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Numerical calculations of electric (y7(—w; ©)) and magneto-electric (y$5'(~— w; w, 0))
susceptibilities are performed for atoms at the frequencies of ruby and neodymium lasers
and their second harmonics. The following processes, described by these susceptibilities,
are considered: (/) normal and inverse Faraday effect; (ii) DC magnetic field-induced Ray-
leigh light scattering; (/i) magneto-electric splitting and shift of atomic levels.

1. Introduction

In our previous work [1] (to be referred to as I) dealing with the general structure
of the magneto-electric susceptibilities y;;, we derived expressions for the invariant
atomic parameters R,,, fully defining the y;;’s. Here, we give calculations of the param-
afetfio Pou faru i navtaCtivn Wil taser mdhaaton 1o secudins -3=5; we onsiaet ‘a variery
of magneto-electric processes conveniently described in terms of R,,, thus (i) the _noi‘mal
and inverse Faraday effect, (ii) light scattering in the presence of a static magnetic field,
and (i) shift and splitting of atomic levels under the concomitant action of a magnetic
field and laser radiation on the atom.
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waldzka 6, 60-780 Poznan, Poland. '
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2. The parameters R, for atomic terms of various symmetry

The calculation of the parameters R,,, given by formula (I, 2.23), depends on the
type of coupling between the angular momenta in the atom. ‘For a well-defined state
of the latter with prescribed momentum J, the reduced matrix elements (nJ||M||n'J">
and (nJ||d||n'J") are to be calculated in conformity with the well known formulae of
angular momentum theory [2]. As a result, the R,, can be expressed as combinations of
radial matrix elements, containing integrals of the radial part R,,(r) of the wave func-

TABLE I
The parameters R, and @, for inert gases in the ground state
Roi/, in atomic units %o, in atomic units
Atom
WN WR 20N 2wr WR wR 2wN 2wpr
He 0.178 0.273 0.361 0.567 1.49 1.495 1.50 1.52
Ne 0.861 1.329 1.763 2.824 5.23 5.27 5.29 5.37
Ar 4,65 7.24 9.73 16.3 13.2 13.3 13.4 13.9
Kr 8.68 13.6 18.5 320 18.3 18.5 18.8 19.6
Xe 19.0 30.1 415 76.0 27.4 27.9 28.4 304
TABLE 1I
The parameters Ryy and @, for some alkali atoms in the ground state (R, and &, in atomic units)
Atom @ R/ Ryola Ryqfe %o o
K ON —2.92x 10* 4.33x 104 —-1.17x 10% 610 6.61
wR —2.13x 10 2.90x 10° —8.57x 10% ~1296 46.5
Ry WN —-3.51x10* 5.38 x 10* —1.34x10* 706 35.5
wR —1.50x 10° 2.19% 10° —-7.24% 10* —1146 137
Cs wN —1.09x% 10% 1.45x% 103 —2.15%x 10* 1219 254
wR —5.75%10* 8.62 x 10* —2.96x10* —720 124
TABLE 1II
The parameters Ro; and @, for n®Py-states of Hg and Sr
Hg, 63P, Sr, 53P,
w
— Ryy, a.u. &g, A.U, — Roi, a.u. &g, a.U.
o o
oN 554 55.8 1.4x 10 28.6
WR 1368 65.8 2.8x10° 1656
20N 4342 90.0 5.2x10% —-8.42
2wg 1.0x 104 16.7 7.1%x 102 —-452
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TABLE VI
The parameters Ry, and «; for n* Py -states of Tl, Ga and Al
State [} — Roi, a. U. -— Rjo, 8. W — Ryz,a. u. o, a. U, o, a. u.
o o o
oON —7.55% 10t 1.46 x 10% 2.84x 103 46.3 —124
Tl, 62Py;2 wgr —~1.74x 10? 1.21 x 10? 3.81x 103 53.5 ~249
20N —4.70x 102 —6.08 x 10* 6.43x 103 67.8 —50.6
2wr —-1.27x10* —-3.65%x 103 1.92x 10% —48.6 304
N 1.14x 103 1.60x 102 2.26 x 10* 51.8 —15.6
Ga, 421’1;2 wR 2.35% 103 1.01x 102 2.91 x 10* 61,2 —32.8
20N 5.06x 103 —-3.39%x 102 4.67x10* 833 —-74.7
2wgr —-2.52x 104 1.28 x 103 —3.06x10* 3.87 222
WN 5.18x 103 2.92x 10? 1.57x 105 559 —11.8
Al, 32Py, wRr 1.17x 10* 3.29x 10? 1.96 x 10° 65.7 —25.0
20N 2.61 % 10* 1.93 % 102 2.90x 105 87.4 —56.7
2wg —1.54x 10% 8.58x 103 —3.04x10* 43.3 302
TABLE VII
The parameters Ry, and «, for the 6> P3j,-state of thallium (in atomic units)
1 1 1 1 1
[ — Ros ~— Ryo — Ry, —Rz1 | —Rs, %o oy %
a 4 o ' o
ON —1.20x10%[3.01 x 10°]—1.80x 10° | 8.44x 10%|3.32x 10| 0.96x10?| 0.52x102| 1.95x% 102
R —581%x10319.88x 10°|—6.08x 104 13.60x 10° | 2,08 x 10%} 1.44x10%| 1.62x102| 3.46x 10
20N —2.88x10°{3.89x10°(—6.46x 10°[1.26x 106 {1.21 x 107 {—1.71 x 103 | -4.96 x 103 |—6.23 x 103
2wR —570x10%(1.44x%10°—7.42x10%]1.22%x 105| 3.6x10°|—8.72x10%| 1.13x103|—4.24x10%

tion of the initial state |nJ> of the atom, and the radial Green function g(E; r, r’), where
y is the set of spin-angular quantum numbers permitted by the selection rules. In the
general case, such integrals are of the form:

nnz...nN+1
9)’1,72, s YN (601, ] G)N)

= (R (I (Ent 015 1y, 1)1 - - 18, (B s Py, Py IPVSTIR(Py4 1)), (2.1)

where ny, ..., x4 are 1 or 0 for d and I, respectively.

The R,, are determined by integrals of two Green functions g (N = 2), whereas the
parameters a, of the linear susceptibilities y;;(—w; w) — by integrals of one (N = 1).
To calculate g, we have recourse to the expression for g,(E; r, r’) in the approximation
of the model potential method [3, 4], where g, is of the form of a series in Laguerre
polynomials and g(wy, ..., ®y) is calculated similarly in the form of a rapidly convergent
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series of the hypergeometrical type easily accessible to summation by computer. Some
details of calculations involving the Green function g(E, r, r’) are to be found in Ref. [4].
Formulae for «, and R,, expressed by way of integrals o(w,, ..., wy) for some atomic
terms with different values of J (and hence with differently M-degenerate levels) are ad-
duced in Appendix. The corresponding numerical values are given in Tables I-VIL

In the following Sections, we consider some magneto-electric effects, described by
the quantities R,, and o,

3. The Faraday effect

Among the physical processes described by the tensor xij" (—w; w, 0), one of the
most important is the Faraday effect, widely applied in practice with the aim to obtain
information regarding the structure and properties of material media. A statisfactorily
complete discussion of the available results for the Faraday effect in atomic and molecular
systems is to be found in the review article [S]. The angle ¢ by which the polarisation
plane is rotated per unit length of the active medium in the magnetic field &

®
=—(n.-n,) = Viw)H
2c

is determined by the Verdet constant ¥(w), of a value dependent on the parameters of
the medium and the radiation frequency. Above, n, is the refractive index for right
(left) polarized light. In rarefied gases, and omitting spin and magnetic effects, V is given
by the classical formula of Becquerel [6]:

. ps  dn(w)
Viw) = —h—zw yak

(3.1

elh ' . . :
where pg = —lz‘—— — Bohr’s magneton, n(w) is the refractive index of the medium.
mc
A closer, quantum-mechanical analysis shows [7, 8] Verdet’s constant to consist, in gen-
eral, of three terms:

ity

Viw) = he

C(‘”)} , (.2)

w {A(w) + B(w)+ “k—]:‘

where the constants A(w) and B(w) are different functions of w, and C(w) describes the
temperature-dependent part of 1.

The difficulty inherent in the quantum-mechanical calculation of V(w) of specific
atoms and molecules results from the circumstance that the expression for n(w) in (3.1)
involves single summation, whereas the coefficients 4 and B of (3.2) involve two-fold

t Though denoted as 4, B, C, the three quantities are here defined otherwise than in Ref. [5].
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summation over the discrete spectrum and likewise integration over the continuous
spectrum of the stationary states of the quantal system [5]. The problem becomes simpler
only at resonance i. e. if  is close to an absorption frequency of the system, when only
resonance terms need to be included in the sums. Here, however, one has to take into
account the widths I" of the resonance levels [5] as well as the eventuality of a non-linear
dependence of the angle @ on the magnetic field strength H (Maccaluso-Corbino eftect [6]).

We shall be considering the non-resonance case only, when V(w) is determined by
the components of the magneto-electric susceptibility tensor x5y (—@; w,0) of the medium.
The majority of existing calculations of V are for the simplest bi-atomic molecules:
hydrogen [9-12], nitrogen [13], and oxygen [14], as well as for certain more highly complic-
ated ones [10]. The authors cited had recourse to various methods and approximations,
permitting the calculation of 4, B, C only in the range of frequencies up to that of the
first resonance. With regard to atoms, use is commonly made of the approximate formula
(3.1), though some general relations have been derived by Rosenfeld [7] for 4, B, C

d
within the framework of LS-coupling. The derivative e has been calculated for ato-
@

mic hydrogen [15-17], the inert gases [17-19], and alkali atoms [19]. Experiment
shows that for frequencies w remote from those, ®,,, of atomic transitions the values
measured for V differ but unessentially from those calculated using the formula (3.1)
(see, e. g. [20]); however, as o tends to w,,, the discrepancy becomes significant. Thus, in
the case of alkali atoms, measurements have been carried out in the region of the resonance
doublet nP,,, nPs,, (for references, see the review article [5]) and the contribution from
the B-term of Eq. (3.2) was found to be comparable in magnitude with 4, so that formula
(3.1) is no longer applicable.

Consequently, it is interesting to perform strict calculations of the Verdet constant
(3.2) throughout a wide range of frequencies w with the aim to elucidate the relative contri-
" butions from 4 and B and to determine the accuracy with which the approximate formula
(3.1) is fulfilled in atomic gases. Besides, the problem of measuring the temperature-
dependent terms C(w) for isolated atoms presents considerable interest. With regard to
atoms and ions in complexes of the transition metals, the important role of the temper-
ature-dependent terms at low T has been noted in Ref. [5]. Rosenfeld [7] showed that
in states with orbital moment L > 0 the term C(w) of (3.2) is directly proportional to the
paramagnetic susceptibility of the atom. Nonetheless, even in S;-states (such as are
the ground states of most atoms) C(w) can be non-zero at spin moment s = J different
from zero. This situation can occur, in particular, in the heavy alkali atoms Rb and Cs,
for which the antisymmetric polarizability «, (see [1]) becomes considerable in the optical
frequency range [21].

The tensor x5 (—w; w, 0) is analogical to the tensor y;°(0; —w, @), (I, 2.10), defining
the inverse Faraday effect [22-24]. In the general case, these tensors depend on the spatial
dispersion, related with multipolar electric and magnetic transitions [25].

By having recourse to the formula

(ni —1E.(w) = 4nP ()
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of classical electrodynamics and applying the expansion (I, 2.4, 5), we write the rotation
angle ¢ for the isolated atom in the following form:

® 4niP(w) an . eem
p=— = — ne {ny(-a);w)+nyz("w;w’ 0OH.}, 33

where H is assumed as directed along the z-axis and E as polarized along x. When consider- -
ing an ensemble of atoms with the density N, at the temperature 7, Eq. (3.3) has to be
averaged with the statistical distribution function:

AE "
I = Cexp{ kT} (3.3)

where AdE = (nIM| —(u - H){nJM)> = pgg;MH, with g, denoting the Landé factor
4E
of the atom. As a result, ;. of (3.3) is multiplied by — T Next, the expression thus

derived has to be averaged over the projections M of J. This is easy to perform if usé ’
is made of the following relation, resulting from (I, 2.22):

J
1 111 ‘
o (—w; 0, — ir(—w0;0,w Ry;. 3.5
Aot =y apceito = (1] )R 69
M=—J
In particular, on averaging over all orientations, the magneto-electric susceptibility
takes a form analogical to that of the non-degenerate case (I, 2.24) i.e. is determined
by the sole atomic parameter Roy. Averaging of the product AE y5; (—; o) is performed

using (I,, 2.14) and leads to a non-zero o;-term. The final expression for the Verdet
constant can be written in the form:

_ ¢ o (L1 .\/JU“).
V(o) = H(0) = e No(\/g Roy 3KT HB8y 6 0‘1)- (3.6)

We now proceed to apply the formula (3.6) to alkali atoms and inert gases.
For alkali atoms, the moment J of the ground state is 1/2 and, with regard to
(I, 2.22, 23), we obtain for Rg,:

11
Ry, = “%Z{J 71, }((”z ”d{ng(E —; ry, )R (E,—; 1y, 13)

Ji,d3
—21(Euto; 1y, 1)ugs (E,+0; ry, 13)}dln 1)
+<n % H”Hn %> <n% ”d{ng(En—w, ¥y rz)gJ‘(En'_w; ¥, "3)
—~ 81 (E,+ @5 1y, ¥2)85,(E,+ 0 1y, p3)}d{n 3D). (3.7

The reduced matrix elements of the operators d and g are easy to calculate applying
well known formulae of angular momentum theory, as a result of which V(w) for states
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with J =  takes the form (for the sake of convenience, our formula is expressed in the
atomic system of units with e=m =1 = 1):

oy ]
3J2kT)°
Ay, = Ryy(r)lr{gs (Ep+@; vy, 13)81(E,+ 05 1y, 13)
‘ng(En'HO; ry, '2)gJZ(En"(D§ r,, "3)}"3|Rn-}("3)>~ (3.8)

V(CO) = TC(XZN()(D I:'il? (7Ai_,% + 4A'i':‘1‘ - 2A*,£_) +

Above, the A4, ;, are radial integrals, and «; — the vectorial polarizability.

If, in 4, ;,, the dependence of the Green function on the moments J,, J, is neglected
(. e. if g is dealt with as a hydrogen-like Green function with orbital moment / = 1), a,
vanishes in this approximation [21] and (3.8) gocs over into the Becquerel formula (3.1).
Consequently, the distribution between (3.1) and (3.2) resides in spin-orbital splitting
of the excited states of the atom — a factor obviously not taken into account in the clas-
sical theory of Faraday’s effect. It is moreover worth noting that to the R-term of (3.2)
corresponds the term in 4, ; 3,; of (3.8), and to the A-term — the sum of those in 4, {/»
and 43,5,3/2- As a consequence, in the non-resonance case when spin-orbit splitting is
unessential, the relation B(w)~ —+% A(w) holds for the terms A and B of Serber’s
formula (3.2). On comparing the calculatlons based on formula (3.8) and those of Ref. [19]
based on (3.1) we find that for frequencies remote from resonance (when frequency dis-

’

TABLE VIII
The dispersion of Verdet constant for Cs and comparison of the exact results with Becqerel formula
Hw) Hw)
@ x 107, cor? in atomic units dotjde
10.6 1.133x 108 1.053
10.7 1.597 x 10° 1.068
10.8 2.395x 10° 1.089
10.9 2.196 x 106 1.121
11.0 9.762 x 10° 1.171
11.1 4.972x 107 1.248
11.178 00 —
11.2 6.904 x 108 1.360
11.3 2.722x 107 1.472
114 1.357x 107 1.490
11.5 1.538x 107 ) 1.392
11.6 3.608 x 107 1.274
11.7 5.374x 108 1.189
11.732 00 —
11.8 1.175x 108 1.132
119 1.892x 107 1.096
12.0 7.466 x 106 1.072
12.1 3.985x%x 10° 1.056
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tuning exceeds spin-orbit splitting) the discrepancy is very small, amounting to about
(1< 2)%. However, closer and closer to resonance, it becomes quite significant. As an

w
-——— within the re-
na? Now

example, Table VIII shows the dispersional dependence y(w) =

gion of the resonance doublet 62S;,,—62P,,; 3,» of the cesium atom as calculated from
formulae (3.1) and (3.8).

The temperature-dependent term C in (3.2) is related with the vectorial polariza-
bility «r; and can contribute significantly in the optical frequency region, where a; becomes
considerable [21]. Thus, at the neodymium laser frequency wy = 9440 cm~!, the contri-
bution from C(w) to V(w) can amount to as much as ~ 159 in the case of the cesium atom
under normal conditions at 7 = 300K.

In the ground states of the inert gases, the total momentum of the atom is J = 0;
the temperature-dependent term is absent, and R,, takes the form (A.l). Calculations
with formula (3.6) show that, in the optical frequency region, the divergence from
Becquerel’s formula does not exceed ~19,. This was to be expected, since for inert
gases the absorption lines originating in the ground state lie in the ultraviolet region and
the multiplet structure of the excited states, if taken into account, does not affect essentially
the magnitude of V(w). In connection with the aforesaid it is worth noting that, in the
experiments of Ingersol and Liebenberg [20], the divergence of V,,, from Vy,, for neon
amounted to ~ 109 and decreased with increasing w. A divergence like that cannot be
explained as resulting from an inadequacy of formula (3.1) but can be related, for instance,
with some inaccuracy incurred when approximating the frequency-dependence of the
refractive index by means of the single-term formula:

q

2 s
wo_wz

3.9

n(w) =

applied in Ref. [20]. The accuracy of such an approximation increases as o tends to a
resonance frequency of the atom, and this can serve to explain why the divergence
between V,,, and Vj,, decreases with increasing w.

The Verdet constant (3.6) is moreover related with that of the inverse Faraday effect
[22-24] defining the static magnetic moment m(0) induced in the medium by an electro-
magnetic wave with a non-zero circularly polarized component. Hence, irrespective of
whether investigation of atoms in degenerate states proceeds by the normal or inverse

Faraday effect, only one of the five atomic parameters, namely Ry, can be measured.

4. Rayleigh scattering of light by atoms in magnetic fields

In Rayleigh scattering of light by a system in a magnetic field H the cross-section
for scattering contains terms proportional to H which lead to an anisotropy of the scat-

d .
tering process and to a difference in the magnitudes of 7;— for left and right circularly

polarized incident light. The problem of Réyleigh scattering in the presence of a field -
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H has been considered previously in Ref. [26] where, however, only general formu{lae
d s .
for ;1;2— are adduced in terms of the susceptibilities y;;, x;;. Further on, we shall derive

expressions for the scattering cross-section in terms of the invariant parameters 0y Ry
In the notation of formula (I, 2.16), the scattering cross-section can be expressed as
follows up to terms linear in H:

1k k em
€ i + ¢ w3 0 HJ
e, 2J+IZIZe {Xk( w, (D) Xjk( w) }
_(do N 1 e*e el *Hiytyim(— w; 0, w)+compl. conj.y, (4.1)
Q. ),” 2741 ’

MM’ ijki'k

P

where < 5 ) is the cross-section at H = 0 given by (I, 2.16) with o = o’. By (I, 2.16, 22)
=ee’ /O )

and applying irreducible tensor operator technique [2], (4.1) can be brought to invariant

form:

do do * ot " )
dQe, A = — o« Q. ({{e*®e'} @ {e'*®e},} H)o+compl. conj., 4.2)
X,y
where

1 3 2
= —— Rx .
O 2x+1[2y+1:| Y

By (4.2) we have x # 3 and the parameter R, does not contribute to the scattering process.
Inasmuch as we consider nonresonance scattering at a frequency w less than the ionisa-
tion potential of the state |nJ), the parameters o, and Q., are real. Moreover, the wave
vector k of the incident photon is directed along H (the z-axis), whence (e - H) = 0, and:

(lexe*] - H(0)) = —iH(0),, 4.3)

where ¢, is the Stokes parameter of the incident radiation defining the degree of its circular
polarisation. Formula (4.3) follows from the well known relation [27}:

¢ = i([exe*]-n), with n= 17(—‘
With regard to the aforesaid and to a formula of Ref. [2] reducing the tensorial

do
product of four vectors in Eq. (4.2) to usual scalar and vector products, we re-write 7o)
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as follows:

A= do do
T dq, \de.,/,
NE 1 . *
= V5{%Ro1+ \/_galRlo Im ((e* - €) ([ex e*] - m)H

— 1
+iVes <°‘1R12 Ji5 +3“2R21) Flm((e-e*) ([e*xe] m)+3 &in-)IH.  (44)

For the non-degenerate state, only the parameter R, differs from zero, and A takes
the form:

4 = JZ agRo, Im ((e* - &) ([ex ] - H))

for arbitrary orientation of the vectors e, ¢’ and H. Obviously, now, Ry, is related with
the Verdet constant:

c./6
Roy = _“\/ V(w).
w

As shown if Ref. [26], it is of primary interest to determine the difference A*—4-
between the cross-sections for incident, right (e = e,,) and left (¢ = e_,) circularly
polarized light. With respect to circularly polarized light, the following relation holds
obviously:

Im ((e* - &) (n- [exe*]) = Fi(e* - e)*.

The upper and lower signs correspond, respectively, to the right and left sense of mrcular
polarisation. Finally, we obtain for A*—A4-:

2 _
474" = 1/3‘ (21R12 /2 23R,y) (e n)’H
\/6 [5 \/— (“1R12+\/ Ry ) — o Ryg— \/— O‘oRox:l ("™ - e)IZH 4.5

5. The splitting and shift of atomic levels in crossed light and magnetic fields

When considering the modifications of the atomic spectrum under the simultaneous
action of a light laser wave and a static magnetic field H, we shall be assuming that:

1. Zeeman splitting is large compared with quadratic Stark splitting (I, 2.20, 21);

2. H is sufficiently weak for Zeeman splitting to be small compared with multiplet
splitting of the isolated atom and for usual, anomalous Zeeman splitting to occur in the
absence of the light wave;
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3. terms quadratic in H (quadratic Zeeman effect) are small compared with the
Stark shift and are thus negligible; and

4. the light frequency w is remote from the atomic transition frequencies, so that
the perturbation of atomic levels is of the non-resonance kind (certain specific features
of the atomic spectrum in a magnetic and resonance light field have been studied in Refs
(28, 29)).

The situation under consideration takes place e. g. in alkali atoms in fields
H~ (10*+10%) Oe, E = (10° +10°) V/cm, typical for experiment, In such cases, the change
in energy of a level |nJ)> reduces to Zeeman splitting proportional to H into (2J+1)
equidistant components with different projections M of the momentum J onto the direc-
tion of H as well as to a Stark shift of each of the sub-levels. Besides the usual Stark
shift, proportional to |E|?, there occur interferencial terms proportional to H|E|?, de-
fined by the magnitude of the magneto-electric susceptibility y{j;" (—w; w, 0). The latter
terms will be the object of our study.

Quite generally, the change in energy AE, 5 is of the form:

AE,;y = pupg;MH —} A;y|E1* +3 By HIE”. (5.1)

The quantities 4;,, and Bj,, are given by the compound matrix elements of 2-nd and 3-rd
order perturbation calculus for quasi-energetical states of the system in the monochro-
matic wave (cf., Ref. [30]); expressed by way of the susceptibilities y, they are of the
form:

Al = ¥ 2~ 0)E(@)E](©) (5.2)
4L,J=0,
BJMH|E}2 = kz X?;I?'("w; @, O)Ei(w)E?(w)Hk(O)' (5.3)
LK,J

With regard to (I,2.14), we obtain:

2 _ AT AN (M J Jop %p *
AMEP = V32T +1) (- 1) Z (_M o o) T E®E o (54

p=0,1,2
Contrary to (I,2.20, 21), the preceding expression is valid at arbitrary elliptical polarisa-
-tion E(?) since the projection of J onto H remains a good quantum number. To obtain
explicitly the dependence of AE,;,, on the mutual orientation of the fields E and H, we
have recourse to the well known relations [2, 27]:

3(E - H)?
{EQE*}; = %i f (W -—1>, (5.5a)
and
i[Ex E*], = &,|E|* cos B, (5.5b)

where £, is the degree of circular polarization of E(z) (4.3), and B is the angle between
the propagation direction of the wave and the vector H. Finally, we obtain:
—J(J+1)

_ M £, cos f— (Bcos’0—1), (5.6)
V2J(J+1) \/5J(J+1)(2J+3)(2J 1)

AJM = 0(0+



607

where
I(E - H)| = |E| |H|cos 0.

Along similar lines, Eq. (5.3) becomes:

Rio —JUJ+1) £, cos B
P \/J(J+1)M+( [J(J+1)(2J+3)(2J 1)]1/2) J6
(R 2 [3@T+1) 27 =-3)1* ,
+?<\/J(J+1 —4R3,{3J(J + )~ 1~ M}[ 20T+ 9] ] )M(3cos 0—1).

(5.7)

Thus, the modification of the spectrum proportional to H|E|? is defined by the five
parameters R,,; here, in contradistinction to the case of scattering in a magnetic field
(Section 4), the parameter R,, contributes also. It follows from (5.6,7) that AE,;, .
depends essentially on the mutual orientation of E(¢f) and H. In particular, at linear

3
polarization E(t) (£, = 0) when 0 = arc cos \/T the sublevels are equidistant as in the
case of usual Zeeman splitting.

The action of the light wave now causes a Stark shift in “‘centre of mass” of the
Zeeman multiplet and a renormalisation of the Landé factor proportional to the wave
intensity.

mod R

1
g =g+ —
Is 4\/J(J+l)

(5.8)

Clearly, the experimental observation of the interferencial terms, proportional to
H|E|?, may be beset with difficulties inasmuch as they contribute but weakly to the quadratic
Stark effect, (5.6). In order to eliminate the Stark effect one can e. g. proceed to measure
the splitting of sublevels with the projections +M and — M in a linearly polarized field

~H e ~HIE?
ST e T~ S
p Mz - -

Fig. 1. Qualitative behaviour of the level with J = 1 in crossed electric and magnetic fields

E(r). In this case the terms proportional to |E|? contribute nothing (except for a shift in
“centre of mass™), and the change in Zeeman splitting 4, = 2ugg;MH is defined by the
terms involving R,,, R3, of (5.7). Fig. 1 visualizes qualitatively the situation for the level
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with J = 1. The sign of 4—4, in Fig. 1 depends on the angle 6. By varying 0, the differ-
ence 4—-4, can be made positive or negative. ,

The general formulae (5.6, 7) simplify considerably in the non-degenerate case, and
- AE ;¢ now is:

RO 1
J6

Above, the first term represents the usual Stark shift, defined by the scalar polarizability
oo, Whereas the second term is non-zero only if the degree of circular polarisation of E(r)
differs from zero, and vanishes in a static electric field E. The latter part of the shift de-
pends on the interaction between the magnetic moment Hupae ~ |E|? K, induced in the
atom by the inverse Faraday effect, and the field H.

HI|E*¢, cos . ' (5.9)

AE, ;o0 = —F aolE|*+%

6. Conclusion

The preceding analysis and examples show conclusively that the formalism of
decomposition of the magneto-electric susceptibility tensors for degenerate states into
irreducible parts, leading to the specification of invariant atomic paramaters, is highly
convenient with regard to the investigation of various processes of interaction between
atoms and external fields.

The authors are indebted to K. Flatau for the English translation.

APPENDIX

On introduction of the following notation for sums and differences of the integrals
of Eq. (2.1):

A(a)l’ "4" wN) = Q(wb LAY a)N)_Q(_wla sy '—wN)’
0'(6(31, AR wN) = Q(wb sers wN.)"'Q(—wla ey '_wN)’

the quantities o, and R,, for well-defined atomic terms take the forms adduced further
on sub (a)—(e). For the sake of conveniency, we give in formula (A.1)=(A.5) the com-
pound matrix elements T, and T,, by way of which the R, are expressed in conformity
with formula (I, 2.23) (in atomic units, « = 1/137):

2x+1 P2 1 ; 1yx
R,, = 06(2y+1),:3(2j+1):| (Txy_ &<nlllﬂ|an>{J 7 J} Ty)

The parameters «, of linear susceptibilities are given by the formula:

_ 2p+1 0

== ———— P>

V327 +1)
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where T, is of the same form as T, on performing the interchange:
4,54, w) » 4y (w), oo (@, ®) - o1l ().

Thus, we refrain from writing the formula for T ,?.
We apply the spectroscopic notation of atomic levels currently used in handbooks
on atomic spectroscopy:

(a) np° 1S, — ground states of the inert gases:

ay =0, =0, Ryo= Ry, =Ry =R;3, =0,

L ;
T = ;:/3 [675. (@, @) +20,5 (@, )+20,03(0, 0)+ 20,0, ©) 20,70, @)],

[44,5(0, @) +54,0 (0, ©)+74,0 (0, ) +84,54 (0, ©)+ 5414w, ©)

T
°t T 81 \/2
24,0 (@, @) —2430 (0, ©)—241% (0, ©)+ 4412 (w, w)]. (A1)

Y274 Y475 Y275

Above, y = {j,/[K];} is the set of quantum numbers within the framework of Ji-coup-
ling: j, — momentum of the core, / — orbital momentum of the electron, K — “inter-
mediate” momentum, J— total momentum.

11 ={z0[z]}, r2={E20L k= 031}
Ya=1{3 2[%]1}’ s = {3 2[%]1}
(b) n?Sy,,-states of alkali atoms:

Above, and henceforth: y = {JL}, J and L — total and orbital momenta of the valence
electron.

% =0, Ry =Ry =0, <(nilulndd=av32.
T, = J% [012}4(@, ©)+2013% (o, )],
=9 [AI% 13(o, (‘))_A}g,l1%(w, w)].

Tor =55 [4 12,115(0), w)—24 }g,ll-g(w, w)+104 }gfl%(w, )],

1
Ty = 27 \/6 [014; 14}(60’ w)— 80}2,11%(60, cu)—ZOGig,‘l%(w, (0)],

{

I, = 7 Js[ 2013 14(@, ©)+013} (0, 0)+4013 5(0, 0)]. (A.2)

(c) n?P, ,-states (for example, the atoms TI, Al, Ga, ...):
1 1 %
% =0, Ry =Ry =0, (nylulnz) = N

T, = \/27 [00},04}(5" w)+20§2,12g(co, )],
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T, = % [432,10%(60, w)_A;g,lzg(w’ )]
Ty = 3 \/6 [00% o&(w w)— 4512}2%(60, )],
Toy = % [A(l)g,lo%((l’, w)+2A;g,lzg.(W, w)*‘% A?é}o«}(o’ w)+% A?é}z%((), )],

1

2
Ty, = — '9‘\—/3 [003,04(@, ©)—% 63353(02, ©)+67} 650, @)+ 013230, @)1 (A.3)

(d) n3Py-state (metastable states Hg, Sr,...):

a; =0y =0, Rjo=Ry,= Ry, =R32=0~‘
T, '= 3_\‘/3 (1)(1)101((1’, 60)"‘2‘721 S, )],
2
Ty = \/? [Acl)(x),lm(wa 0)+7 /—‘;(1),121(6% “’)+A(1)1,1o1(0’ w)—-A?{}M(O, w)]. (A4
{e) n®P, — the ground states of Hg, Sr, ...:
3.6
Ry, =0, <(nllulnl) = el

T, = — 3[oo101(w, 0)+% 0;(1),121(0)» 0)+35 0';(2),122(60, )],
=< [A(I)(l),lm(wa 0)+% A;(l)lu(wa w)—5 4; 2 252w, )],

101
T, = % [0'01’01(0), w)"'% 0';(1)121((0 w)— 10 052122(60, w)].
Lot 1 101
Toy = 3 \/6 o1 ,01(0, @) — §(1),121(wa w)_z?l A;g,zz((ﬂ, a))+% 431 2:(0, )

(1);!01(0 0)+13 A?;,lu(o, 0)+5 A(l);,lzz(o w)-%4 (1)(1),101(0, w)+% A?(1>,121(.0, w)],

Ty = — 3—:/_3 [‘7(1)?,101(0% w)-—% 0';(1),121(60, W)~ 0';(2)121(0’: w)—g O';glzz(w’ CO)]»
T, = - 376 }\(1)101(0) ©)—3 ‘721 210, 0)— T 0'21 b, ©)+35 0'5(2)122((0’ w)
% 0(1)21’101(0 CO)+40 0'(1)5,121(0, w)’“Too‘ 0'(1);,122(()’ w)]’

T21. = 3_\/—6 [40301(0, ®)—% 4335 1(0, 0)+55 4335 :(0, 0)+5E 4335:(0, ©)

=12 433010, @)+ 155 4935100, 0) +5% 423%5(0, 0)— 44285 (0, ) +4428%,(0, )]
(A.S)
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