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When applying the Wang—Hioe procedure and the Power—Zinau—Babiker canonical transformation to determine the
thermodynamical properties of systems, the latter has to be applied prior to the former,

Since Hepp and Lieb [1] (see also ref, [2}) in 1973
proved the existence of the superradiance phase tran-
sition (SPhT) for Dicke’s model, much attention has
been given to the equilibrium thermodynamics of
systems in interaction with a radiation field. The
problem is of fundamental significance: to what ex-
tent is Hepp and Lieb’s result attributable to the con-
siderable simplifications of Dicke’s hamiltonian, and
to what extent is it a general property of systems in-
teracting with radiation? When dealing with the prob-
lem, use is generally made of the highly efficient
method of Wang and Hioe [3]. In brief, the latter con-
sists in replacing the products of field operators oc-

-curring in the expression for the partition function
by normal products of the operators. The field thus
becomes classical: the field operators go over into c-
numbers, This replacement is correct in the thermo-
dynamical limit only. Now from statistical physics it
is well known that the transition to the thermody-
namical limit has to be performed at the end of the
calculations — subsequent to all canonical transfor-
mations — since otherwise one is in danger of obtain-
ing results that are unphysical. The situation should
be similar in the Wang—Hioe case. Our communica-
tion is intended to show that the sequence in which
a canonical transformation and the Wang—Hioe pro-
cedure are performed is not irrelevant, because the
Wang—Hioe procedure involves a camouflaged transi-
tion to the thermodynamical limit,

We consider a dynamical system of V identical
hydrogen-like atoms in interaction with radiation,

To the aims of this paper, it suffices to conceive of

the atom as a single Dirac electron in the potential of
the immobile nucleus ion, The positions of the nuclei
are denoted asr,, (n =1, 2, ..., V). The hamiltonian
of the system is now of the form

iz

N
HA = 2_31[a,, C (B, — eA(r, * X))+ Bym)
+O(xy, ., Xy)

with x,, and p,, the position and momentum operators
of the electron in atom # fulfilling the commutation
rules

[xnwpmu] = ianmﬁvu ’

& is the total Coulomb potential, comprising the po-
tentials of the nuclei and the direct Coulomb inter-
actions of the electrons, 4 is the vector potential of
the radiation field. We assume the Coulomb gauge

div A = 0. The hamiltonian describing the radiation
field is given by

oHF =271 [(E2+B%)ddr,

where E| = —A, B = curl A. Dealing with the field as
quantized, the following commutation rules are ful-
filled for-the Coulomb gauge:

[A,¢. 0, 4,0, 0] =6, -1,

4,0, 0,4,0,0] =0=[d,¢,0),A,¢,0].

The total hamiltonian is expressed as:
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H=HA +HF . 6))

The charge density and current density operators of
the system are:

N
pr)=e Z}ls(r—rn —x,),

N
Jr)=e Z=>lan8(r - %)

Accordingly, we define the electric and magnetic po-
larisation operators as:

N
PO)=e 25 fd)\x,,S(r~rn —\x,),
n=1 o

N o1
M(r)=eE1 Adhx, Xe,8(r—r, —Mx,).
n:
0

The above are compact expressions of the series of
electric and magnetic multipoles, respectively [5—7].

The thermodynamical properties of the system are
given by the partition function:

Z{H] =Trp Trp [exp(—D)] ,

where Tr, () and Trg( ) are traces, in the Hilbert
space, of the atomic system and the field, respective-
ly. The essential feature of the Wang—Hioe procedure
consists of the replacement of Trg [exp(—8%X)] by
the expression Trg [:exp(—fFK):], equivalent to

Trg [exp(—f9¢ )] in the thermodynamical limit. The
colons denote normal ordering of the field operators.
It is convenient to apply the coherent state represen-
tation, For an M-mode field, described by the vector
potential:

M
A= Zil @, (Pa, +ui(P)at),
we now have [8]

Trp(.) = nM [ dzM M), )20,

where
M

dzM =[] dRez, dImz,,
k=1

|ZM)= IZI, Z9y ey ZM) .

We thus arrive at the following expression for the par-
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tition function:

Z[H] = W_MdeM Tr o [exp(—BF")] , (2)

N
o =2 (@, * Py — eAy(ry, +x,,)ﬂ7’ //3 m j

n=1

F Oy, . xy)+271 [ (B2 +BY) A3

The classical field occurring above is defined by a
vector potential of the form

M
Ay = Z=)1 (, (P2, +u3()ZL) .

In Tr of eq. (2), we perform the canonical Power—
Zienau—Babiker [7] transformation

H' > AH=UH'UY, 3
where
Uc1=exp(—i P-4y d3r).

We thus obtain the following expression:

N
K = '231 @, * Py + By) + B(xy, ooy X)

+271 [ @2y +BY &r - [ M- By,

wherein no coupling occurs between the field and
the atomic system provided that the magnetisation,
related to the orbital angular momentum and the
spin magnetisation is neglected (M = 0). As a result,
no SPhT can appear in this case, since the partition
function

Z[H] =7M [ dzM Try [exp(~F0)] )
factorizes obviously into parts dependent on the
variables of the medium and those of the field, re-

spectively. The same result is obtained on applying
the Wang—Hioe procedure to the hamiltonian

N
9(0 =n§1 (Gn ° Py +Bnm) + <I>(x1, ey xN)

+2-1 (B} + B?) d%r,
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where, ab initio, no coupling exists between the field
and the medium.

The result derived above is startling since it shows
that, in the thermodynamical limit, all quantities in-
volving field—medium coupling vanish. The circum-
stance that, in the hamiltonian &', the field is a clas-
sical one appears to be irrelevant since Takatsuji [9]
has proved the existence of a SPhT in systems of two-
level atoms in a classical field.

Now, the sequence of the whole procedure can be
inverted. We shall apply the canonical Power—
Zienau—Babiker transformation directly to the
hamiltonian 9 (1) by having recourse to the unitary
operator U with quantized vector potential:

U=exp(_ifp-A d3r). (5)

On transformation, the hamiltonian takes the form:
N

N=URU* = Z}l @y * Dy + Bym) + By, ooy Xy)
n=

+2-1 [ (B2 + B2) d3r

~ [@-E +M-B)a3r+271 [ P2 a3
It is only at this stage that we apply the Wang—Hioe

approach, obtaining in place of (4) the following ex-
pression for the partition function:

Z[H] =M [ azM Try [exp(—B)] , (6)

N
K =23 @, Pp +Bym) + By, oo Xy)
+271 [ (&} +BY) &

~ [@Eq+M-Bydr+271 [Ip)2 a3,

In the present case we do not succeed in separating
the atomic and the field variables even in the zero
magnetisation (M = 0) approximation.

At this point we face the following, essential ques-
tion: are the procedures leading to (4) and to (6)
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equivalent and, if not, which of them should be used
when calculating the partition function? The decision
is achieved easily on having recourse to the following
simple hamiltonian:

h=sin[V-12pi(a - a*)] S, + cos[V—12yi(a—a")]s,

— 2
— V-1u2S; +a'a,
where
N
=20

S .
Y2 =1 nx,y,z

The o, are spin 1/2 operators. Their components ful-
fil the well-known commutation rules:

[on“, Omy] =0 pm€unOun> KV, A=X,,2.

Above, a* and a are boson creation and annihilation
operators. The model, though quite simple, presents
the same difficulties as the one considered hitherto.
The canonical transformation to be applied now con-
sists in using the unitary operator u (the counterpart
of U, eq. (5)), defined as:

u=exp[V-12y(@—-a")s,] .

We obtain the relations:

uS,u*t=S,,

uSyu* = cos[V =Y 2ui(a — a*)]S,
+sin[V—=12yi(a - a*)1S$, ,

uS,u* = —sin[V-12ui(a - a")18,
+cos[V-12ui(a — a)]S, , -

uaut =a+V-U2uS, . uatut =a* + v-12us,

leading to the following expression in which we rec-
ognize the Dicke hamiltonian:

k=uhu* =S, +a*ta + V-12u@* +a)Ss, . @)

As proved strictly. by various authors, the system de-
scribed by (7) exhibits a second order SPhT. How-
ever, on applying the Wang—Hioe procedure first, we
obtain for the partition function

Zi) =71 [ dz Trp fexp(~6H)) ,
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where

' =sin[V-12ui(z - 2*)]8,,

+ cos[V—12ui(z — z*)]S, - V—luls,% +iz]2 .

On performing in Tr, a canonical transformation with
the following operator uy (the counterpart of (3)):

ug = exp[V-Y2uiz - z%)8,],

we obtain the partition function in the following
form:

Z [} =1 f dz Tt [exp(—Bh)] ,

where
h=S,— V-I\282 + 212 .

As seen, this partition function factorizes into two —
one for the system of spins, and one for the boson
field, leading to the fallacious conclusion that no
SPhT is present. v

The preceding example proves that the canonical
transformations have to be performed first and the
Wang—Hioe procedure afterwards. Otherwise, the
canonical transformation is in fact performed in the
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thermodynamical limit, whereas numerous examples
show that the transition to that limit has to be car-
ried out at the end of the calculations,

The conclusion to be drawn is that calculations
applying an incorrect sequence of transformations
fail to prove or disprove the presence of a SPhT ir-
respective of whether the approximation M =0 is
used or not.

One of us (L.S.) wishes to express his indebtedness
to Dr. R. Micnas for his discussions.
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