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In this paper the complete normal quantum characteristic function is calculated in the
short-time approximation for degenerate hyper-Raman scattering from which fluctuations
in separate modes and correlations among these are deduced. The results are discussed from
the view-point of anticorrelation or antibunching assuming that (i) the phonon mode is initially
chaotic whereas all photon modes are initially coberent, and (i) the laser mode is initially
coherent and all other modes are initially chaotic. A comparison with non-degenerate hyper-
-Raman scattering and Raman scattering is made.

1. Introduction

This paper is a continuation of previous papers [1, 2] concerning the quantum statis-
tical properties of radiation scattered in the process of non-degenerate hyper-Raman
scattering. In a similar way we calculate the complete normal quantum characteristic
function using the short-time approximation up to ¢2 (¢ being the interaction time), from
which we are able to obtain easily fluctuations in separate modes as well as the correla-
tions among the modes. Special attention is given again to states of anticorrelation. As
before [1, 2], we consider two cases (i) the phonon mode is initially chaotic whereas all
radiation modes are initially coherent, and (if) the laser mode is initially coherent and all
other modes (Stokes, anti-Stokes and phonon) are initially chaotic. The method of

‘investigation is identical to that used for non-degenerate hyper-Raman scattering [1, 2]

and Raman scattering {3].
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2. General description

The degenerate hyper-Raman scattering is described by the re-normalized “effective”
Hamiltonian:
H= hwja;‘-aj+h(1csafa;a’{,+KAafa}av+h.c.), ’ 2.1
J=L,5,A,V
where a, as, as, ay and af, al, al, a} are the annihilation and creation operators of the
laser, Stokes, anti-Stokes and vibration (phonon) modes with the corresponding fre-
quencies w;, ws, W,, Wy, respectively, fulfilling the frequency resonance conditions
©ga = 20, Fwy. The corresponding coupling constants are denoted as xg and x,. The
Heisenberg equations describing this process have the following form:

. o *
dy = —i(wpay+2xsalasay +2xsalasal),
. _ . . 2 1- . — . 2
ds = —i(wsas+Ksaray), da = —i(waas+Kaaray),
. . 2 * 32
dy = —i(0yay+Ksaral +xaa1°a,). (2.2)

This can be solved apprc;ximately up to t* as follows:

ay(t) = exp (—ioyt) {ay—2it(xt alasay +kial asal) + [’ (2ayalasalay

—a}ai(abay+alas+ 1))+ kal*(2agatas(atay+1)+afaf(aha,—alay))
+2ay(k¥kaasalad +h.c)]},
as(?) = exp (—iwgt) {ag— ixstaial+ [lxsl’ag(—2(afay +1) (abay +1)
+1 a2a? + 2atay + 1) +1 xsrpatal —2xgka(alag + Daal?]},
ax(t) = exp (—iwal) {as—ixatatay—t*[ikal*an(2(alar + Dayay+% af’af
+2alay +1)+2 kgeaapad +2s1cp(atfan +Dasay]},
ay(t) = exp (—ioyt) {ay—it(ksataf+ waal’an) + x> ay(—2(alaL +1) (afas+1)

+1 af?a? +2atay + 1) + ksl *av(2al apalas— % af’aD) 2rgcsalanall}, (2.3)

where a; = a,(0). It can be verified that the following conservation laws are valid:
[}

d i) 1 T =0
Py (ab(Da (D) +2ak(H)as(t)+2a}(Naa(®)) = 0,

% (al(Day(®) +ak(Daa(t)—al(Das(D) = O. @4

The time evolution of the system is fully described by the normal quantum character-
istic function [4]

Cx(BLs Bss Bas Bvs 1) = Tr {0(0) . ]._I

\A,

,oP (B,a%(D) exp (—Bra D)} (2.9
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with ¢(0) being the initial density matrix of the system. Substituting from (2.3) and per-
forming the normal ordering of (2.5) in the initial operators using the Baker—Hausdorff
identity (up to ¢2) and if we further apply the Glauber-Sudarshan representation of ¢(0),
we arrive at the complete normal quantum characteristic function valid up to 7?:

CN{B} ) =<exp{ Y (BEO-BEWM)— Y IB1Bj+% Y (BF’Ci+cc)
J=LSAV i=Lsv JELY
+( _zk ﬁf :Djk +BLBEDis+BLByDiy+c.c)—(BiDfiL+ BLBaByDiav
SK=LSAY
+BLBsBvDLsy + BeBaDiia+ BZBvDiy+BEBsDiLs+ BLByDryy + BLlBLl*Dris
+|BLi?ByDyyr+ BLlByI*Dryy + BB Drrs —c.c.)+(BDfLiL
+ BiBsBDisyy +¢.0.) + BLi?1ByvI*Dryy +1BLl*Dricn ), (2.6)

where the set (L, S, A, V) is assumed to be ordered, £,(¢) are time-dependent complex
amplitudes obtained from (2.3) if the initial complex amplitudes ; are substituted for the
initial operators a;(¢; are eigenvalues of a; in the coherent state [{{;})). The brackets in
(2.6) represent the average over &; and

By = 48[res|*1&s| 2 1Ev]® + kAl *(ELi® + [EvI% + 1) + (g ks xET +0.2)],
Bs = t*ls|*IEl*, By = [IksIEl* + 2lralIEP + 1) 1E417],
Cp = —exp (—i2myt) {2it(cEEsEy +KAEAEY)
+ [k 22l + 1w + D) = sl *EL2UEAIR — 1Ew17) + ArcdrexEr *EsE AT}
Cy = —exp (—i20yf) [47kek(1ELI* +1)E5EA],
Dis = —exp (—i(oy + o)) [lrsl*E E(1ELN> +21Ev|) + 2k 5 ELEAEV],
Dy = —exp (—i(wp+ o)) [lral*EE(EL + 218> +2) + 26§ a8 EsET ],
Dy = —exp (—i(@p+y)t) {2ixEFEn+ 1781y
% [lcsl*(1ELl® +21&s|%) + [KalP(ELI2 — 21€1P) T}
Dsy = —4 exp (—i(ws+ o)) kskalt,
Dgy = —exp (— i(ws+oy)t) {ixgtEE + 25| ELI2 + 1) [Ixs|?Esly + 205Kk EAEVT)
Dy = —exp (—i(wa+ )28 ka2 (EL + DALy,
Dys = —exp (i(wy — 0926 Kk a1,

Dyy = —exp (i(op — o4 EL (KA Ey + ket XES EAEY),

Dypy = exp (— 3w )20,k x L Esln,

Dray = exp (— (o +wa+0y))28% kAl €Ll y,
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Dygy = exp (— (oL + g+ wy))28%(|x 25L656V+2KS"‘25L€A5$),

2
Dy = exp (—iQQwp+w,)b) > EARS As

2
exp (—i(2wy +oy)) l:iK:téA"' —% (Iresl* + IKAIZ)fffv] ,

D LLV

L t* .
Dyis = exp (—i(2wy, + wg)?) L3 IKs|2|fL’2‘;'s,
Dpyy = exp (‘i(wL+2wv)t)4t2'€s’€:51,§y§kfm
Dy, = exp (i )28 KA 2EL1EAI2,
Dyt = exp (iwvt)4t2(|KA|2|fA]25:+K:KA~fsz:fv),
Diyy = exp (ith)4t2IKA|25f|éA|2’
Dyys = exp (i(zwL_ws)t)tz"'sKAfffZ,
. t2 * *z
Dy = —exp (—idw ) > KsKaGsCas
Disyy = —exp (—i(wp + 05+ 2wy)0)4 kK5 E En,

—— 2 “ B 2
Dyyry = 4%k, 1EA1%, Drip = PlalP1Eal%

V)

Compared to Raman scattering [3], there are third and fourth-order terms in f; in
the characteristic function similar to the case of non-degenerate hyper-Raman scattering
[1, 2] even if all modes are initially coherent. Moreover, in the present case the third and
fourth-order terms in fy also occur. Fluctuations of the intensity, W;, in separate modes

J
are given by:

a“cN_ B < 0*Cy >2
OBLI(=PL) lipp=0 \OBLO(—B})

= (BL+|CLI*+2BLE M2 +(CEEX D) +c.c.)

(am)* =

8=0

+4(Drriéi()+c.c)+4Dy >+ (B + 1ELDI%)*> — (By +1£.(8)] 52,

__ ¥ ( aZCN__)Z
A=) | pp=0  \OBA(—F)

= (Bi+IC)* +2B/E (N1 +(CIEHD) + 0.0y +{(B; + 1E)DD

4wp*

B=0

(2.8)
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and the correlations among modes are given by:
8*Cy PG 0*Cy
OB (= BPIOBI(— B lisp=0  0B,0(=B}) OBd(= i) lipp=o
= Dl + D ud* + (DT (DGR — D (G (D)
+ Dl 1)+ D al() +e.e) + Dy -+ <(Bj+ &) (B GO
— B+ IO Be+1EMIP, < k. 29

The brackets in (2.8) and (2.9) are omitted and the last two terms cancel out if all modes,
are initially coherent.

AWAW,> =

3. Special cases of initial fields

3.1. The phonon mode chaotic and all photon modes coherent

In this case we simply obtain from (2.8):
AWy = {|xsl’[41&s|*(nyd (UL +61EL1* +1)
=21 + <y > + D]+ IR [4EA1*Knyd +1)
X (21EL* +61EL1 + 1)+ 2L (1€al* —<nv))] = 42Ky > + 1R},
AWy = 2ArsPPIENES [(nyd +1), AW = 2kalPPIEEA v,
LAY = (g +20ny) (s PTIGIAUESI 4+ Cnyd + D= 408U +1) &1y
—2ny Y]+ ralPLIEL (€A = ) HAELP AP ny) + D+21EA"]+ R}, (3.1)

where R = wgi liéaén+c. ., {ny) = {|&|?). Thus we find that the antibunching can
be observed in the laser mode in spontaneous scattering (& = &, = 0) to the amount
—2|xg|222|EL1* (nyd + 1) —2|K 4| 222[EL}* {ny)>. This property is closely analogous to the
possibility of measuring the anticorrelation of fluctuations between the first and the second
laser modes, AW, AW,>, in non-degenerate hyper-Raman scattering and in the
subfrequency mode in the course of second harmonic generation from vacuum. It
should be noted that ({(4AW,,)*) =0, that is ({(AW,+4W,)?) = 2{dW AW))
= —212|&, 11& 1 (Ixs]® ({nyd + D+ [x 4% {nyD) (¢, and ¢, are the initial complex ampli-
tudes in laser modes 1 and 2 respectively) in non-degenerate hyper-Raman scattering and
{(AW)*> = 0 in Raman scattering if ¢ = &, = 0, so that this effect is quite typical
for the degenerate hyper-Raman scattering. In all other cases ((dW;)?*) =0, =S, A, V.
Similarly from (2.9):

(AW AWy = 12{=2lis| |l *1&s 1[I (2<ny) + 1) +2{ny>]+2(ny> + DR},
AW AW, = {=20ica P [IEL*@<ny> + 1) +2(<nyd + D] +2¢ny )R},
AWAWY = [k [43EL + 1) &1 () +AIEL%1ES *Cnv) (Cny)y = 1) =218 K ny)
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QL&+ {nyd + D]+ ka2 [4ELZ +1) 1EAPK Ny +1)7 +20E (K nvd +1) Q1A —<nyd)
+4léL|2|€A|2(<nV>2 +<{ny>+2)14+2R},
{AWsAW,) = — t2(<nv> +1/2)R,

(AW AWy = {[ks) [21EN Y E*(Knvd + 1)
+EL (e + D= 4(EP +1) &6 ny) vy + D]+(Cny> + DR},
AW AW = P{ralP[IE* <y ((nydy = 21En1) —4(1E* +1)
x 11 nyy ((ny) +1)]—<nyR}. (32

Thus, the anticorrelation in (AW AW > can occur in a manner similar to that in
Raman scattering or in non-degenerate hyper-Raman scattering. It is maximal if A
= 4+ vs+pa—@s—@a = 0, p; being phases of &; and s 5 those of Kg ,; for dg = /2
the phase-dependent terms vanish, R = 0. Between modes L and V there is anticorrela-
tion in the spontaneous scattering (& = £, = 0), AW AWY) = —2(|ks|>+ ka2 |EL]*
{nyy(ny +1), but it also occurs in practice jf

ilez > {ny) > ]6s|2, IéAlz- (3.3)

Also between modes S and A anticorrelation occurs if Ap = 0. However, (AW 2,4 Wy) =0
provided that (3.3) holds.
3.2. The laser mode coherent and all other modes chaotic

In this case we additionally average (3.1) and (3.2) over & and ¢, which are now
chaotic, i. e, we substitute {|&|?) = {ns), {|éA1?D = (n >, R=0 and we add the
following terms to the shown quantities arising from the last two terms in (2.8) and (2.9)

LAWY : {msy? + 205 [1EL* = 2(1+ 201l + 1) <ny )] <nsd?,
LAWY : Knpd® = 2la PP [1E)* +201 4+ 2(ny)> +21E*((nyd + )] <nad?,
AW 20|22 18U+ 2<my) QN+ 1] <nsd,
CAWLAW,Y = 2l PP[IEL* +2(<ny> + 1) QIEN + D] <npd?,
CAWAWyY : P2 [1EL1* =418 +1) (ny)] <ngd?,
CAWLAWYY - [ical PP LIEL* +HEL (v + 1) +2] <P, (3.4)

in all other cases the corrections are zero. Thus, antibunching occurs in {(4W,)*> as
before, which corresponds to anticorrelation between laser modes 1 and 2 in the non-
~degenerate case. In the other modes no antibunching is possible. The correlation of
modes L and V has the same form as in Section 3.1 with R = 0. The anticorrelation between
modes L and S, and L and A is practically unaffected by the corrections in (3.4) if (3.3)
holds (|& 412 = {(ng ). Modes S and A are uncorrelated whereas the correlations between
modes S and V, and A and V are always non-negative in the present case.
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Note that when measuring fluctuations in pairs of modes, i. e., {(4W;+4 W2,
i#k j,k=L,S,A,V, these quantities behave similarly to those in the Raman scat-
tering case [3] and antibunching can generally occur under special conditions if all modes
are initially coherent. For instance, in {(4Wy)*), phase-dependent antibunching of the
first order in kgt and kKt occurs if @s+@y—2@— s = —7/2 and Qs — @y —2¢L—Ya
= —n/2. In the cases considered here these quantities are non-negative except
L AWL+AW;5 )% = AWL)?) provided that & =&, =0 ((ng) = {nad = 0) giving
antibunching in spontaneous scattering, including the case when all modes are ini-
tially coherent.

4. Conclusion

In this paper we have shown that the laser mode exhibits antibunching in the course
of spontaneous scattering. In the other modes the variances of the intensity are non-negative.
Between the laser and Stokes or anti-Stokes modes anticorrelation possibly depends on
the values of the phase-dependent terms. It always occurs if the phase-dependent terms are
absent or if |£L|2> (ny) > {ns ) provided that phonon, Stokes and anti-Stokes modes are
chaotic at ¢ = 0. Between the laser and phonon modes there is anticorrelation in the
course of spontaneous scattering or if the above number condition is fulfilled. Stokes and
anti-Stokes modes may be phase-dependently anticorrelated if the phonon mode is ini-
tially chaotic and all photon modes are initially coherent, whereas they are uncorrelated
if the laser mode is initially coherent and the other modes are chaotic. The correlations
between the Stokes or anti-Stokes and phonon modes are always non-negative. While
in Raman scattering the antibunching can be observed in {(4W;+4 W)*>, j # k only
if all modes are initially coherent; in the present process (AW +4Ws,)*) <0 in the
course of spontaneous scattering.

The statistical properties of degenerate hyper-Raman scattering are a natural de-
generacy of those for non-degenerate hyper-Raman scattering; this is reflected by the’
similar behaviour of <(4W,)?)> in the degenerate case and (AW 4W,) in the non-
-degenerate case. The other corresponding quantities behave, of course, similarly.

We may conclude that degenerate hyper-Raman scattering also represents a
higher-order non-linear optical process providing various possibilities for the observation
of antibunching or anticorrelation.

We note that Simaan in his recent paper [5] considered the quantum statistical
properties of the Stokes hyper-Raman effect using the master equation and Fock states.
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