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LINEAR AND NONLINEAR MAGNETO-OPTICAL EFFECTS IN MATERIALS
WITH SPATIAL DISPERSION AND MAGNETIC ORDERING*

S. KIELICH and R. ZAWODNY
Nonlinear Optics Division, Institute of Physics, A. Mickiewicz University, 60-780 Poznan, Poland

A theory of magneto-optical processes in aribtrary systems is proposed, comprising electric and magnetic multipole
transitions. General formulae are derived for the light refractive index at Faraday’s and Voigt’s configurations.
Gyrotropic rotation is discussed in detail for non-magnetic crystals, acted on by a dc magnetic field, as well as for
magnetically ordered ones belonging to classes of the tetragonal, hexagonal, trigonal and cubic systems.

1. Introduction

v

It has been shown repeatedly that, in certain systems, spatial dispersion leads to new optical
effects [1], and is particularly important in nonlinear phenomena induced by intense laser light [2-4].
Portigal and Burnstein [5], by a simplified approach, have considered the influence of spatial
dispersion on magneto-optical effects. In this paper, we give a general theory of magneto-optical
processes in arbitrary systems taking spatial dispersion and frequency dispersion into account. We
proceed by multipolar theory of electromagnetic fields and quantum-mechanical perturbation calculus.

2. Fundamentals of the theory
The electric and magnetic permittivity tensors of an anisotropic system are:
{e; — 8,}Ei(r, t) = 4mP (r, 1), ¢}
{y— 8, Hy(r, 1) = 4=P, (r, 1), )

8; being elements of the symmetric unit Kronecker tensor.

The vector of total electric polarisation P,(r, t), induced in the point of space r and moment of
time ¢ by the electromagnetic field vectors E(r,t) and H(r,t) is given generally by the multipole
expansion [2]:

3 @® (_ 1)n+l - B -
P(r, t)—nZZI an i ¥ = 1PSen, 3)

with P(r, t) denoting 2"-pole electric polarisation, and V the spatial derivation operator. A similar
equation holds for P,(r, t), the total magnetisation polarisation vector.
We assume the field vectors as;

E(r, t) = E(w, k) exp {i(k - r — ot)}, )

with k the propagation vector of the electromagnetic wave, vibrating with the circular frequency . In
a medium with the index n we have:

k =n(w/c)s, (4a)

s being the unit vector in the direction of k.

For moderate intensities of the wave, the multipolar polarisations depend linearly on E and H, in a
first approximation [2];

PO = 2 o R @)s T 0+ O @)s I R, ), (5)
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where the n + s-rank tensor, defining the 2"-pole electric susceptibility due to 2’-pole magnetic
transitions is of the quantum-mechanical form:

M M.)|b M| cXc| M |b
L")Xflf)(“’)=22 pab{<a' ]C)(cl. m | )+(a| m |¢><C|. el )}'
h . wy —w—il, W, +ow+il,

Above, p,, is the density matrix for a quantum transition with the frequency w,, and relaxation time
T;!, whereas M;, M, are 2"-pole electric (magnetic) moment operators of the microsystem (atom,
molecule . .. .).

When determining the frequency dispersion and absorption of the multipole susceptibility tensor, it
is convenient to resolve (6) into symmetric and antisymmetric parts:

(6)

O85 @) = (pl1) 2 poatora al ML |b)bIML ) + (a| M b XbIML" @)} Fia(w), @
ab
SAR(@) = (plh) X pua( + T, /(ML X (M| a) (@l M XbIML" @)} Fio (). (8)

ab
where we have introduced the complex function of frequency F,,(w)= F} (0)+iF},(w), with:

2 2, 2
wp,— 0w+ T,

Pl o + 2wt @ Ty ©
” 20T,
() = 2k, + @I 4 T (10)
Since in tensorial notation the Maxwell equations of the field vectors (4) are:
n&ys;Ei(r, t) = u;H(r, 1), (1
—néus;Hi(r, t) = E(r, 1), (12)

we obtain by (1), (3) and (5) for the electric permittivity tensor:
€i(w, k) = €(w, k) + 47 18, {G; N w, k) + G w, k)}s;, (13)

8, being the antisymmetric Levi-Civita tensor.
In (13), eﬁ}”(w, k) describes the symmetric part of the electric permittivity in the absence of natural
or magnetic gyration. The remaining part of (13) describes natural optical activity, defined by the

tensors of electric gyration due to electric multipole transitions, Gi®(w, k), and to magnetic multipole

transitions, G§"®(w, k). The gyration tensors are expressed in terms of the appropriate tensors of
multipole susceptibilities of egs. (5) and (6).

Similarly to (13), we write the magnetic permittivity tensor:

Mij(w, k)= MS))(CU, k)+4m i’sijk{Gz;m(O)(w, k)+ G;:;ew)(w’ k)}sl, (14)

where Gi™(w, k) and G5*®(w, k) are tensors of magnetic gyration, induced by magnetic and electric
multipole transitions.

The electric and magnetic permittivity tensors (13) and (14) provide a complete description of
frequency dispersion for arbitrary anisotropic bodies.

3. Magneto-optical processes

Consider a crystal with electric permittivity tensor of the form:

€, €, O
(&) =(eyx €, 0 ) (15)
0 0 e,

and similar magnetic permittivity tensor.
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Assuming the light wave to propagate along the z-axis, the Maxwell equations (11) and (12) yield
for the refractive index:

2 _1
n. = Z{Gxxp“yy + eyy”‘xx - Exy#’xy - eyxl"‘yx * [(Gxx“‘yy - 6-yyl“'xx - ny#’yx + Exy”’xy)2
FAenbley = M€y ) €pyttye — 1, €,,)]"%. (16)

For particular cases, (16) reduces to well known results [6].

If the wave propagates along the x-axis, we obtain for the indices in the two directions
perpendicular to x:

ni = €l — (#’zz exx)exyeyxa n? = €y — (ezz/l"'xx)#‘yxl"xy' (17)

If the system is acted on by a dc magnetic field H®, the electric (13) and magnetic (14) permittivity
tensors are functions of H:

€i]'(a)’ k’ HO) = eis]’(w’ ka HO) + 471. isijk{F:e(w’ k9 HO) + [sz(w’ ka HO) + Gz;n(w’ ka HO)]SI}9 (18)

F(w, k, H’) being the magneto-gyration vector. The magnetic permittivity can be written similarly.
Assuming H® as not excessively strong though sufficient for modifying the electric and magnetic
properties of the system appreciably we have, in a quadratic approximation:

€{w, k, H) = €)(w, k)+ e, k)H,, + emw, YHLHO + - - -, (19)
Flfe(w, k! HO) = k;x(w’ k)H?n+ RS (20)
Gii(w,k, H) = Gii%w, k) + G2, k)HS, + Gi(w, k)HLH + - - -, (21)

and similar expressions for the other gyration tensors.

Above, e}}”(w, k) is a second-rank polar tensor, symmetric with respect to the operation of
time-inversion [7] (polar i-tensor). The third-rank axial tensor eﬁ,-',fl(w, k), antisymmetric with respect to
time inversion (axial c-tensor), is a function of odd powers of the wave vector [1] and defines
magneto-spatial dispersion [5]. The polar i-tensor e}f,f,(w, k) describes the electric contribution to the
quadratic Voigt effect, Cotton-Mouton effect, and magnetostriction; like e,‘-}”(w, k), it can but be an
even function k. The polar second-rank i-tensor (@, k) describes the electric contribution to the
linear Faraday effect, and is an even function of k. The polar i-tensors of the type of G,(j’,f,(w, k) are odd
functions of k, and describe magneto-spatial rotation. The gyration axial c-tensors of the type
G{(w, k) and G, (w, k) are even functions of k and describe, respectively, natural optical activity and
its variation proportional to (H®?; the latter can occur as well in isotropic, naturally optically active
media.

4. Results

By having recourse to tabulated [3, 7] nonzero independent elements of the tensors of (19), (20) and
(21), we find for all crystals having symmetry of the classes of the tetragonal, hexago_l}al, trigonal and
cubic systems except 4, 4, 4/m, 422, 4mm, 42m, 4m2, 4/mmm, 23, m3, m3, 432 and 43m:

n,—n_=@n/n)e (o, k, H)Fa™w, k,)H. +(G"™(w, k,, H®) + GX¥(w, k,, H))s,]

+ pilo, k, H)F(o, k)Hy +(GE(w, k,, HY) + G™(w, k,, HY)s, ]}, 22)
with n =3(n, + n_), and:
€, k;, HY) = €(w, k,) + €nlw, k,)H + €2, (w, k)H" + - - -, (23)

in the classes 4, 4, 4/m, 422, 4mm, 42m, 4/mmm, 3, 3, 32, 3m, 3m, 6, 6, 6/m, 622, 6mm, 6m2, 6/mmm,
but €. (, k;) =0 in the others: 4/m, 4/m, 422, 4mm, 42m, 4/mmm, 4/mmm, 4/mmm, 4/mmm, 3, 32, 3m,

3m, 3m, 3m, 6, 6, 6/m, 6/m, 6/m, 622, 622, 6mm, 6mm, 6m2, 62m, 6m2, 6/mmm, 6/mmm, 6/mmm,

6/mmm, 6/mmm, 432, 43m, m3m, m3m, m3m, Y, Y,, K, K,. The component u: (o, k,, H") is similar for
these classes. The polar i-tensor elements Fi(w, k,) and Fo™(w, k,) occur in all classes. The remaining
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gyration tensor elements amount to:

G, k,, HY) = GE%w, k,) + G (w, k,)H® + GZ2(w, k,)HY, 24)
Gi(w, k., H) = G w, k) + G, k,)H? + G (w, k,)HY (25)

with similar expansions for GX™(w, k,, HY) and G2(w, k,, HY), but G:w, k,), G=P(w, k,), G w, k,),
GIP(w, k,), G2"w, k), GEnP(w, k,), G2 w, k,) and GTP(w, k,) will occur for the classes 4, 4/m,
422, 4mm, 4/mmm, 3, 3, 32, 3m, 3m, 6, 6 6/m, 622, 6mm, §21_n_ 6/mmm, 432, m3m, Y and K whereas
G M(w, k,), G V(w, k,), G;;;"(”(w k.)) and G™"(w, k,) only for 4, 4mm, 4mm, 3, 3m, 3m, 6, 6, 6mm,
6mm and 6mm.

For isotropic optically inactive bodies of symmetry 43m, m3m, Y, and K, we obtain the well
known results for Faraday’s and Voigt’s configurations.

Magnetically ordered crystals with nonzero spontaneous magnetisation M, in the z-axis direction
(parallel to the symmetry axis of the highest multiplicity) exhibit, even without an external dc
magnetic field, nonzero differences n,~n_ and n,—n, given by (16), (17) and (22) (with, now, M,
instead of HY) [8,9]. Whereas an external dc magnetlc field will give rise therein to new non-additive
terms, proportional to HM,.

The above results should prove very helpful when choosing the best crystal for experimental
observations of birefringence and optical rotation, arising from the various terms of eqs. (19), (20) and

20n.
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