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Nonlinear variations in the Faraday effect caused in atomic systems by a strong magnetic field
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A theory of nonlinear variations in the Faraday effect caused by a strong magnetic field is proposed. In
atomic gases, the variation is defined by the nonlinear magneto-optical susceptibility tensor component
Xyzzz Which is expressed in terms of integrals of the radial Green’s functions Gy (r,,r,) of valence electrons of
the atom. Applying for Gg(r;,r;) and the wave functions analytical expressions in approximation of the
model potential method, the authors carried out the first numerical calculations of Xsyzzz fOr inert-gas, alkali,
and hydrogen atoms. The calculations show that the variations in the Verdet constant induced by the
square of the magnetic field are sufficiently large (even in frequency regions far from resonance) for
detection by the currently available strong-magnetic-field pulse technique.

I. INTRODUCTION

Modern laboratories have at their disposal the
equipment necessary to produce, on the one hand,
strong magnetic fields and, on the other, intense
oscillating electric fields, such as those conveyed
by laser beams. The conditions are thus fulfilled
for the experimental observation of various non-
linear magneto-electro-optical effects.’+®* In this
paper we concentrate exclusively on variations in
the Faraday effect caused by intense laser light3+*
and a strong magnetic field.*'> The laser beam
intensity-dependent Faraday effect has been ana-
lyzed theoretically for gases and liquids*'® as
well as crystals.?** However, it is only recently
that numerical calculations of the nonlinear elec-
tronic part of Verdet’s constant have been per-
formed, by Yu and Osborn,” for the simple model
of a two-level molecule with one-photon transi-
tions, and by Kielich, Manakov, and Ovsiannikov®
for a general model with one- and two-photon
transitions by the potential model method for
radial Green’s functions of the optical electrons.®™*?
The calculations, carried out by the last method
for inert-gas, alkali, and hydrogen atoms, prove
that the nonlinear variations in the Faraday effect
can be observed in experiment, particularly with-
in the nonlinear resonance region for frequencies
w and 2w.

In this paper we carry out calculations of the
nonlinear variations in the Faraday effect induced
by a very strong magnetic field in atomic gases.

II. PHENOMENOLOGICAL THEORY

To begin, we deal with the problem in a pheno-
menological approach, starting from the equation
for the electric permittivity tensor at frequency w
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and wave vector k of the electromagnetic field:
[E“((l),-E) - éij]Ej(w,E) =41IP‘((.U,E) 3

where _ﬁ(w,ft) is the vector of the electric polar-
ization, induced in the medium by an electromag-
netic field with the electric vector E(w,k) and mag-
netic vector H(w, k).

Similarly, the equation for the magnetic permit-
tivity tensor is

[Il-u(w,l’{) - bij]Hj(w,-f{) =47"M4(w,§) ’

where ﬁ(w,E) is the vector of the magnetic polar-
ization, induced generally by the field vectors
E(w,k) and H(w, k).

Since in a medium with refractive index »n the
wave vector k =n(w/c)§ for a wave propagating in
the direction§, Maxwell’s equations for the
medium are, in tensor notation,

n(wyr{)ﬁuksjEk(wi—E) = L-Lij(wy-l;)Hj(w;E) ’
—n(w,ri)b,,k s;Hy(w, k) = €1,(w, BE,(w,k),

where §;, is the antisymmetric Levi-Civita tensor.
We assume the medium in the absence of exter-

nal fields as isotropic, with the scalar permit-

tivities € and u. If a static magnetic field H(0) is

applied externally to the meédium along the axis

z of laboratory coordinates, its electric permit-

tivity takes the form

€ €, 0

(€i))=|-€y € 0
0 0 ¢
The magnetic permittivity tensor is similar.
With these assumptions Maxwell’s equations

lead with a satisfactory approximation to the follow-
ing expression for the difference in refractive in-
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dices for waves circularly polarized in the nega-
tive and positive senses:

n—(w’-ﬁ) —714,((4),1;)
=i{(1/€) ey, K) + (/)2 (@, B)].

By definition, the rotation angle of the polariza-
tion plane per unit length of the medium is

O(w, k) =3(w/c)n_(w,k) -n, (w, k)],

whence for a wave propagating in the z direction
~we obtain the following formula, of relevance to
our further considerations:

o(w, k) =zm'(§) [(—‘5) " 2—2’:{3%

O 8 o

Formula (1) is valid with the assumption that the
polarization vectors 'ls(w,f«:) and lVI(w,T{) are linear
functions of the light vectors E(w, k) and H(w, k),
whereas their dependence on the strength of the
static magnetic field H(0) can be, in general,
nonlinear. i(w,ﬁ) and M(w, k) contain in addition
to the dipolar terms, quite generally all higher
multipolar electric as well as magnetic contribu-
tions,® which, however, are related to spatial dis-
persion, a subject beyond the scope of this paper.!?
Restricting our considerations to the dipolar elec-
tric and magnetic approximation, we write the
vector component of electric polarization in the
form ' ‘

Py(w) =[x5i(~w, )+ X% (-w, w, 0)H,(0)
X (~w, @, 0, 0)H,(0)H, (0)
+ X%, (=W, @, 0,0, 0)H,(0)H,(0)H,,(0)
+...]Ej(w), 2)

neglecting the terms involving linear dependence
on the magnetic light vector H(w).

The second-rank tensor x;; defines linear elec-
tric susceptibility; the third-rank pseudotensor
Xi7»» magnetoelectric susceptibility, defining the
linear Faraday effect; the fourth-rank tensor
Xijr1> the Cotton-Mouton effect and magnetostric-
tion; but the fifth-rank pseudotensor xi7J,;, of non-
linear magnetoelectric susceptibility defines the
nonlinear variations in the Faraday effect which
are the subject of our investigation.

An expansion similar to that of the electric po-
larization (2) can be written for the magnetic po-
larization. Since in the case of isotropic diamag-
netics its contribution to the rotation angle (1) is

1

negligible, we refrain from considering it here.
By (1), (2), and the definition of the Verdet con-
stant,

V(w) = 3(w/c)n (@) —n,()]/H,0),

we obtain in the presence of a strong static mag-
netic field

V(w, Hy) =i[27/n(w)l(w/c)
X [xBo(~w, w,0)

xyz
+X:?xz:("'waw,03 O,O)Hg +oee ], (3)

The preceding phenomenological formula des-
cribes the variation in the Verdet constant induced
by the second power of the magnetic field. We
now work out a microscopic theory permitting the
numerical calculation of the nonlinear magneto-
electric susceptibility component x%7_... Like
X3yz» the nonlinear susceptibility in general con-
sists, in addition to a part not directly dependent
on temperature, of temperature-dependent terms,
related to, e.g., reorientation of the molecules in
the magnetic field.>*®* However, we restrict our
quantum-mechanical calculations to atomic gases,
where in the absence of internal interaction, no
temperature-dependent terms appear.

III. MICROSCOPIC THEORY AND NUMERICAL RESULTS
FOR ATOMIC GASES

In order to derive the quantum-m(echanical
formula for the magnetoelectric susceptibility
tensor x{%,;,, Wwe use the Hamiltonian of the dipole
approximation,

H=Hy—d,E(t) - H(0) - 55H,(OH,(0) - - - , (4)

where d and 7 are respectively the electric and
magnetic moment operators and¢

2
R4 = S s (r 7 s = 7204,) 5)
Xis 2:47”"02 vi¥vj vOis (

is the diamagnetic susceptibility tensor operator
for a system of spinlessparticles, with charge
e, and mass m,,

When we calculate the mean value of the electric
moment P(w) up to terms ~EH3, by analogy with
the case of an intense light field® we can write
X3%him in the form of the sum

X7kt m(=w, ®,0,0,0) =x P, +X;‘jktm s

with yP being the component determined by mag-
neticdipole interaction and x¢ being that deter-
mined by interference of magnetodipole and dia-
magnetic interactions. For a system in the non-
degenerate state |0) with energy E,, we obtain

‘ x:pquzz: <0 IdeEo+ w szE0+ wszEo-r wmgGEo+ uﬂy '0> + <O |ﬁyGEo- wmz.GEo- wszEo-wszEo'-wax IO> ) (6)
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nguz=<ola GE°+wm GE0+ wa GEoAd

IO) +<Oﬁ GE‘ —wm GEo-w xGonzzlo)

+ (0 'thGEo&x GE0+ wm GEO+ wd ,0> + (0 IXHGE d GEo-wm GE -wd |0>
+(0 laxGEo+ wszEo-t- wX:zGEo+ w%y |0> +(0 |ayGEo—w7h GEO-wXMGEO—w ,0>
+(0 |JxGEo+ wiSzGE(ﬁ wszE0+ way |0> + (0 IdyGEO wXuGEo-wm GEo-wd '0> ’ (7)

sd —gd

where 2, =85, — (0[RS, [0). Above, Ggy+w is a Green’s function, accounting for summation over intermediate

states.

Taking into consideration interaction of the field and the external optical electron only, and on

performing integrations in (6) and (7) over angular coordinates in the LS-coupling picture, we obtain yP

and y¢ as follows in terms of the radial matrix elements

ning *t AN+ 1
le,Lz,- ,LN(wl’wZ"")wN)

=(0r1gy (Bo+w 37y, 7)75°8 1, (Eo + @575, 75) -«

with the radial part of the Green’s function
g.(E;7,7') given by formula (A2) of the Appendix:

- 000
xP= 24A11111(w; w,w,w),

xd—zlso{GA}‘ﬁl(w,w,w) +A1%2Yw, w, 0) (8)
+5[A13% (w, @, 0) - AR w, w, W)},

with @ = 7. Here

7 =(0[72(0),

AW, Wy oot ,Wy)

=00l Wy, Way e e, Wy) = Pir (=W, =Wy, e v, —Wy).

With the preceding expressions the Verdet con-
stant in a strong magnetic field takes the form (in
atomic units)

V(w) =mN,0*w{Yo(w) +(aHP[YE(w) + YW}, (9)
as in the case of an intense light fiel.d.’3 In addition,
YP(4)(w) ==i(2/a®) X",

The quantity Y,(w) is defined and calculated in
Ref. 8. The numerical values of Y,(w), as well
as all details of their calculation, are given in the
Appendix.

The poles of Y, and ¥, coincide with the energies
of the P states of the atom. The stronger fre-
quency dependence of Y,(w) compared with Y,(w)
causes the correction terms in (9) near resonance
to be significant in fields of 10*~10° Qe. The
diamagnetic term Y;‘(w) can be neglected near the
poles, since x¢ contains three resonance denomin~
ators, whereas xP contains four [cf. Egs. (6) and
(7)]. It is worth noting that in Ref. 15 the influ-
ence of diamagnetic interaction x?, is altogether
omitted when considering corrections to Verdet’s
constant in a strong magnetic field—an omission
which is hardly justified far from resonance (in
the region of optical transparency). In particular,
for the hydrogen atom in the optical region, v is

n
. Vﬁ"gLN(Eo TWxN VN rNi-l)erIl |0> »

r
two or three times larger than Y}. For atoms
having a low ionization potential(e.g., the alkali
metals) one has, as arule, |YJ|« |YP|, although,
far from resonance, the contribution of ¥¢ also
can be significant (cf. Table I). Figure 1 shows
graphs of YP and Y{ vs frequency for the ground
state of hydrogen.

Y$(w) undergoes a change in sign as w passes
through resonance. Hence the function has a zero
in each inter-resonance interval. In the case of
the hydrogen atom the first zero of Y$(w,) corres-
ponds to the frequency w,=90200 cm™. Y} is
positive everywhere and YP> |¥J| except for a
narrow region in the vicinity of the minimum of
YP, where Y exceeds Y} by a factor of 1.5-2.

In a strong light field, V(w) can be written in
the form (cf. Ref. 8)

V(w) =1Na*w{Yo(w) + |E(w) PY,(w)
+[aH(0)PY,(w)}, (10)

with ¥,(w) =YP+¥{ and ¥,(w) calculated in Ref. 8.
A comparison of the numerical values of Yl(w)
and Y,(w) shows that for equal field strengths
E(w) and H(0) the effects of the electric field are
stronger than those of the magnetic field inas-
much as in-the region of frequencies comparable
with the excitation frequency of the atom, ¥, (w)

.exceeds Y,(w) 10 to 10° times.

It should be noted that our calculations are
inapplicable at exact resonance, at which point
the two-level resonance approximation is used.
So for the results obtained above to be usable,
the mistuning of w from the eigenfrequencies of
the atom must be essentially more than the reso-
nance levels widths, or should have a value = 10
em™,

Concerning the possibility of an experimental
identification of our nonlinear corrections, we
point out that for the case of resonance mistuning
~100 em™! the correction to the Verdet constant
is about 10% for a magnetic field strength of
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TABLE I Nonlinear corrections to Verdet’s constant? in a strong magnetic field, for atomic systems from Eq. (9):

V(W) =mNe2wlYy + (am) (YD +Y9)] .

w Wy Wg 2wy 2wp q
Atom YP Y§ Yp Y§ Yp Y$ Y) Y5
H 7.885 27.34 13.08 44.12 19.10 62.18 41,52 120.8
He 0.098 0.476 0.152 0.736 0.204 0.980 0.334 1.56
Li 3.61 x108 8.77 X10° 5.01x10% 1.06 x10° 1.29x107  —2.03x10° 1.24 x10° 3.92 X104
Na 1.03 x10% 5.21 X10° 7.65%107 1.33 %107 2.54x10%  —3.27x107 1,04 %107 9.59 X108
K 3.18 X107 7.22 x10° 1.26x10°  -1.15x10°  4.19x10% -1.44x10°  6.09x10® , 1.31x10%
Rb 4.24 X107 9.60 x10° 8.77x10°% —9.83x107  4.17x10® -1.34x10%  6.85x10°  —2.77x10°
Cs 2.25x10%  3.86x107 1.23x10%  —2.53x107 3.21 x10°% 1.01 x10° 7.563x10°  —1.92x10°

# Numerical values (in atomic units) of the corrections Yg and Yg for alkali, hydrogen, and helium atoms at laser fre-
quencies and their harmonics: wy=9440 cm™!, neodymium laser; wg=14400 cm™!, ruby laser. To obtain V(w) in units
of pmin/Oe cm, V(w),,,, must be multiplied by the conversion factor:

10.8 x1
(3.1416)(1.714)(0.52917)

When calculating V(w),u., we must take all quantities in the formula for V(w) in atomic units: Ny (a.u.) =Ny (cm™9)ad, w
(a.w) =w (em™!) /2.195%10°% H (a.u.)=H (Oe) /1.714 X107, and Bohr radius a,=5.29%10"° cm.

010

APPENDIX: PROCEDURE OF NUMERICAL CALCULATION
OF COMPOUND MATRIX ELEMENTS IN THE
APPROXIMATION OF THE MODEL POTENTIAL METHOD

H=10°% Qe. In the typical nonresonant situations
to which the data of Table I relate, a change of .
10% is achieved in a field of H~10° Qe. From the
above and our previous results (Ref. 8) it follows
that the nonlinear corrections to the Faraday ef-
fect in atomic gases predicted here are well ac-
cessible to experimental observation with the
optical electric and static magnetic field strengths
now at the disposal of most laboratories.

In numerical calculations of matrix elements in
higher orders of perturbation theory, use is made
of the model potential method (MPM) developed in
Refs. 9-11 for the description of states of the
valence electron in the atom. In the MPW the
wave functions and radial Green’s function g?(r,y')
are of the form

perimentally available spectrum of the atom E,,,
whereas for E+E,, it is determined by interpola-
tion from known values )\X(E,,.,).

[
/
| £

Ro) =R Z52 /12 )1, (2 20/v,) (A1)
Ay, where #=0,1,2,... is a radial quantum number
and
10°
o n_4Z ~ SayRZr /) 227" /v)
o gy, 7)== é Tokin—v (A2)
b e Y where
§ |
=T i 22" I k! 2y 2Xy+1
== ‘ fky(x)z YT x Ve L, (),
4]l i T'(k+2x +2
10 ] /Y:- ‘! a')(10’30m'2' ( Y )
r 20 4 60 801;33858789 9395%
o I P i v=2Z/(-2E)"?,
o* | | and L%(x) is a Laguerre polynomial; the param-
I / 1 eter X, is determined for E=E,, from the ex-
108 . , [ Y Y
[

FIG. 1. Nonlinear corrections Y? (w) and Y4 (w) to
Verdet’s constant as functions of frequency, for the hy-
drogen atom in its ground state. (Dot-dashed curve,
frequency w,., =82 303 cm™! of the 1s-2p transition).
For w>w,., the scale is magnified five-fold.

Applying (A1) and (A2) and well-known integrals
of products of Laguerre polynomials, we express
the composite matrix element p of Eq. (8) in the
following form:



21 NONLINEAR VARIATIONS IN THE FARADAY EFFECT CAUSED... 1593

P ey (@10 0y) = (22 gy ISV +1,my), | (a3)

where the function S can be calculated from the recurrent formula

= S(p-=1,k,_ )& ;
S(b k)= D, » 2 111;2 :ﬁlf{u:;,p i) , p=2,3,... ,N+1, S(1,k) =835 (Who;v,2,).  (Ad)
p -1 !

‘Above
&, (A V) = <f”(2f¢')l " fuy <2Zr)>

_ 1 ( V'Y' )n—l( 2y ))\142( 21/ )Mz 1—.(7\_”\: +3+n) (I'(k+2>\+2)F(k'+2h'+2)>1’2
4

Su\Z( +v") v+v' v+ T@x+2)T(2)\ +2) k1R’
20 2
XFZ(A #A +34m; —k, k' ;20 +2,2) +2,—m;m> ; (A5)
-

and By, =0y, Vyey =V Ayer =N and By =ng, Vo =Vg, Ag The polynomials ,F, are calculated using relation-
=), are the radial quantum number, “effective” ships recurrent in both upper indices.®
principal quantum number, and orbital parameter If the energy of one of the Green’s functions of
of respectively the initial and final states of the Eqgs. (6) and (7) coincides with that of the initial
atom. v,, A,, with p#0,N +1 are analogical quan- or final state of the atom, the term corresponding
tities for the pth Green’s function in (A3). F, is a to the state in question does not occur in the ex-
generalized hypergeometrical series of two vari- pansion (A2), and supplementary terms appear.
ables (Appel function'®) which in our case is of the A reduced Green’s function of this kind is derived
form of a double finite sum over the indices -~k explicitly in Ref. 10. The relation (A4) in this
and —=%. In our calculations, use is made of the situation undergoes a modification. Thus, if in
expression of F, in terms of a finite sum of hyper- = p... the function gfﬁ(rq,rq“) is a reduced one,
geometrical functions ,F,: (A4) must be replaced for p =g +1 by the following

, , ~ expression (with n =n, or n;, depending on the
Fyla;—k, ~F ;8,6 ;%, %) state with whose enerigy thét of the Green’s func-

(=R)pla)y , tion coincides):
=Zo (B)m! X" Fy(a+m, ~E' ;8 ;%).
o
1

Mg+1 .
- S(q; kg)é qg_gg !(ngg’ Vg 17\g+;)
S(g +1, kysy) kz; T4k, +h, =V,

+8(g,nK[(5/2v,) +22, ]800 1L (Ao Vashars) = (Z/0 @82 (W h g5 Vs Ras)

-(ZZan)1/2<1>:“1;HIZ(V +35Vga1 q+1)}
-[(z/v,)S:(g,n) +(22vqn)l’zsz(q,n)]d> 50 ke Yaheed) - (A6)

The quantities

Sigm)= }: S(g =1, k,_)BR W, -, _l;v,_)\,),

1+k _1+)\ -1 = Vg- (A7)
S.am= f: T e
Bg-1= =1 T Nq=1"
r B

must be calculated simultaneously with S(g,») in the sets of energy values of the initial, final, and
the preceding step of utilization of the formula intermediate states (E,), the related orbital
(A6). parameters A,(»=0,1,...,N +1), and exponents

The expressions (A4)—(A7) permit the calcula- of the power of the radius r,n; (j=1,2,...,N+1).
tion of composite matrix elements of arbitrary A similar recurrent procedure for the calculation
order for transitions between discrete states of of matrix elements, defining the probabilities of

the atom. The data for the calculations comprise many-photon ionization of atoms and not involving
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reduced Green’s functions, has been applied in
Ref. 17. Calculations of Y,(w) in (9) for atomic
ground states (z; =n; =0) show that it is sufficient
to take into consideration the first (v, +4) terms

in the sum over %, to obtain the numerical value
of the series (A4) with an accuracy of 0.01%. The
same holds for the series (A6) and (AT).
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