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Applying the theory of multiplicative stochastic processes, the effect of finite laser bandwidth on n-photon resonance
phenomena is discussed and shown to be stronger (~ n2) in the n-photon case than in the one-photon case.

1. Introduction

Resonance interaction of optical fields and atoms
leads to many interesting effects [1]. With regard to
resonance interaction one is justified in applying the
two-level approximation, which takes into account on-
ly two levels of the atom. The evolution of such a sys-
tem is well described by the optical equations of
Bloch. Agarwal [2] and, quite recently, Wodkiewicz
[31, applying the theory of multiplicative stochastic
processes, have shown how the stochastic nature of
the exciting field affects the resonance phenomena.
The stochastic approach enables to take into account
the finite linewidth of real lasers by considering the
phase of the laser field as a stochastic variable [4].
Usually, “resonance” is intended to mean one-photon
resonance, which implies matching of the photon and
atomic transition energies. In this paper, we propose
results concerning the influence of the finiteness of
the laser linewidth on #-photon resonance processes
i.e. ones in which the energy of n-photons is matched
to the energy of the atomic transition (nw =~ wy). In
our description of the finite laser linewidth we apply
a phase diffusion model, based on an analogy with
Brown’s motion [4].

2. The hamiltonian

We assume the hamiltonian of the system in the
form:

Ist,871=25%,

H=Hp +Hy, +H| +H,, 4y
where
Hgp = Z;/hwka;ak )

desribes the free radiation field and
HA =h (.00 SZ (3)

the material system; we assume that, at interaction
with the laser field, only the populations of two of its
levels, differing by %y, change significantly; § % is the
energetic spin operator component. In fact, we deal
with the atom as a two-level one.

The hamiltonian of interaction of the atom and
radiation field consists of two parts:

Hy =h@" a"s* +n™WaTns™), 4)
Hy= Zk) nmPa, s* +n{afs7). )

Eg. (4) accounts for interaction between the atom
and the strong laser beam, at n-photon resonance with
the atom (nw = wy). Eq. (5) describes weak interac-
tion with the field leading to spontaneous emission in
the system (the prime at X denotes that the incident
beam is not comprised in the sum). S and § = [$*]*
are operators raising and lowering the energy of the
atom which fulfil the commutation rules:

[S7,8%] =8, (6)

whereas a,t and a;, are creation and annihilation oper-
ators of a photon in the kth mode, and n("), n}cl) are
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the respective atom—field coupling constants. In (4)
and (5) the rotating wave approximation is made and
rapidly oscillating terms omitted.

On the assumption that the laser beam is in coher-
ent state |} = a|@), the hamiltonian H; reduces to:

Hy = H(n™a" exp(—inwt) S* + h.c), 7

where o is the complex amplitude of the field, to be
written as:

a =r exp(-igp). 8)
The form (7) of H, together with (8) permit the mod-
elling of the finite width of the laser line by intro-
ducing fluctuations in the phase ¢ (at constant r) and
the application of the so-called phase diffusion model,
based on an analogy with Brown motion.

3. Phase-diffusion model

In this model, the phase ¢(¢) is the stochastic vari-
able of a distribution function P, obeying the diffu-
sion equation [4]:

aP/dt =Ty 32P/3y?, ©)
I’} is the laser linewidth.

The Langevin equation corresponding to (9) has
the form:

dp(r)/dz = f(2), (10)

where f(f) is a 6-correlated gaussian random process
with

(fey =0, (f(£) fls)) = 2T (t-s). 1)

Single brackets denote here the classical ensemble
average with respect to the distribution of the random
process f(¢).

The Green’s function solution of eq. (9) can be
written as follows [4]:

P(o,tl¢g,0)

=%§exp{im(‘p—— 9o} exp(-m2 Ty 1). (12)

Together with the uniform distribution over 27 of
the initial phase gy = ¢(0), eq. (12) permits the cal-
culation of the average over the ensemble of phases.
With (12), one easily calculates the following average:
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1 27 2n 1
(explinp—pg)h =5 - Of dgg Of o

X 27 exp{i(ntm) (p—¢g) —m?2 T 1} dp
m=—w

+

= exp(—n2 ' |¢]), (13)

occurring in n-photon processes, as seen from the
form of the hamiltonian (7). The preceding simple cal-
culation suffices to convince us that, in the n-photon
case, the influence of the finite width of the laser line
is stronger than in the one-photon case. The effective
linewidth is, then, equal to nzl"L.

4. Optical Bloch equations with fluctuating phase

Using egs. (1)—(8), one can derive the quantum
equations of motion for the spin operators describing
the atom, i.e. the optical Bloch equations [1]. For the
slowly varying parts of these operators, in our case,
these equations take the form:

STE) = (A~ 3 T) STE) + 2\ expling(t) SX(2),
ST()=(—iA—5 )87 (2) + 2\ exp{—ing(£)} SZ(2),
SE(0) = —TS(0)+3) (14)

— N exp{—inp(0)} S5 (1) —\" exp{ing()} S (1),

where A = w; ~ nw is the detuning parameter and
A= in"r" provides a measure of the magnitude of
the coupling between the atom and laser beam. Here,
r is assumed as constant i.e, we neglect fluctuations
of the beam intensity.

In eqgs. (14), by writing the damping constant T,
we have taken into account the interaction H,, given
by the expression (5). We thus assume that the inter-
action (5), leading to spontaneous emission in the sys-
tem, causes radiative damping of the atom with the
decay constant I' which, in our case, is equal to the
Einstein coefficient 4.

The slowly varying parts of the spin operators of
the atom occurring in (14) are obtained going over to
a system of reference, rotating with the frequency nw:
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S:(t) =S7(r) exp(—inwt),

ST(@) =S~ () exp(inwt), Si(t)=S8%(). (15)

With regard to the phase ¢(¢) occurring in (14) which
we consider as a stochastic variable, egs. (14) are sto-
chastic equations, of the type recently discussed by
Agarwal [2] and Wédkiewicz [3] for one-photon reso-
nance on the basis of the theory of multiplicative sto-
chastic processes. We here extend those results to
n-photon resonance, where the influence of the finite
laser linewidth is found to be much stronger.

On introducing the new stochastic processes

A% (1) = 55 (1) exp{-inp (D},

A™(1)= 55 (t) expling (1)}, (16)

into eqs. (14) and applying (10) we arrive at the fol-
lowing equations:

A (D)= (1A—5T) AY (@) + 20" SZ (1) —in f(1) 4* (1),
A™(D=(-A-1D)A~ ()
+NSI() +in () A (D), a7

SH) = ~T(SI (1) +3) - A () = XA~ (o).

Applying (11) and (17), one readily obtains exact
equations describing the time-evolution of the averages
over the ensemble of random phases of the stochastic
processes considered here. These equations are of the
form:

(@/de)(AT () = (1A —3 D—n?T AT () + 20 (SZ (0D,
(d/dE)A= (= (-iA—5 T=nPD ) AN +2N(SE (),
(d/d)<SZ ()

= T(SZ(EN+3)— NAT () =N, 18)

at the initial conditions (4*(0)) =<4~ (0)) = 0,
(SZ0p=—73.

The set of equations (18) can be solved using the
Laplace transform method, similarly as done by Torrey
[5]. The evolution in time of the quantities searched
for is defined by the roots of the following equation:

E+D)[E+30+n°T ) +4%]

+4|\? (z+3T+n’Ty) =0. T19)
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On inspection of the form of (19) one notes that these
roots can be obtained from the Torrey equation for a
coherent beam [1] on replacing the longitudinal and
transversal relaxation times respectively by:

1/T, =T, and 1/T,=4T +n’Ty. (20)

Hence the finiteness of the laser linewidth I'y affects
the transversal relaxation time only; in #-photon reso-
nance, the variation thus caused is proportional to n2.
This result is in agreement with the result (13), obtain-
ed along other lines above.

5. Resonance fluorescence spectrum in the n-photon
resonance case

As an example of the finite laser linewidth effect
on resonance processes involving more than one pho-
ton, so as to fulfil the condition for resonance, we ad-
duce here an expression for the resonance fluores-
cence from such a system which we express by the
formula [6]:

P(w,T)~2 Redetfth
0 0

X exp{i(w—wq) 7} €S (1) S ( + 7). @1)

Above, the symbol € » denotes the quantum mechani-
cal mean value over the atomic states and the average
over the ensemble of random phases. Applying the
Bloch eqs. (14) one can calculate the atomic correla-
tion function occurring in (21) and, thus, the reso-
nance fluorescence spectrum. In general, the latter is
asymmetrical; its form, with the finite linewidth taken
into account, is to be found in ref. [7] for the case of
one-photon resonance. In that of n-photon resonance,
the spectrum is modified only in that I'; is every-
where replaced by n? I'L, as it results from eqs. (19)
and (20). The spectrum takes a particularly simple,
symmetrical form in the case of exact resonance (A=0)
and an intense laser beam, meaning that 2|A{> I" and
21N> nzFL. In the stationary case i.e. at T—> o0, eq.
(21) takes the three-peak form:
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Pes,T>) 1 T2(r+3n2ry) 1
w,Too)~|—
( 2 422 (C+n2Ty) (3 72T P +(w—wy)?

3 GT+n2r))
(G T+n2T )2+ (w—wy)?

2 @ +niry)
+,36 T +n2I‘L)2 +(w-w +2[A)?

3 2
& tn ry

+5 . (22)
& @ +n2T )%+ (w—wj —2IN)?

Forn=1, eq. (22) goes over into the expression of
Kimble and Mandel [7]. For n > 1, the change in
width of the various lines of the spectrum, which
amounts to nzFL, is greater than in the case of one-
photon resonance. One thus can expect a considerable
broadening of the line in processes involving reso-
nances of higher order. With regard to such processes,
however, it is less easy to fulfil the strong field condi-
tion 2|\| > n2I' . We nonetheless believe that such
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spectra should be accessible to observation, at least in
the two-photon resonance case [8]. A similar finite
linewidth effect could also be apparent in the fluores-
cence spectrum of a three-level atom, albeit with two-
photon resonance [9]. Quite recently, the laser band-
width effect on two-photon ionisation in caesium has
also been discussed [10].
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