(D;* D)) + 24;(D, : D))(U, 5 (2)A](.2) : 024)}r,-.;8> , (28)
and for ternary correlations:
é\f; N N
502 = __< 2 L AU PuP U, 4 (1)T§2)3(2)T.(1>>, 29
i= l/#t ka&]#z ( / 24) k v ik ( )
N
SZ(I(I)I%S)_,,_ < E E {A (D (2)A(2) U2)+3(D D)(U (Z)A(Z) U )}A (1)T(2) (2)T(1)>
i=1j#1 k#j#i

(30)
5.3. Dipolar nonlinearly polarizable molecules

For molecules with an intrinsic dipole moment M,O) and polarizable nonlinearly, the first approximation of
(19) leads to previously calculated results [3]; however, the second approximation of (18) yields the following
contributions for binary correlations:

N N

50D =12 <Z) EA (4, + AUV M D)r > -
i=1j+
N N

Sanis = 75 <E 2 14,0, OBD 1) + 0, DU VB MO ) 32)
i=1j#i

The parameter v, B(z) M(l) intervenes in the theory of DC field-induced second-harmonic light generation
(17, 18; permitting the determlnatlon of the value of the nonlinear dipole—dipole polarizability tensor MHpa+)
= (I)B( ). The new contributions (31) and (32) first calculated here are of interest as containing the first power of
the tensor D B@ and not its square, as it is the case for the san appr0x1mat10n(cf [2,3]).

5.4. Quadrupolar nonlinearly polarizable molecules

For molecules having an intrinsic quadrupole moment M; @ and the nonlinear dipole—quadrupole polarizability
(I)BG) = (I)B(1 *+2) , egs. (5), (6) and (20) lead, in the binary correlatlon approximation, to:

N N
50D =3 <Z% 2 {A,(4,+A)WU:VBD : M1y > , (33)
i=1 j+

5(02)——<Z) E{A @, i VB : M) + 515 (D, : D)(3U, 5+ VB — U12:<”B]§3>):M}2)}r,;8>. (34)

anis i=1 j#i

These formulae provide an indirect method for the determination of the sign of the quadrupole moment M;z).
The first-order approximation of (19) leads, for binary correlations, to

N N

s = 3% <Z} 2 (U:DB®): (U: DB MD: D) + U VBR): MP)U: VB M(z))},—10>,
i=1j#i

(35)
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N N
sS4 - 8 <Z) 2 (3D O (1 V). U : OBOY (M 4

ants

i=1j#1
\
.M pB) LD pGh . 1D . (D pB3) LGy, Dy ,-10
w(BU,;:VBY U, BL).M&][(3U13. BY - U, : VBED): MP]}r; ) (36)
—

5.5. Dipolar—quadrupolar molecules

The preceding expressions were derived by averaging the many-body radial correlation distribution function.
Generally, averaging should be performed with the grand canonical statistical ensemble

F@™y =0y exp[—(UR + UNYATT] (37

where, in addition to the potential energy of radial interaction of the molecules Ug, we have the energy UE de-
pendent on the angular configurations of the N multipolar molecules. Usually, electrostatic multipole interactions,
defined as [8]:

U;I(TN)=~%Z} 27 2 ()" g M i) TG0 ] MO (38)

play the predominant role. Assuming here, as an example, dipole—quadrupole type interactions only, we obtain
with regard to (5), (6) and (17):

OD() = _ 2) (D 4Q) 4 @ My yy(D7,-8
s kT<lZ:,J§(A +A4)D;: M) [U: (VAD + Dp Dy ]rl.].>, (39)
ona) - _ M) 41). @ D 4@ 4 @ 4. gD
Sams kT<,21 ]é; {D ( 4; M( U= ( A * A ) M ]
+[D;: (Va4 + DAy MDD, : M)} rl./T8> . (40)

The contrlbutlons (39) and (40) attract our attention because they involve the first power of the tensors (I)A,Q)
and ¢ )A . Likewise, had we taken the first term of (19) and (38) for m = n = 1, we would have amved at the
prewously calculated [2] additional contribution, linearly dependent on (I)B 2) and proportional to r;; 6/kT, to
the constants (31) and (32).

6. Conclusions

The expressions (21)--(40) derived above for the constants of isotropic and anisotropic light scattering, though
rather complicated from the mathematical point of view, take a simple form when applied to molecules having
well defined properties of symmetry (a centre, or an axis) for which the intrinsic electric multipoles and multipole
polarizability tensor present one, or two independent components. Since the numerical values of these molecular
parameters are available [16,17,19], we obtain those of the varlous contrlbutlons to the scattering constants (5)
and (6) by calculating the radial binary and ternary averages <r ) and (r #). One is easily convinced that
these contributions are, in fact, highly essential — especially the cross- contrlbutlons of the type SO = §(10) and
802) = §(20) hitherto not considered in the literature. Certain of these contributions can be positive or negative,
depending on the electrical structure of the molecule and the model of the three-body molecular correlations. Ob-
viously, it was by no means our aim to calculate all the contributions to (5) and (6) derivable from the linear (17)
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and (18) and nonlinear ((19) and (20)) multipole polarizabilities but solely to point to the vast possibilities offered
by our theory in application to one-component — and, even more so — many-component fluids [3]. The tempera-
ture-dependent measurements of the nonlinear refractive index carried out by Lalanne et al. [12] and, lately, by
Ho and Alfano [13] prove that the contributions obtained when averaging in (5) and (6) with (37) and an appro-
priately chosen tensorial molecular interaction energy U},f (cf. [3,8,19]) are essential.

Our molecular-statistical theory of integral light scattering is well adapted for extension to spectral distributions,
as has been done by Knast [14] for the contribution $©:0) and, recently, by Bancewicz [21] for SO,
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