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ABSTRACT

In a semi-macroscopic approach, a general relation between the phenome-
nological nonlinear susceptibility tensor %c"t vp Cz“’) s+ measured in
DC electric field-induced second harmonic generation of laser light
(DCEFISHG ) and the molecular nonlinear polarizability tensors bob,s w)
and ¢ 5@60) s is derived. The relation involves the two molecular-statistical
factors G (2w?) and S (2wW), or one factor § (2w) (at zero electronic
dispersion and absorption ) , and the tensors R ¢ accounting for the geome-
trical setup and the differe;me in electric fields in and beyond the medium.
Q (2w) 1is analyzed by classical statistics for multicomponent systems with
unlike atoms and molecules interacting by various radial and angular forces.
The many-body correlations and electric molecular field fluctuations cause that,
in sufficiently dense systems, the nonlinear susceptibility of the mixture is no
longer additive but is in general a nonlinear function of concentration.

INTRODUCTION

In the course of the last 20 years much information has been obtained regar-
ding the nonlinear electro-optical and optical polarizabilities of atoms and
molecules ( refs 1-6 ). In isctropic media, nonlinear molecular polarizabili~
ties are apparent directly or indirectly in the electric polarisation of order
3 which, phenomenologically, is of the following form at frequency
Lo, = Wy + Wy + Wy ( refs 7,8):

P, C‘*"4)=7:muf (-0 W pw50 005 ) By (g > Ey,) B, C95) 1)
E (&) being the electric field strength conveyed by the light wave vibrating at

the circular frequency ¢J . The summation convention for recurring tensorial
indices ¢ = x,y,%2 1is applied throughout,
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The 4=th rank tensor X‘m;pf in Eq. (1) describing nonlinear susceptibili-
ty of order 3 can be calculated quantum-mechanically (refs 9,10 ) or by me-
thods of classical statictics (refs 11,12). Its various components are acce-
ssible to determination from the electro-optical Kerr effect (refs 13,14),
optical Kerr effect ( refs 2 and 15-18 ), dielectric saturation (refs 19-22),
electro-optical rectification ( refs 23,24), DC electric field-induced 2-nd
harmonic generation (refs 25-38), 3-rd harmonic generation (refs 8 and 39-42)
and from other processes of optical frequency mixing (refs 43-47). Light
scattering at doubled and tripled frequency also provides information on the
nonlinear polarizabilities of atoms and molecules (refs 48-53), and tech-
niques based on other effects have been worked out as well ( refs 54~60).

Hitherto, the greatest amount of information concerning atomic and molecular
nonlinear electro-optical polarizabilities has been obtained by the research
group of Buckingham from Kerr effect studies (refs 2,4 and 5). The last 10
years have witnessed a rapid development of methods for the determination of
nonlinear electro-optical polarizabilities lydCelactric field~induced 2-nd har-
monic generation, particularly due to the work of Mayer (refs 25,28), Ward
and co-workers (refs 29-31, 35, 37 )4 Levine and Bethea (refs 32-34), and
others (refs 6, 36, 38, 43, 59). In the last effect, a DC electric field
destroys the centre of symmetiry of the isotropic body, which now becomes a
source of 2-nd harmonic light generation.

If the intense laser beam propagates along the z-axis perpendicularly to the
DC electric field applied along y (Fig.1 ), we have by Eq. (1) for an isotropic
body the following two, mutually perpendicular polarisation components at the
frequency 200

PxCZCﬁ) =[xxxyy_('2w’wswvo) + xxyxy('aw’wsw so)] Ex@)gy(w) Ey(°> s (13)

2 2
P (20 =[Zyxxy(-2u,u,m,o) E2Cea) + (=265, ,,0) Ey(@] £ 0) , C1b)

x yyyy

with the following relation:

(=20 W, ,0) = (m2W,W,W,0)4+

x JyyYy xxxn

(2w, ,w,w,0)+ X (2w,w,w,0) , 2>

+ x xyxy yxXxy

If the incident light is linearly polarized with electric vibrations parallel to
the DC field, Eq. (1b) permits the determination of the susceptibility xww H
whereas if its vibrations are perpendicular to Ey(O) » We determine /zyxxy'
When applying circularly polarized light, measurement of the polarisation
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component (1a) yields the susceptibilities xxxyy and x‘xyxy s Whereas

by measuring the component (1b) we obtain xyxxy and xy 7y This method
of determining the components of the nonlinear susceptibility tensor xﬁ?::?f

is due to Mayer (refs 25,28).
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Fig.1. Diagram of setup for the observation of SHG by liquids in a DC electric
field.

The present paper is concerned with classical SHG theory in naturally iso-
tropic, electrically polarized media. Our formulation will ve sufficiently gene-
ral to permit the inclusion of various correlations, not only between atoms and
molecules of the same species but moreover between unlike ones such as exist in
gas mixtures and liquid solutions,

GENERAL THEORY

To derive the general relation between the macroscopic phenomenclogical non-
linear susceptidbility tensor %,gef and the appropriate microscopic nonli-
near polarizabilities of the atoms or molecules, we have recourse to the semi-
-maeroscopic theory of Kirkwood (refs 20, 22 ). In the semi-macroscopic ap-
proach, we consider a macroscopic ellipsoidal, spherical or otherwise shaped
sample of volume V and electric permittivity & within an isotropic,
continuous medium of permittivity ge. When an external, sufficiently strong
electric field _gf acts on the medium, the sample becomes anisotropic, with
the electric permittivity tensor €., .+ In general, the macroscopic electric
field §, existing in the sample, differs from the external field E® in the
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absence of the sample, and the following relation, resulting from electrosta-
tics, holds ( ref. 61):

Ey =R . E. . (3
The tensor relating Ee to E is, here, of the form:

Rgp= € | €8t (Egpm Eedepdlon ) (#)
ST = Co eox oy~ celp/ o '

where Sﬂ is Kronecker’s symmetric unit tensor and L o is a symmetric
field depolarisation tensor, dependent om the shape of the electric sample
and defined so that its trace shall equal unityt L o= Ln + LW + I’zz = 1.
In particular, for a spherical sample Loo.‘= %Sc"r_ s and the tensor (4) becomes:

Rohr = Ceaf,;"' 2 &e 8(;’1',)/ 3 Se » (4a)
or
Reg= Spp (E+2 £)/ 3 & =R » (4b)

if the electric permittivity of the sample is isotropic, £, = 58«'7:‘
If the sample 1s a cylinder, with axis directed along the xvaxis, one
has L, =0, Lyy =1l = 1/2. For a circular oblate disec, Lxx = Lyy =0
and L, = 1.
Similar relations hold for AC electric fields, provided the electric per~
mittivity tensor is introduced as dependent on frequency, O .
Semi-macroscopically, the electric polarisation induced in the sample at the

frequency 2C3 1is defined as:
Po,caco)=-;-J WOCE > sCr, BE)ar (5)

where the statistical distribution function £ (I ,E Jrefers in general to the
whole medium acted on by the external field E when the microsystems ( atoms,
molecules, macromolecules, ions )are at the configuration T .

On the assumption that reorientation of microsystems is caused by the DC
field alone, we have in the linear approximation of Gibbs’ statistical per-

turbation calculus:

£Cr,E)=2(r0) [1+5F 1% 2c0)] , (6>
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where Ho( is the total electric dipole moment of the sample in the absence of
external fields.

In the same approximation, the momentary electric dipole moment induced in
the sample at the frequency 2¢O ist

20 (g>= 14 [B“chﬂ,rn(oﬂz @E, (W), 7>

Baa‘e;p and c;":‘,;’,f being tensors of 2-nd and 3-rd order nonlinear polarizability
referring to the sample of volume V as a whole.
By Eqs (6 ) and (7)), vwe write the polarisation (5) in explicit form:

Pco(?_(.b)zfv <c,,,,f = B2, M f> ,g(w)Ei,(w)E}(O) , (58)

where the symbol < evee > denotes statistical averaging with the un-
perturbed Gibbs distribution function £(I',0).

On averaging the right-hand term of Eq. { 5a ) and comparing the result thus
obtained with the phenomenological equation (1) we get, on taking into acco-
unt the relation ( 3 ), the following expression for the nonlinear susceptibi-
1lity tensor of an arbitrary isotropic body:

}’/5" [G2“b (S /L:*Sg/l.s;\;)"' 52 S 535\,“ ;‘;‘) :‘: /‘::) 2f (8)

where we have introduced the following factors, characterizing the microsco-
pic structure of the medium:

20 _ 20 2W 2w 0 3"4
W T3 B = L 7w (3 Bt °'-/’/-* w2 >

s%= 'a;T<2 ci‘;"/soc c:?c/a/s + T (eBou/A/b 2«. - u.u/s /5 >> .

In particular, on neglecting electronic dispersion and absorption and the
anisotropy of the temsor (4 ), the phenomenological nonlinear susceptibility
tensor (8 Dbecomes completely isotropic:

;cﬁ:‘} =3 QZC"C&.c&,)”Eﬁ,S? +8p8ey ) BO(RNZ B° (82)

with the single molecular factor:

P =36 o35 oL 22 gk 8% €10

= 20v m,a/e, e /,5 ’

and, by Bqe C4b) , B® =(€’+ 2 EO/3E, et



116

For this particular case we have, by Eq. (8a):

w 20 2We 2 0

§wy=q U R (§:1:)

Thus, in the semi-macroscopic treatment, the microscopic calculation of the
nonlinear susceptibility tensor reduces to the molecular-statistical analysis
of the factor (10). A different approach to the relation between the molecular
polarizabilities and the macroscopic nonlinear susceptibility has been proposed
by Bedeaux and Bloembergen (ref. 62).
Otherwise than theirs, our approach automatically separates the geometrical-(
~macroscopic factors (4) from the molecular-statistical factors (9 )and (10).

APPLICATION TO FLUID MIXTURES

We shall now analyze the molecular constant (10 ) for the case of a sample of
volume V containing N= S;Ni unlike microsystems, N1=in being the number
of microsystems of the i-th species and xg the molar fraction of the i-th com-
ponent of the mixture; obviously, Ei xi=1.
The role of angular correlations

To begin with, we assume the dipole moment and macroscopic nonlinear pola-
rizabilities occurring in the factor ¢(10) to be, simply, sums of the respective

quantities, referred to the microsystems:

N N
. —1i .

o _ s~ (pv) v pl)

W= 2 i /J,l , BW .25 bi“’(’. 2°° -Z Z 2“’; 1)
i p=1 %Ay 1 p=1 ¥ p=1 Y
:Z") denoting the permanent dipole )moment component of the p-th isolated micro-
4 (€D

system of species 1 , and b%i"ﬁbf and °§.wa the tensors of its

2-nd and 3-rd order nonlinear polarizabilities, respectively.
On insertion of (11) into Eq. (10) , we obtain the equation for the mixture:

@9 =2 + Z x,x, Q%% . “2)
n %5 Yy
where

2 1L 20(1) | 1 2wy | ch
Y ( w,%/b * %7 o(uob/b /’('/5 (13)

is a factor referring to the i-th component of the perfect mixture, with
)o= N/V the number density of the microsystems. Accordingly, in the
2w

absence of correlations between the microsystems, the factor Q,m and hence
the nonlinear susceptibility is additive.
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From Eq. (13 ) we see that, in the microscopic interpretation, the pheno-
menological nonlinear susceptibility of a dilute dipolar substance consists of
two parts (refs 25, 63): a part not dependent directly on temperature, re-
sulting from the purely distortional process of nonlinear electronic polariza-
bility of order 3 (Voigt effect ) , which occurs for all molecular symmetries
since ci;':;i) has non-zero tensor components even for atoms in their ground
state; and a part directly dependent on temperature in accordance with the
Langevin-Debye theory related with the statistical rrocess of reorientation of
the permanent electric dipoles ,u«;i) in the DC electric field and with the
process of 2-nd order nonlinear distortion, described by the tensor bi;’:;i).
The last effect occurs only in gases of molecules dipolar in groundstate. The
temperature effect occurs moreover if dipole reorientation is caused by an AC
electric field with a frequency below Debye dispersion (refs 27, 11 ).

As the result of correlations between microsystems of the same or different
components of the system, the factor Qi“ ceases to be additive. In a first
approximation, with regard to the expansion (12 ), a measure of the deviation

from additivity is provided by the binary factor:

i i ij
R C IR DT

where we have introduced the tensor of angular binary correlations between
dipolar microsystems of the species i and j

Cid) PJJ (ri,ad> (2)
( I"q.j ) 4 r“pi d qu . “s5)
Above, 3(2) ( i? ) is the binary correlation function for two micro-

systenms at r‘i and r‘j s whereas c(pj;:qj) is the cosine of the angle
subtended by the axis o of the microsystem at f‘ and the axis /3 of the
one at r‘qJ.

1f, in particular, the molecules are axially symmetrie, Eq. (14) reduces to
the simple form:

20 _ 3P 20 2w _ 2w (1)
Q5 = %0kT (bi Mt /“'1 “D Y 0 B = Yiea /3 (14a)
where the angular binary correlation parameter
L (2)
33 =F | Jeos 8 plyqy 813 (o Tgy) @ My aty (152

is analogical to that intervening in the theory of linear dipole polarisation
and Kerr effect in mixtures (ref. 64 ). For a one-component system, (15a)
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reduces directly to the well known Kirkwood parameter.

The role of electric molecular fields in polar fluids.

In strongly condensed media, electric molecular fields F are present
even if the medium is not acted on by external fields. Owing to fluctuations
of the molecular fields in regions of short-range order, the molecular syme
metry is impaired e.g. a molecular cenire of symmeiry can be destroyed. In
this way, electric moments of higher orders are induced in nondipolar centro-
symmetric molecules in accordance with the expansion:

Z g_i B LoD,

ot/b/b

— N
20 < 20W(pi) L (pid
B = 2__ 2 [ F + s0e (16)
wpy T et xS 9

where c{fpi) is the tensor of linear electric polarizability, induced in
molecule p of spacies i by the electric field originating in the N-1
molecules of the medium:

—N

D, > 53 plhiadd , “D
3 q=1
a#p

with _E(pi,qj) the field at the centre of molecule pi due to the

electric charges of a neighbouring molecule gqj. We neglect here the influ-
ence of the molecular field on the tensor c%g:x; as well as the effect of
Yvon-Kirkwood molecular redistribution (refs 4, 58).

By Eqs (16 and (17 ), we obtain the factor (10) for systems of nondi-
polar molecules ( we write out the temperature-dependent part only):

._N N N
20 > SUTESE Zuat @l gl )
2°V 20V T {5 p==1 q=1 r=1 s=1 Ay °£/3 5y

This expression shows that nondipolar fluids too exhibit a temperature-
~dependent part of their nonlinear susceptibility, due to space and time
fluctuations of the molecular electric fields lowering the symmetry of the
molecules as such as well as of the region of short-range order (refs 27,51).
In general, the field existing at the centre of molecule p of species 1 due
to the electric multipoles of molecule q of species Jj is (ref. 64):

o0

S en? RS m)
—Fpi.qj = L Cn-1)11 -pi R Lol M 4 ©9)

n=0
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where _!j;;’ is the electric 2P-pole moment of molecule q of species J

(D) - n+l, =1
plagj =~ Vo (Tp g
describing interactions between molecules pi and qj , mutally distant by

rpi,q;]' The symbol [n] denotes n-fold contraction of the product of two ten-

and )is the interaction tensor of rank n+1

sors of rank n.

Binary radial correlations. In our analysis of the rather complex expres-
sion (18) we shall at first restrict ourself to binary correlations of the
radial type, neglecting polarizability tensor anisotropy. We thus write:

[- -]
2w _ P Sl [ 26 ) (n)
Uy T2 =1 (2Dl ofy MyUInI M 4
M (n) -2 C ne2)
+ °j on M I M :l < s (20)

where we have introduced the radial binary correlation parameters:

~m4+2 @
LAy > =‘”90J "oi,ai E13 "pi,qi 2%pi,q) @1

From Eqe (20) we derive in particular for axially-symmetric quadrupolar
molecules with the quadrupole moment @ Ceeg 002)=

Qi:l BT (°1 oy, @ @2 2woc )< ”13 ) (208

and for tetrahedrally symmetric molecules (e.g. CH4):

&9 2 (29,022 .2 o, DL P >
‘B P5PE S IE> ] Czot)

with .(2/1 and @ i denoting, respectively, the octupole and hexadecapole
moment of the tetrahedral molecule ((refs 1,4 ).

Putting S2 = O, Eq. (20b) holds for octahedral molecules Ce.g. SF p)
the lowest nonzero electric moment of which is a hexadecapole é .

Ternary radial correlations. From (18) we obtain, in higher approximations,

components related with ternary and quaternary ( four-molecule ) etc. corre~
lations, permitting the replacement of (12) by the more general expansion:

g— w — -
Qﬁw= 2 x; Q§ + Zi;T X%y Qi? + 213 Xy X%y Qf?k + e (22)

i
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Here, by (18 Dand (19) , we get for the ternary molecular correlation
factor:

xR0
Co+1)! - (n+2)

20 20) 20 e (n) (n),

Uik = 241;?( o6y +0, o C o @it Lhagvy| ﬁkn<@1k *4x) >(23)

with the following ternary radial correlation parameters:

Loy, o )-(n+2)>= _g_"i” J Cotne Tosoon y- @422

-pi,sk g;],
n+1< )8131: (Zpys Zqyr Tex Jdry drgy drge o (@4
pi,sk 1'q;j,&;k

ggi C:pi' ':q;j’ Iy ) bveing the function of ternary radial correlation
between three molecules at the positions Zpgr Loy and r_, » Wwhereas
Pl is a Legendre polynomial of degree n+1.

The ternary parameters (24), according to the model adopted, can take
positive as well as negative values in contradistinction to the binary para-
meters (21) , which are always positive.

In particular, for quadrupolar molecules, Eqs (23) yields:

Qijk = BkT ( °C;; +0l, °§0>®k2 < Gy Tk )-4 > . (23a)

Similarly, other particular cases can be derived from Eq., €(23). It is
worth stressing that both Egs (20) and (23) are applicable to mixtures

where one of the components is atomic and the others mclecular.

General tensorial correlations.

Eqs (20) and (23) hold moreover for molecules with Cbeside higher multi-
poles ) a dipole moment. In this case, however, when calculating (10), one
has to apply the following correlation function:

£(r,0) = exp [~ UCP)/kT] /J oxp [- UM/kr Jar (25)

where the total potential energy U(T) contains, beside the radial inte-
raction energy U (x) , the energy of tensorial molecular interaction

v (r,SL) consisting of multipolar interactions of the electrostatic, indu-
ctional and dispersional types (refs 1,4). For polar molecules, the chief
role generally belongs to electrostatic interactions, described by the multi-
pole expansion ( ref. 64):
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_— M Ny e -1)"

__1 S 35
Vind)= -3 % 21,;1 % %;a {-—1 Can-111 Com-1)11

(n) (n) (m) (m)
Bihvag e} Bat Ml 3M . (26>

In this case, however, one has moreover to insert into Eq. (10) the sum
of (11) and (16> , so that (in addition to the term (18) containing con-
tributions from the square of the molecular fields ) we now obtain additio-
nally a term containing contributions linear in the molecular field:

20 1 Z o B B p2WCPL) Cad) plaj,rid
= SO0V KT +
20V kT 49k 21;‘1 2«;?1 Zr:‘t Y °(’/sx b1
(2Wpl) (P F(p:l.rk.)> . C2n>
Y oy Mp s :I

With 619) and (26) taken into account, we hence obtain new contribu-
tions to Q?;’, Q?;; » etec. Obviously, the contributions from higher-order
molecular fields ( the gradient, or gradient of the gradienty etec. ) can in
some cases turn out to be very essential. However, we refrain from consi-
dering them here [ see, (refs 1,4,65,66)].

DISCUSSION AND CONCLUSIONS

The DC-EFISHGL theory formulated by us leads to the following conclu~
sions:

(i) In the general case of a dense isotropic body, the relation between the
tensor of phenomenological nonlinear 3-rd order susceptibility and the ten~
sors of nonlinear molecular polarizabilities is not isotropic. This relation
is resolved into a geometrical-macroscopic factor, related with the diffe-
rence between the electric fields within and beyond the sample, and a mole-
cular-statistical factor defining the microstructure of the medium.

(i) In mixtures of dense fluids, the nonlinear susceptibility is not addi-
tive but, in general, is nonlinearly dependent on the molar fractions of the
components of the mixture.

These two facts have to be kept in mind when determining nonlinear pola~
rizabilities from DC-EFISHGL studies in fluids, in which various radial and
angular correlations can exist between molecules of the same and different
species. Even in dilute solutions an important role is played by the solvent
effect (refs 67-70) , with ternary and higher correlations contributing im=
portantly beside binary radial molecular correlations ( ref. 69).
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In the case of a two-component mixture it is convenient to expand Qﬁw

in powers of concentration x (with x =X, = 1 - x4 the molar frac-—
tion of the solute) :
o0
Qf‘m = 2 Azw xn = AZQ + Aawx + Azw x2 + Aaw 13 + ses (28)
=0 ° ° 1 2 3

The expansion coefficients Ai?)

one hand, directly from experiment and, on the other, from the theory for-

are accessible to determination, on the

mulated above. Thus, Ang depends on the molecular properties of the pure
solvent only:

(0} (&)
Agw = Q?l + Q?|1 + Qi‘;z' + oo ’ c29)

w
whereas the other coefficients Aﬁo N ASG) ’ A§ yeee depend on the proper—

ties of the solute and mixture:

2w 26 20 26 26 20 263
A1 =Q2 Q'] +2(Q‘12 -Q11)+3(Q112 -Q111)+ e o

20 _ 26 20 | 20 26 20 20
R AR L R S 1 CEEX R =P

20 _ _ 2w 26 20 20

A" == Qg+ 3 Qg0 = 3 Qppp * U + e G0

The molecular factors occurring in (29)and (30) can be found from Egs

@3) , (14) , (20) and (24) . Their numerical calculation requires that
well defined assumptions be made concerning the binary and ternary radial
correlation functions (e.g. the hard sphere model of Kirkwood, the Lennard-
~Jones potential, eth- Our calculations show that, for quadrupole molecules
such as Hz, 002 and Csﬁ6 the temperature contribution from quadrupole
reorientation amounts to 20 - 80 % of the contribution resulting from
3.rd order nonlinear polarizability, depending on the model assumed. Whereas
in the case of dipole molecules like CO or HCl the quadrupole effect con-
tributes up to 20 %. These evaluations prove that agreement with experiment
can be achieved only when taking into account the contributions to nonlinear
susceptibility resulting from radial and angular molecular correlations.
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DISCUSSION

S. KIELICH

Buckingham - Professor KIELICH has mentioned the role of intermolecular electric
fields in liquids in changing effective molecular susceptibilities. Intermole-
cular forces may change properties by other means. For example, the electronic
interactions leading to the long-range dispersion forces and the short-range
repulsive forces change the polarizability of a pair of helium atoms (Molec.
Phys., 26, 7 (1973)). The importance of the short-range overlap effects presu-
mably increases with the density of the system and with increasing temperature;
at very high pressures there is a reduction in the polarizability of inert gas
atoms that presumably relates to a 'cage' effect. Do you have a feeling for the
relative importance of the '"field" and "overlap" effects ?

Fielich - I agree with Professor Buckingham that short-range overlap effects
play an important part in the changes in linear polarizability of pairs of inte-
racting atoms/Mol. Phys. 30/1975.535/. Collisional pair polarizabilities are
directly apparent in depolarisation of scattered light and in temperature
electro-optical birefringence of atomic gases under pressure.

However, in phenomena of light harmonics generation, we deal with an
entirely different situation since they  are due directly to nonlinear electro-
nic polarizabilities of isolated atoms and molecules. Here, interactions of
atoms/molecules/ lay but an indirect role modifying the nonlinear polarizabi-
lities, which now become effective polarizabilities. The present paper is con-
cerned essentially with effects of molecular electric fields fluctuating in
time and space and inducing directly, in the molecules, linear and nonlinear
polarizabilities which are the source of temperature-dependent second-harmonic
generation, even in nondipolar systems. In systems composed of dipolar molecules,
in addition to molecular field fluctuations an important part is played by
direct angular correlations, strongly dependent on the temperature, density and
concentration. It is my opinion that in DC electric field-induced second-
harmonic generation at not excessively high temperatures, the influence of
overlap effects can be omitted by comparison with the effect of molecular field
fluctuations, which causes a stronger dependence on the concentration of the
mixture. The situation in the case of spontaneous second-harmonic scattering
by atomic systems which is caused by three-atom overlapping effects (Chem.
Phys. Letters 23/1973/53; 25/1974/405) is somewhat different.



