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ANTIBUNCHING IN LIGHT HARMONICS GENERATION FROM FIELD QUANTISATION

S. Kielich, M. Kozierowski and R. Tana$

A. Mickiewiez University, Posznah, Poland

1. INTRODUCTION

In quantum optics, one usually deals with light which can be
described in terms of a Sudarshan-Glauber phase-space distribution
function. Light of this kind exhibits a positive, or at the most,
a zero photon correlation (Hanbury Brown-Twiss or bunching) effect.
Recently, however, it has been shown that nonlinear processes such
as degenerate parametric amplification[l] as well as two-[2] and
many-photon absorption,[3] can give rise to light with a negative
Hanbury Brown-Twiss (antibunching) effect. Such light has no
classical counterpart, and has to be treated by quantum mechanics.

The problem of light statistics in second harmonic generation
has been considered in various papers;[4-8] nonetheless, even if
based on a quantal approach (dealing with the field as an operator
rather than a c-number), their results do not go beyond formal
quantum-classical equivalence in their description of the field.
Walls[9] drew attention to the fact that, if spontaneous decay of
the second harmonic into two photons of the fundamental beam is
taken into account, an oscillating solution given by an elliptical
Jacobi function is obtained for the number of photons of the second
harmonic. Classically, omitting fluctuations one obtains a mono-
tonically increasing solution in the form of a hyperbolic tangent.
Dewael[10] first attempted to take into account effectively the
influence of the quantal properties of light on the degree of
second-order coherence of the generated beam. Albeit his result,
a positive value of the Hanbury Brown-Twiss effect, is hardly
correct.
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In this paper we show that if the field is dealt with quantally,
a negative Hanbury Brown-Twiss effect results for processes of har-
monics generation also. This amounts to the statement that harmon-
ics generation can be the source of nonclassical fields to the same .
degree as the above mentioned nonlinear processes.

2. THEORY

Quantum mechanically, k'th harmonic generation can be described
starting from the Hamiltonian of interaction between the fundamen-
tal and generated beams, in the form:[5]

Tk

He = hc Lo 2 a + h.c. (1)

with Ly, - the coupling constant - dependent on the nonlinear prop-
erties of the medium and the state of polarisation of the incident
beam, and a (a a (a ) - annihilation (creation) operators for
the fundamenta (f? and harmonic (h) beams. Using the interaction
Hamiltonian (1), one readily derives the Heisenberg equations of
time-evolution for the four operators. However, in processes of
harmonics generation, we deal with travelling waves rather than
fields in a cavity. By substitution of t = - z/c, where z is the
path traversed by the wave in the medium, the cavity problem re-
duces formally to a travelling waves problem.[11,5] After the
above substitution, the equations of motion of the slowly-variable
part (free evolution is eliminated) of the annihilation operators
for both beams, for perfect phase matching, become:

dah(z)

dz " Ly f(z) ’
da.(z) . " _
—g—z— =ik L [a;(z)]k 1 a, (2)

(2)

Equations (2), jointly with the Hermitian-conjugate equations
of the creation operators, form a set of differential operator
equations, inaccessible to strict solution. Applying Egs.(2) and
their operator properties it is possible to calculate approximately
the variations in field correlation function for the generated and
fundamental beams on traversal of the path z in the medium.[12]

On expanding the correlation functions in z, one has:

k
6™ () = ¢, + I z i—z— ™M@ |, (3)
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where the correlation functions G(n)(z) are defined as:
6™ ) = <@ @1 (2™ . (4)

The symbol < ... > in (4) stands for the quantum mechanical mean.
Provided the correlation functions (4) vary but little along the
path z in the medium, it is sufficient to take but the first few
terms of (3) in order to approximate the values of these functions
satisfactorily. The procedure, in fact, corresponds to that of
short-time solutions in a cavity problem. On differentiating Egs.
(2) and putting z=0, one obtains the values of the successive de-
rivatives of the creation and annihilation operators. By inser-
tion of the thus calculated values of the field operator deriva-
tives into the right-hand term of (3) and on reduction of all terms
to normal ordering by the use of boson commutation rules, one ob-
tains the successive terms of the e%pﬁnsion of the functions G(n)(z)
The expressions thus obtained for G'™)(z) depend, in successive ap-
proximations, on higher powers of z and on correlation functions
of the incident beam G£8 of higher and higher orders.

Applying the above procedure for the magnitude of the Hanbury
Brown-Twiss effect, proportional to G(2)(z) - [G(})(2)]%, in the
experimentally most highly relevant case of second-harmonic genera-
tion, we have obtained[13] the expressions:

) NEOPINE: 416 (e 4
Gy (2) - l:GZw (Z)] = |1p|" 165" - 'I:Gfo} e

4 6 (5)_ ~(3) ~(2) (4) (2) |27 6
- 5 |1y, {2[¢fo - S0 Cgo } R [%fo.] bams ..

(P [Pof o - [T

2 1,03 (2) (1) (2)y 2
- 2|1y, {Z[Gfo - S0 Co ] M

(5)

.}.
In (5), Ggg) = <a'fn a¥0> are correlation functions of the incident
beam. The absence of second-harmonic photons at the input (z=0)
is assumed, G&g& =0 .

Similarly, expressions for the second-order coherence varia-
tions in arbitrary k'th harmonic generation processes can be de-
rived. The formulae, however, are rather bulky. We restrict our-
selves to adducing the formula of the generated beam:
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B . 4 4 2k (k)2
Gﬁi)(z) - [Fﬁi)(Z{JZ = Iy, 1" 2 {Géo ) - [Féo)] |

k-1 P
k 6 6 Py (k-1y [ . (3k-s-1) (2k-s-1) . (k)
(3 Il LT L s B [ a6 o)
k-1 k-1
ky (k-1 3k-s-1
R o A
‘ (6)

where the (E] are Newton binomial coefficients.

3. DISCUSSION

The expressions (5) and (6), obtained by us for the variations
in second-order coherence functions, take a particularly simple and
interesting form if the incident beam is coherent, i.e., if its
field is given by the coherent state: a|a> = u|a> . One then has
G = <ngy>" , where <ngp> is the mean number of photons of the
incident beam. Formulae (5), in the lowest non-vanishing approxi-
mation, now reduce to:

Do - [ -

6{9 ) - [Gél)(z)]z -

8
7 IL

IL |2 >2 2

f
1
N

2w
(5a)

yielding a negative Hanbury Brown-Twiss effect, both for the beam
generated at the frequency 2w and for the fundamental beam of fre-
quency w , on traversal by them of the path z in the medium.

If the incident beam is coherent, formula (6) takes the form:
k-1 k-1

12 k 6 6 Ky k-
Gﬁi)(Z)—{Gﬁi)(z)“] =X 1% pzo (I s PRy (k1)

p
k-1 3k-s-1
- Z S!(p)( 5 )} <nf0>
) (6a)
Since the expression in parentheses {...} > 0, the right-hand term

of (6a) is negative. Thus, for arbitrary k 22 we obtain a negative
correlation of photons, if the incident beam is coherent. It is
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worth stressing that for classical fields, i.e., if agg and aEO
are dealt with as c-numbers, s takes but the one value s=0 and

the right-hand term of Eq.(6a) vanishes. All the terms with s > 1
emerged owing to our application of boson commutation rules to the
field operators. Consequently, the negative photon correlation
reflects the quantal properties of the fields. The effect is nega-
tive, as apparent from (5a), not only for the generated beam but,

as well, for the fundamental beam on traversal of the medium.

One easily finds from (5) and (6) that in the case of a cha-
otic incident beamn, G£H)=n!<nf >N the photon correlation is posi-
tive. Quantisation of the fie?ds, however, reduces the effect in
magnitude.

It is to be expected that all nonlinear interactions of quan-
tized electromagnetic fields and matter have the ability to pro-
duce fields having no classical counterpart.

Quite recently, Miita and Pefina[l4] have discussed the pro-
blem of photon statistics in nondegenerate, parametric amplifica-
tion process. Their results point to a negative correlation effect
as well, and, in particular, go over into ours, (5a), for the funda-
mental beam.
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